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Introduction
Compared to conformational radiotherapy (CRT), intensity 
modulated radiotherapy (IMRT) and volumetric modulated 
arc therapy (VMAT) improve target volume conformity 
and normal tissue sparing, resulting in reduced acute and 
late toxicities.1–4 Considering conventional linear-accel-
erators (linacs), intensity modulation is achieved through 
different parameters, according to the technique used: 
multileaf collimator (MLC) position for step-and-shoot 
(or segmental) IMRT, MLC position and speed variation 
for sliding window (or dynamic) IMRT and additionally, 
gantry rotation speed and dose rate variation for VMAT. 
Due to the complexity of modulated plans, patient specific 
quality assurance (PSQA) is strongly recommended by 
various professional organizations.5–11 The complexity 
level of a modulated plan is variable according to patient 
anatomy, dosimetric constraints, optimization algorithm 
and linac capabilities.

In order to quantify this level of complexity, a wide range 
of complexity metrics have been proposed but, up to date, 

without consensus. Plan complexity is generally defined 
from machine parameters and plan properties (fluence, 
MLC aperture, position and displacement, gantry speed 
and dose rate variations, MU) to study correlations with the 
agreement between delivered and calculated dose distribu-
tions. The main idea is that this agreement is more diffi-
cult to achieve for a plan with a high level of complexity. 
Complexity metrics are then based on identified sources of 
errors in IMRT/VMAT delivery (MLC leaf position, gantry 
rotation, beam stability) and treatment planning system 
(TPS) calculation (MLC modelling, off-axis and irreg-
ular field modelling, output factors for small field sizes).5 
According to these considerations, Crowe et al12 divided 
complexity metrics into three categories corresponding to 
different approaches:

•	 The fluence metrics exclusively consider the resulting 
fluence of a modulated plan or beam. They aim to 
quantify the complexity without identifying the sources 
(machine and/or TPS). They can be applied to both 
IMRT and VMAT plans. The hypothesis is that a highly 
heterogeneous fluence reflects a high level of complexity, 
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Abstract

Modulated radiotherapy with multileaf collimators is widely used to improve target conformity and normal tissue 
sparing. This introduced an additional degree of complexity, studied by multiple teams through different properties. 
Three categories of complexity metrics were considered in this review: fluence, deliverability and accuracy metrics. The 
first part of this review is dedicated to the inventory of these complexity metrics. Different applications of these metrics 
emerged. Influencing the optimizer by integrating complexity metrics into the cost function has been little explored 
and requires more investigations. In modern treatment planning system, it remains confined to MUs or treatment time 
limitation. A large majority of studies calculated metrics only for analysis, without plan modification. The main appli-
cation was to streamline the patient specific quality assurance workload, investigating the capability of complexity 
metrics to predict patient specific quality assurance results. Additionally complexity metrics were used to analyze 
behaviour of TPS optimizer, compare TPS, operators and plan properties, and perform multicentre audit. Their poten-
tial was also explored in the context of adaptive radiotherapy and automation planning. The second part of the review 
gives an overview of these studies based on the complexity metrics.
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comparing with CRT homogeneous beams. However, a 
limitation of fluence map-based metrics is their insensitivity 
to the degeneracy of fluence map.13 Indeed, the same fluence 
map could be generated either by a single large beam or by 
a combination of successive small beams, leading to a similar 
fluence-based metric.

•	 The deliverability metrics focus on machine capability of 
delivering the treatment as planned due to the variation of 
mechanical (gantry, MLC) and dosimetric (dose rate, MU) 
machine parameters. They are treated independently or 
combined. These metrics depends on the technique applied.

•	 The accuracy metrics aim to quantify the parameters identified 
as most likely to compromise accurate dose calculation due to 
the machine modelling and algorithm inaccuracy in the TPS. 
In particular, the small distance between opposite leaves, the 
off-axis leaf aperture, the leaf leakage dose and the aperture 
irregularities are pointed out. Accuracy metrics focus on 
MLC only and consequently can be applied to both IMRT and 
VMAT. Deliverability and accuracy metrics are intrinsically 
linked and some metrics could belong to both categories. 
As an example, the small distance between opposite leaves 
is a challenging situation for both the machine and the dose 
calculation as well. In ambiguous case, the intention of the 
authors describing the metric was considered.

The aim of this paper is to provide a wide review of existing 
complexity metrics and their applications. As complexity 
metrics depend on technical considerations, only conventional 
linacs were considered in this review. In early studies, complexity 
metrics were mainly developed with the purpose of predicting 
the PSQA outcome. Some strategies were then proposed to 
streamline PSQA process, reducing workload. Furthermore, in 
order to adapt the plan complexity to the dosimetric require-
ment, correlation between complexity metrics and plan quality 
was investigated. In the same way, complexity metrics were used 
to compare TPSs, optimization algorithms and plan proper-
ties. Some studies aimed to estimate their utility for multicentre 
external audit and in the context of adaptive radiotherapy and 
automation planning.

The literature was searched in “PubMed” and “google scholar” 
search engines, using the following keywords and logic state-
ments: (“VMAT” OR “IMRT”) AND (“complexity” OR “modu-
lation”) AND (“metric” OR “index” OR “level” OR “degree”). The 
term “complexity metric” was chosen in this review.

Complexity metrics
Table 1 lists the main complexity metrics grouped into the three 
categories defined by Crowe et al12 and detailed in the introduc-
tion. Listed complexity metrics are described below.

Fluence metrics
IMRT/VMAT treatment planning with TPS generates fluence 
maps using optimizers. These fluence maps can be represented 
as two-dimensional (2D) matrices composed by beamlets 
(bixels) with different independent weights (intensities). The 
plan complexity can be assessed through metrics derived from 
these fluence maps, which serve as input to the leaf sequencer 
computing the time sequence of MLC settings.39

This type of metrics was initially introduced for IMRT plans. 
Llacer et al14 defined the Fluence Map Complexity metric 
(FMC). The FMC likened to a smoothness measure is a normal-
ized root sum over the local differences between bixel values 
and their two neighbours. It is sensitive to differences between 
adjacent beamlet weights and the existence of excessive large 
beamlet weights in the field periphery in an otherwise rela-
tively uniform beam map. The FMC focuses on local differences 
without relating the local changes to the overall fluence stan-
dard deviation. In this context, Webb15 proposed the Modula-
tion Index (MI) that better relates the local changes to the global 
ones. Indeed, the MI quantifies the variations of photon fluence 
along one direction between neighbouring pixels in the fluence 
map including a threshold defined as a fraction of the standard 
deviation in the beam. The definition of MI has been later gener-
alized to changes along x, y and diagonal directions by Nicolini 
et al16 and called 2D MI.

Coselmon et al17 introduced the Plan Intensity Map Variation 
(PIMV) metric quite similar to MI and FMC. The PIMV is the 
sum of the intensity difference for each beamlet at the (j,k) posi-
tion with its neighbours at (j,k + 1), (j + 1,k) and (j + 1,k + 1) 
positions. In addition, Coselmon et al17 defined a second metric 
called maximum intensity ratio (MIR) which considers the 
maximum intensity allowed for each beamlet during the opti-
mization process.

Later, Nauta et al18 suggested that IMRT fluence map complexity 
could be assessed by means of fractal dimensions analysis. For 
this purpose, three types of fractal dimension have been evalu-
ated: the Variation method, the Power Spectrum method and the 
Variogram method. The Variogram method based on the statis-
tical Gaussian modelling of images was preferred to assess the 
complexity because of its good independency of image size, its 
strict increase with the theoretical dimension of the fractal and 
its precision.

The first fluence map metric dedicated to VMAT technique was 
published by Park et al.19 This work consisted in analysing six 
second-order statistical textural features of fluence map derived 
from its grey level co-occurrence matrix generated for three bixel 
displacement distances (d = 1, 5 and 10). Co-occurrence matrices 
allowed the characterization of pattern repetitions. In Park’s 
study, the following textural features were calculated: angular 
second moment (ASM) as a measure of homogeneity; inverse 
different moment (IDM) as a measure of local homogeneity; 
contrast as a measure of local variations; variance as a measure of 
inhomogeneity; correlation as a measure of linear dependency of 
grey levels; and entropy as a measure of randomness.

A limitation of fluence map-based metrics is that the same fluence 
map could be generated either by a single large beam or by a 
combination of successive small beams.13 In order to overcome 
this pitfall, Park et al20 edge-enhanced fluence applying a feature 
analysis by doubling the pixel values representing MLC tips 
during the fluence map generation in order to prevent smearing 
out of small or irregular fields. Consequently, the edge-enhanced 
fluences showed a lot of short discrete lines perpendicular to 
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Table 1. Main complexity metrics for IMRT and/or VMAT plans, divided into three categories12

Category Complexity metrics Main reference
Fluence complexity FMC - Fluence map complexity Llacer et al14

MI - modulation index Webb15

2D MI - 2D modulation index Nicolini et al16

MIR - Maximum intensity ratio Coselmon et al17

PIMV - Plan intensity map variation

Fractal dimension analysis methods: the variation, 
power spectrum and variogram methods

Nauta et al18

Textural features: ASM, IDM, contrast, variance, 
correlation and entropy

 � Park et al19,20

Deliverability MU, MU/Gy or PMU - Monitor Unit, monitor unit 
per Gy or plan normalized monitor unit

Du et al,13 Mohan et al,21 Masi et al22

PI - Plan averaged beam irregularity Du et al13

PM - Plan averaged beam modulation

AAV - Aperture area variability McNiven et al23

LSV - Leaf sequence variability

MCS - Modulation complexity score (combination of 
LSV and AAV)

DR - Variations of the nominal DR Nicolini et al24

GS - Variation of gantry speed

Degree/MU - The gantry angle per MU Miura et al22

mm/MU - Leaf travel per MU

MU/CP - Number of Monitor unit per Control Point 
and proportion of CP with MU <3 (%MU/CP <3)

Shen et al25

Sl-h - The average proportion of leaf speeds from a 
given range

Park et al26

Al-h - The average proportion of leaf accelerations 
from a given range

MIs - Modulation index for speed of MLC Park et al27

MIa - Modulation index for speed and acceleration 
of MLC

MIt - Modulation index for speed and acceleration of 
MLC, gantry acceleration and dose rate variation

MCSv or MCSarc - Modulation complexity score for 
VMAT plans

Masi et al22

LT - Leaf travel

LTMCS - Combination of LT and MCSv

MISPORT – Modulation index for station parameter 
optimized radiation therapy

Li and Xing28

(Continued)
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the direction of MLC. Park et al20 improved the performance of 
contrast (d = 1) as a complexity metric for VMAT.

Deliverability metrics
To overcome the limitations of fluence metrics, deliverability 
metrics were introduced, in regards to mechanical and dosim-
etric features of the machine. The observation made by several 
authors that the machine capability of delivering treatments as 
planned decreased with increasing MLC complexity16,21,40–42 led 
to the creation of different MLC-based deliverability metrics. The 
plan complexity in terms of delivery can be assessed by multiple 
comprehensive metrics13 or single metric summarizing different 
properties.23 The advantage of these separated metrics is that 
they are easily interpreted due to their physical meaning.

Some machine parameters can be easily retrieved from a plan 
and used as deliverability metrics. One of them is the plan MUs, 
tending to increase with plan complexity.21 Du et al13 proposed 
to study the plan normalized MUs (PMU) defined as the plan 
MU normalized to a single fraction of 2 Gy, also used by Masi 
et al.22 Other authors introduced more complex metrics. For 
example, for each IMRT segment, Du et al13 calculated the aper-
ture area (AA), the aperture perimeter (AP) and the aperture 
irregularity (AI) quantifying the non-circularity of the aperture. 
With these three metrics, they calculated the beam irregularity 
(BI) by weighting AA and AI with the MUs of each segment. 
The beam modulation (BM) is based on MU-weighted ratio 
between AA and the union area of all apertures. Corresponding 
plan metrics: plan averaged beam irregularity (PI) and plan aver-
aged beam modulation (PM) were obtained by combining beam 
metrics weighted with the MUs per beam.

McNiven et al23 defined the modulation complexity score (MCS), 
which combines two parameters: the leaf sequence variability 
(LSV) and the aperture area variability (AAV). LSV and AAV 
are close to PI and PM defined by Du et al,13 since they eval-
uate the field irregularity comparing adjacent leaf positions and 
the field area variation from a maximum area, respectively. MCS 
was initially described for step and shoot IMRT and designed 
as a simple score ranging from 0 to 1, with 1 referring to a plan 
without modulation.

VMAT plans combine MLC modulation with gantry rotation 
speed and dose rate variation. Gantry rotation is discretized 
into control points (CP) equivalent to IMRT segments. Among 
machine parameters easily retrieved, other parameters of interest 
for VMAT delivery than those previously described for IMRT 
were the variations of the nominal dose rate (DR) and gantry 
speed (GS), as investigated by Nicolini et al.24 The gantry angle 
per MU (Degrees/MU) was proposed by Miura et al.43 Shen et 
al25 focused on the number of MU per CPs (MU/CP) since low 
MU/CP is potentially demanding in terms of MLC motion. They 
especially pointed out the proportion of CP with less than 3MU 
(%MU/CP <3).

Some studies41,42 showed that leaf speed is correlated with MLC 
performance for dynamic and VMAT deliveries since a decrease 
of leaf speed improves positional accuracy of the MLC. In addi-
tion to mean MLC speed and acceleration, Park et al26 proposed 
as complexity metric the average proportion of leaf speeds (Sl–h) 
and acceleration (Al–h) within a given range. A particular metric, 
MISPORT, was used by Li et al28 and represents the modulation 
of MLC around a given CP considering a certain range of adja-
cent CPs, weighted by the corresponding MU per gantry angle. 

Category Complexity metrics Main reference
Accuracy Average leaf gap Nauta et al18

MFA - Mean field area Kairn et al29

Crowe et al30

SAS - Small aperture score and SAS(x)

CLS - Closed leaf score

CAS - Cross-axis score

MAD - Mean asymmetry distance

SA/CP - Segment area per CP Shen et al25

Modulation degree Heijmen et al31

PA - Plan averaged beam area Du et al13

Segment area/Perimeter or Circumference/area Carlsson et al,32 Götstedt et al33

EM - Edge metric Younge et al34,35

EAM - Edge area metric Götstedt et al33

CAM - Converted aperture metric

LOIC - Leaf offset impact on calculation Mathot et al,36 Dechambre et al37

Accuracy/Deliverability MIc - Comprehensive modulation index Park et al38

IMRT, intensity modulated radiotherapy; VMAT, volumetric modulated arc therapy.

Table 1. (Continued)

http://birpublications.org/bjr


5 of 13 birpublications.org/bjr Br J Radiol;92:20190270

BJRComplexity metrics for IMRT and VMAT plans: a review

Park et al27 proposed to evaluate MLC speed and acceleration, 
gantry acceleration and variation of dose rate by adapting the 
MI initially proposed by Webb15 from IMRT to VMAT. MIs 
evaluates MLC speed, MIa adds MLC acceleration and MIt (or 
MItotal) combines the four parameters. Another metric was 
adapted from IMRT to VMAT by Masi et al,22 the MCS renamed 
MCSv for VMAT. Additionally, on the basis of the work of Chen 
et al44 showing the dosimetric impact of leaf travel, they quanti-
fied the mean leaf travel (LT), considering leaf displacement of 
open leaf pairs. And they proposed a third metric named LTMCS 
combining LT and MCSv by multiplying MCSv with a normal-
ized LT. Similarly, Miura et al43 considered the leaf travel per MU 
(mm/MU).

Accuracy metrics
This third category was defined to deal with challenging MLC 
configurations. Some accuracy metrics focus on the small field 
feature. The average leaf gap was evaluated as a simple metric by 
Nauta et al.18 Other simple metrics were introduced by Kairn et 
al29 and Crowe et al30 such as the mean field area (MFA) and the 
small aperture score (SAS). The MFA considers segment areas 
without making distinction between single and split fields into a 
given segment and between line-like and circular-like fields. The 
SAS(x) counts for the proportion of open leaf pairs separated by 
less than a given distance x. Similarly, the segment area per CP 
(SA/CP) and the percentage of CPs with segment area < 5×5 cm² 
(%SA < 5×5 cm²) were used by Shen et al.25 In the same way, Du 
et al13 calculated the plan averaged beam area (PA), by combining 
beam area (BA) weighted with the MUs per beam from aperture 
area (AA) of each segment. The Monaco TPS (Elekta AB, Stock-
holm, Sweden) calculates the modulation degree as the inverse of 
the sum over all segments of the segment area multiplied by the 
segment MU, weighted by the total beam MU and divided by the 
total beam area.31 This definition is very similar to MFA and, to 
our knowledge, Monaco is the only TPS providing an advanced 
complexity metric. The modulation degree is available during 
and after the optimization process.

Other metrics29,30 focus on the beam aperture position relatively 
to the isocenter such as the closed leaf score (CLS), the cross-axis 
score (CAS) and the mean asymmetry distance or mean aper-
ture displacement (MAD). The CLS, CAS and MAD consider the 
proportion of closed leaf pairs within the jaw field, the propor-
tion of open leaf pairs with a leaf crossing the central axis and 
the mean distance between the centre of open leaf pairs and the 
central axis, respectively.

Carlsson et al32 presented a simple mean to quantify the aper-
ture complexity: the perimeter–area ratio of the MLC aper-
ture, also named circumference/area ratio (C/A) by Götstedt et 
al.33 Younge et al34,35 considered this metric in a more complex 
formula with the definition of the edge metric (M or EM). The 
EM quantifies the ratio between the MLC aperture perimeter 
and area, considering different weights between leaf side-and 
leaf end distances constituting the perimeter. Götstedt et al33 also 
intended to improve the C/A by introducing the edge area metric 
(EAM). It is defined by the ratio between the area enclosing the 
field penumbra with 5 mm both sides of the MLC edge and the 

sum of this aforementioned area with the rest of MLC aperture 
area. Additionally, Göstedt et al33 defined the converted aperture 
metric (CAM). This third metric combines complexity scores 
with regard to the mean MLC edge distances along and across 
the leaf displacement direction and the equivalent square field 
size. Those two parameters are converted by a non-linear func-
tion to increase the penalty for small fields.

The metric introduced by Mathot et al36,37 aims to quantify the 
dosimetric impact of a MLC offset variation. Leaf offset impact 
on calculation (LOIC) was defined as the percentage variation of 
PTV mean dose with respect to a change in the leaf offset param-
eter of the machine model.

One of the complexity metric specifically designed to belong to 
both deliverability and accuracy metrics categories is the compre-
hensive modulation index MIc. Park et al38 defined it from a 
previously suggested one, the MIt,26 taking into account MLC 
speed and acceleration, gantry acceleration and dose rate varia-
tion as described in the deliverable metrics section. A weighting 
factor based on an aperture index (AI), WAI, was developed to 
account for dosimetric inaccuracies of some aperture sizes and 
geometries. This weighting factor is a monotonically increasing 
function depending on AI. AI determines the convergence speed 
of a function based on the line pixel quantification iteratively 
applied to binary images of MLC apertures after running a thin-
ning algorithm well-known in image processing.

Among all the complexity metrics described above, some are 
highly correlated because they provide similar information and 
can therefore be considered equivalent.45

Applications
Use of complexity metric during the optimization 
process
To our knowledge, Younge et al34,35 and Li et al28 presented the 
only studies in which the complexity metric is used to improve 
the optimization process. Using the EM complexity metric, 
Younge et al34,35 introduced the penalization of the aperture 
complexity. Using the MISPORT complexity metric, Li et al28 
introduced the concept of “demand metric” to adapt the angular 
sampling of VMAT arc and thus its level of complexity. In 2007, 
during the worldwide spread of intensity modulation in clinical 
routine, Craft et al46 demonstrated that the largely increased 
number of MUs observed in step-and-shoot IMRT was not 
mandatory in order to reach the expected plan quality. They 
included the number of MUs, as an objective in the optimization 
process and they showed that the number of MUs can sometimes 
be reduced more than twofold while maintaining a similar plan 
quality. In the same context Mohan et al21 demonstrated that 
complex anatomy and severe constraints lead to complex inten-
sity patterns. They investigated the use of a filtration technique 
to reduce intensity map fluctuations and MUs in dynamic sliding 
window IMRT.

At the moment, most modern TPSs only offer the possibility to 
limit the treatment time and/or the number of MUs per beam/
plan during VMAT optimization. This MU reduction correlates 
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to an increase average size of MLC segments/CPs and thus might 
improve some metrics described in the previous section.

Optimization of the PSQA workload
A large majority of studies calculated metrics only for analysis, 
without plan modification. However, knowledge of the modu-
lation level during or at the end of the optimization step allows 
to adapt the dosimetric objectives, to compare plans or TPS and 
to optimize the PSQA strategy. The primary focus reported in 
the literature is to predict PSQA results from complexity metrics, 
with the final purpose to reduce the QA workload.36,37,47

PSQA consists in individualized measurements either before 
the first fraction (without patient) and/or during treatment (in 
vivo)5–11 and is still considered as gold standard for treatment 
quality assessment, despite the workload. Assuming that agree-
ment between calculations and measurements decreases as plan 
modulation increases, it should be possible to predict PSQA 
results from complexity metrics.

The first approach consists in finding correlation between PSQA 
results and complexity metrics. Table 2 lists the main published 
correlation studies which failed to reach a consensus. Correla-
tion is strongly impacted by many parameters: (1) detector, (2) 
analysis method and criteria and (3) linac, treatment technique, 
TPS and beam modelling.55 Such correlations are reduced by 
the spread out of PSQA results from highly modulated plans 
(Figure 1), which are more sensitive to the linac state at the time 
of measurement.

PSQA measurements are performed within phantoms with 
different geometry and material characteristics, using a wide 
variety of detectors which might be prone to calibration, response 
or setup errors.5,55,56 Characteristics of detectors such as spatial 
resolution,57 rotational dependence, water equivalency and 
uncertainties58 affect PSQA measurements. In addition, authors 
used various analysis methods impacting PSQA outcome.5,55,56,59 
Most publications12,13,18,20,22,23,25–27,30,38,48–53,60,61 character-
ized measurements by means of γ index passing rates (GPR)62 
but some used dose difference from point measurements13,49 
or dose difference pass rate.33 Moreover, when GPR was used, 
options and criteria widely varied between studies. For example, 
Rajasekaran et al61 obtained very different correlation coeffi-
cient according to γ analysis option and criteria, preventing 
any conclusion. Furthermore, the γ index might be prone to 
misleading interpretation.63–66 The well-known γ index remains 
the most widely used by the medical physics community.

In the same way, TPS configuration and beam modelling influ-
ence the agreement between calculated and measured doses. For 
example, Masi et al22 demonstrated the impact of CP spacing 
in TPS on PSQA results, and consequently on correlation with 
complexity metrics.

A second approach consists in evaluating the capability of 
complexity metrics to identify plans requiring no PSQA. 
This can be driven by means of receiver operating character-
istic (ROC) analysis. ROC curves are generated for a specified 

complexity metric by varying the metric threshold and plotting 
the true positive rate (TPR, also known as “sensitivity”) vs the 
false positive rate (FPR, equal to “1 – specificity”). The purpose is 
to determine an appropriate complexity threshold above which a 
plan should be considered for either re-optimization (high spec-
ificity) or exemption from QA measurements (very high sensi-
tivity, or even 100% sensitivity).36,47 ROC area under the curve 
(AUC) quantifies the ability of the metric to distinguish between 
positive and negative cases, respectively. Nauta et al18 classified 
AUC ranging from 0.5 (chance accuracy) to 1.0 (perfect accu-
racy), with the following intermediate benchmarks: 0.6 (poor), 
0.7 (fair), 0.8 (good), 0.9 (excellent), >0.95 (almost perfect). Park 
et al27 performed ROC analysis with a 90% tolerance level for 
the GPR (local 2%/2 mm) and obtained the best performance in 
terms of sensitivity and specificity (AUC = 0.849) for the MIs (f 
= 2) metric, while the MCSv metric showed the poorest perfor-
mance (AUC = 0.527). Using the edge metric (EM), Younge 
et al35 obtained a 44% sensitivity (meaning only 44% of plans 
failing PSQA were correctly flagged) and 93% specificity (7% of 
plans passing PSQA incorrectly flagged). Enforcing no false posi-
tive (specificity 100%), Mc Niven et al23 improved the sensitivity 
up to 36% using the MCS metric, as compared to 23% using the 
normalized number of MU.

The latest approach recently developed in the literature is 
the use of machine learning67 to predict PSQA results. We 
can discern two strategies: technique designed by domain 
experts and deep neural networks without domain knowl-
edge. The model developed by Valdes et al60,68 belongs to the 
first category since input data were a large set of complexity 
metrics. Output data were local GPR 3%/3 mm measured 
with a 2D diode array. The resulting model predicted GPR 
with an error smaller than 3%. Moreover, a model analysis 
showed that metrics with major impact were MU/Gy,22 PI13 
and SAS(10 mm).29,30 The model was applied to a second insti-
tution that uses EPID measurements.68 GPR were predicted 
within 3.5% for 120 out of 139 plans. Iterian et al69 compared 
results obtained by Valdes et al60,68 with a deep learning convo-
lutional neural network (CNN) strategy. Fluence maps calcu-
lated for each plan were used as inputs to the CNN. Predictions 
from CNN were comparable to a system designed by physicist 
experts. Tomori et al70 proposed for prostate plans, a CNN 
model based on following input data: the sagittal planar dose 
distribution calculated in a phantom, the volumes of the 
PTV, the rectum and their overlapping, and the MU for each 
beam. They found a moderate Spearman correlation between 
measured and predicted GPR values.

In the context of online adaptive radiotherapy, PSQA of 
adapted plans is not feasible. Complexity metrics can then 
be used as online and fast verification of the adapted plans. 
Crijns et al71 referred to five established plan metrics (number 
of MU, equivalent field size, MCS and the components of MCS, 
i.e. AAV et LSV) in order to validate adapted prostate VMAT 
plans in response to anatomical variations. They used a sophis-
ticated forward planning approach correcting MLC apertures 
and MU for each CP, and compared the adapted plan to the 
original one by means of the abovementioned plan metrics. 
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Table 2. Main correlations studies between complexity metrics and PSQA results.

Ref
Technique 
(localization) QA system Analysis Evaluated metrics

Correlation 
coefficients

Crowe et al12 52 ss-IMRT plans 
(multisite)

EPID with Epiqa 
system (EPIdos)

γ 3%/3 mm and 
2%/2 mm

MU, AAV, CAS, MAD, 
MCS, MI, SAS1, SAS5 
and SAS10

Significant (F)

MFA, CLS and FMC Not significant (F)

Crowe et al12 70 VMAT plans 
(multisite)

EPID with Epiqa 
system (EPIdos)

γ 3%/3 mm and 
2%/2 mm

MAD, MCS, MI and 
SAS1

Significant (F)

MU, MFA, AAV, CLS, 
CAS, FMC, SAS5 and 
SAS10

Not significant (F)

Du et al13 65 ss-IMRT plans 
(prostate, head and 
neck, and spine) 
and 26 VMAT plans 
(prostate)

Ion chamber and 
radiographic films

Dose difference and 
γ 5%/3 mm

PA, PI, PM and PMU None (s)

Park et al20 40 VMAT plans (20 
prostate, 20 h&N)

MapCheck (Sun 
Nuclear)

γ local and global 
2%/2 mm

Contrast1,5,10, ASM1, 
IDM1,5, Variance1,5, 
correlation5,10

Moderate (s)

ADM5, IDM10, 
Variance10, correlation1, 
Entropy1,5,10

Weak (s)

ASM10 None (s)

McNiven et al23 243 IMRT plans 
(multisite)

MapCheck (Sun 
Nuclear)

γ local 3%/3 mm 
and 2%/2 mm

MCS and MU None (NA)

Masi et al22 142 VMAT plans 
(multisite)

Delta4 phantom 
(Scandidos)

γ local 3%/3 mm 
and 2%/2 mm

LT, MCSv and LTMCS Moderate (p)

PMU Weak (p)

Shen et al25 71 VMAT 
(nasopharyngeal 
cancer)

ArcCheck (Sun 
Nuclear)

γ Individual 
volume-based 3D

MU/CP, SA/CP Significant (c)

%MU/CP < 3, %SA < 
5×5, MCSv/arc and LT

Not significant (c)

Park et al26 40 VMAT plans (20 
prostate, 20 h&N)

MapCheck (Sun 
Nuclear)

γ global and local 
1%/2 mm

Mean MLC speeds and 
mean MLC accelerations

Weak and moderate 
(s)

Park et al27 40 VMAT plans (20 
prostate, 20 h&N)

MapCheck (Sun 
Nuclear)

γ local 2%/2 mm MIs, Mia and MIt Moderate (s)

MIsport Weak (s)

LTMCS None (s)

Crowe et al30 122 ss-IMRT beams 
(prostate)

MapCheck (Sun 
Nuclear)

γ 3%/3 mm and 
2%/2 mm

MI, MFA, SAS5 and 
SAS10

Significant (F)

MCS, LSV, AAV, FMC, 
CLS, CAS, MAD, SAS2 
and SAS20

Not significant (F)

Gödtstedt et al33 30 Artificial IMRT /
VMAT beams

EPID Dose difference 
pass rate
(3 and 5%)

CAM, EAM, EM, 
Circumference/area and 
MU/Gy

Strong (p)

Aperture area Moderate (p)

MCS and Aperture 
irregularity

Weak (p)

Gödtstedt et al33 30 Artificial IMRT /
VMAT beams

Rradiochromic films Dose difference 
pass rate
(3 and 5%)

CAM, EAM, EM, 
Circumference/area and 
MU/Gy

Strong (p)

MCS and Aperture 
irregularity

Moderate (p)

Aperture area Weak (p)

(Continued)
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This method is much faster than replanning, allowing for 
online plan adaptation. In this context, MCS was not retained 
due to the contrasting behaviour of the AAV and LSV compo-
nents. For the remaining four complexity metrics, a popula-
tion model was built to derive tolerance tables. Adapted plans 
with complexity metrics within the tolerance were validated 
and delivered, without additional PSQA.

Correlation with plan quality
In parallel with correlations between plan complexity metrics 
and PSQA, the question arises whether these metrics are related 
to plan quality, i.e. the degree of achievement of planning objec-
tives (mainly target coverage, dose homogeneity, dose confor-
mity, dose fall-off and doses to organs at risk). In this context 
we should keep in mind that, on one hand, “a high degree of 

complexity is not necessarily a negative feature of a treatment 
plan, as it may be required due to the geometry and location of 
the target and organs at risk,”23 on the other hand “more complex 
plans do not necessarily produce better dose distributions.”45,46,72 
In order to compare treatment plans, Jurado-Bruggeman et al50 
defined a plan quality index (PQI), which is a weighted sum of 
the score for a planning objective sets. They did not obtain a 
correlation between plan quality, plan complexity, and γ scores 
in a multicentre environment. In a multiinstitutional dosimetry 
audit for VMAT Mc Garry et al51 defined the plan quality metric 
(PQM) as a percentage of achievement for a specified planning 
constraint. They did not observe a correlation between PQMs 
and MCS, while PQM was significantly correlated with MU for 
planning systems independent of linac manufacturers. Using 
a multidimensional exploratory statistical method Shen et al25 

Ref
Technique 
(localization) QA system Analysis Evaluated metrics

Correlation 
coefficients

Dechambre et al37 93 VMAT plans 
(multisite)

ArcCheck (Sun 
Nuclear)

γ global 3%/3 mm 
and 2%/2 mm

LOIC, CAS and MCSv
SAS and PMU
MFA, MAD and CLS

Moderate (p)
Weak (p)
None (p)

Park et al38 52 VMAT plans (22 
prostate, 30 h&N - two 
institutions)

MapCheck (Sun 
Nuclear)

γ local 2%/2 mm MIt, MIc and MIsport
MIc, LTMCS, variance, 
PI and PM
MCSv, contrast, 
contrastedge and PA
PMU

Strong (s)
Moderate (s)
Weak (s)
None (s)

Agnew et al48 30 VMAT (prostate, 
prostate and pelvic 
node, H&N)

OCTAVIUS 4D and 
729 array (PTW)

γ global 2%/2 mm MCSv Moderate (p)

MU None (p)

Glenn et al49 343 IMRT/ VMAT 
plans (H&N - 312 
institutions)

TLD and 
Radiochromic films

Dose difference 
(5%) and γ 7%, 
4 mm

MU, MCS, EM, PI, PM, 
MIs, MIa, MIt, LT, Mean 
DR variation, Mean GS 
var. Mean MLC speed 
var.

None (s)

Jurado-Bruggeman et 
al50

36 VMAT plans 
(2 prostate and 
2 h&N done by nine 
institutions)

ArcCheck (Sun 
Nuclear)

γ global 3%/3 mm 
and 2%/2 mm

MU Strong (p)

PI, MCSv, MIt None (p)

McGarry et al51 39 VMAT plans 
(virtual volumes - 34 
institutions)

OCTAVIUS II and 
729 array (PTW)

γ global and local 
1%/2 mm

MCSv and MU Weak (p) but 
Moderate (p) for 
Varian linacs

Park et al52 202 IMRT plans 
(multisite)

ArcCheck and 
MapCheck (Sun 
Nuclear)

γ global 2%/2 mm PI and MCS Moderate (s)

MIs, PA and PM None (s)

Wang et al53 20 IMRT plans (10 
nasopharyngeal cancer 
and 10 prostate) with 
intentional MLC leaf 
errors

ArcCheck (Sun 
Nuclear)

γ 2%/2 mm MCS Strong (s)

Park et al54 240 VMAT plans 
(multisite)

ArcCheck (Sun 
Nuclear)

γ local 2%/2 mm MIt, MIc, LTMCS, 
MIsport, PI and PM
MCSv and PMU
PA

Moderate (s)
Weak (s)
None (s)

IMRT, intensity modulated radiotherapy; MCS, modulation complexity score; MI, Modulation Index; PSQA, patient specific quality assurance; TPS, 
treatment planning system; VMAT, volumetric modulated arc therapy.
Statistical analysis methodologies used are Spearman (s), Pearson (p), Canonical (c) orF-test (F). Correlation for Spearman and Pearson coefficients 
were considered as strong r ≥ 0.7,moderate for 0.5 ≤ r<0.7,weak for 0.4 ≤ r<0.5 and none for r < 0.4. All presented data are associated with a p-
value ≤0.05. According to these definitions, complexity metrics with a significant (Canonical and F-test) or a strong (Spearman and Pearson tests) 
correlation with PSQA results are in bold. If none is specified, only one institution is involved in the study.

Table 2. (Continued)
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showed that some complexity parameters of 71 VMAT nasopha-
ryngeal cancer patient plans (i.e. SurfaceArea/CP and percentage 
of CPs with SA < 5×5 cm2) were highly weighted in correlation 
with plan quality.

The results of these publications tend to show weak correlation 
(if not absent) between plan quality and plan complexity. This 
could be related to the established fact that complexity often 
results from unrealistic or conflicting optimization goals35 and 
the increasing number of optimization iterations and/or succes-
sive optimizations during the inverse planning process,13 while 
similar plan quality might be achieved with less modulated or 
narrow beams. This highlights the need for dedicated complexity 
metrics to reach an acceptable trade-off between plan quality 
(with respect to the achievement of planning objectives) and 
plan complexity for a number of rival plans, as mentioned by 
Masi et al.22

Comparison of TPSs, operators or plan properties
Complexity metrics can be used to compare the optimiza-
tion results from different TPSs (differences in optimizers) or 
operators (use of the TPS). In a multicentre comparison, Jura-
do-Bruggeman et al50 pointed out differences in value for three 
complexity metrics (BI, MCS and MIt) depending on the TPS 
manufacturer or the operator and demonstrated differences in 
terms of MLC, gantry speed and dose rate modulation manage-
ment. Another comparison study51 based on complexity metrics 
divided TPS into two groups: those designed by the manufac-
turer for their own linac and those independently developed. 
This study recommended the use of a TPS and a linac from the 
same manufacturer. Llacer et al14 used the FMC, among other 
tools, to compare the behaviour of five different algorithms in 
inverse radiation therapy planning. The level of the FMC was 
linked to different complexity aspects on dose distribution such 
as the amount of very high beam weights in the periphery of some 
fluence maps. Hernandez et al45 compared three different TPSs 
with the help of many complexity metrics (MCS, EM, LT, PI, 

PM, MIt). The range of complexity metrics for each TPS revealed 
significant differences between algorithms. Complexity metrics 
can also be used in the context of TPS change (or TPS version 
upgrade). Edouard et al73 used the MCSv index in their evalu-
ation of VMAT dosimetric practice changes when passing from 
Eclipse to RayStation. In the same way, complexity metrics were 
used in combination with plan quality metrics to evaluate a new 
optimizer and the impact of the optimization parameters.74–76 
The knowledge of the modulation level can be a valuable tool 
to improve plan properties. For example, based on MCSv and 
plan quality metrics, Li et al77 found the optimal collimator angle 
(45°) for hypofractionated VMAT prostate treatment. Similar 
approach was used to compare different treatment techniques: 
classic vs HyperArc VMAT78 or IMRT vs VMAT.79 Addition-
ally, Kantz et al76 assessed the impact of various MLC type on 
the modulation degree. Russo et al80 investigated if the cardi-
ac-sparing benefit of the deep inspiration breath-hold (DIBH) 
technique for left breast VMAT treatment is achieved with lower 
plan complexity than free breathing (FB) technique. Based on 
various known complexity metrics (MUs, LT, EM, PI, MCSv and 
MIt), they obtained a slightly lower degree of plan complexity for 
DIBH-VMAT plans.

Within the last few years, automation algorithms were developed 
to streamline and standardize the treatment planning process.81 
Among the large number of studies which compare manual and 
automated plans, some included complexity metrics.31,82,83

Multicentre external audit
As described above, complexity metrics provide essential infor-
mation on optimization process and plan properties and can 
be related to PSQA outcome. Consequently, they could play a 
role in external audits.51 Such audits aim to verify TPS model-
ling and treatment delivery, credentialing institution for accu-
rate clinical implementation. Comparison is generally based on 
the same clinical data and dosimetric constraints. Among the 
studies listed in Table 2, three were carried out in the context of 

Figure 1. Typical aspect of correlation plots for two complexity metrics (MU and MCS) and PSQA results. An important spread out 
appears for plans with large MU (>700) and low MCS (<0.23) corresponding to high modulation level. Figure comes from McGarry 
et al.51 MCS, modulation complexity score; PSQA, patient specific quality assurance.
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a multicentre external audit,49–51 involving different linacs, treat-
ment techniques, TPSs and beam modelling. These three studies 
attempted to detect correlations between complexity metrics 
and PSQA results and/or plan quality with variable success as 
discussed above. The study of Glenn et al,49 which included 
312 different institutions with various linacs, techniques and 
TPSs, provided no correlation. By comparison, the two other 
studies50,51 involving a limited number of institutions obtained 
strong (considering 9 institutions) or moderate (considering 34 
institutions) correlations. Furthermore, the correlation between 
the γ index passing rates and the complexity metrics might have 
been affected by the use of TLD presenting higher calibration and 
measurement uncertainties and thus requiring larger γ criteria 
(7% in dose and 4 mm distance-to-agreement). These higher γ 
tolerances had negative impact on correlations with complexity 
metrics since many highly modulated plans might have passed 
γ criteria, leading to an artificially high number of false positive 
plans and incidentally to weak correlations (low ROC AUC).

However, complexity metrics comparison between audited 
centres provided additional information. For example, in the 
audit of the Catalan Society of Medical Physicists,50 complexity 
metrics underlined the different strategies of modulation 
employed by linacs and TPSs. On the basis of a UK national 
audit for VMAT,84 McGarry et al51 highlighted the capability 
of complexity metrics, combined with plan quality metrics and 
TPS modelling parameters, to track excessive level of complexity. 
Thus, these strategies can lead to an improvement in planning 
methodologies and a full characterization of each TPS/linacs 
system.

Conclusion
A large number of complexity metrics is reported in the liter-
ature for IMRT and VMAT treatments. An informed choice 
has to be made between metrics enclosing the same source of 
complexity. Also studying correlations between complexity 
metrics is advised.

Correlation between complexity metrics and PSQA results is 
evaluated but strongly impacted by both dose measurement 
and dose calculation. For instance, measurement and model-
ling of small fields/segments are often inaccurate due to the 
need for dedicated measurement equipment and correction 
considerations and the chosen compromise during the TPS 

modelling. Consequently, both measurement and calculation 
of a plan with a lot of small segments could be affected. This is 
thus biasing the correlation analysis since the PSQA equipment 
is not supposed to add a complexity. Also machine state at the 
time of PSQA measurement has to be considered to be part of 
the analysis since it influences the PSQA results independently 
of the machine capabilities in a normal state. All of this explains 
the lack of consensus in the literature to highlight one particular 
metric among all the proposed definitions. Additionally, a given 
complexity metric is not showing the same correlation strength 
depending on studies, making any guidelines challenging. One 
of the most important guidelines is that the relationship between 
complexity metrics and PSQA results should be specifically 
established by each centre depending on PSQA process/material, 
machine settings and TPS modelling/optimizer. Moreover, ROC 
curve analysis is recommended for such studies as it can deter-
mine threshold values beyond which satisfying PSQA results 
are systematically achieved, although correlations are weakened 
by false negative. Automatically generated ROC curves based 
on centre specific PSQA results and well-chosen plan metrics 
might be an important step towards an experience-driven allo-
cation of human and technical resources within medical physics 
departments.

PSQA workload optimization becomes crucial in a context 
of online adaptive radiotherapy since measurements are not 
possible. Complexity metrics, easily and almost instantly calcu-
lable, can be a way to overcome this issue.

Furthermore, complexity metrics allow interesting comparison 
between treatment technics, linacs, TPS and operators. In asso-
ciation with plan quality metric, they have demonstrated their 
usefulness to rationalize and standardize optimization process 
and their role in multicentre audits. With the recent development 
of automated planning approaches, such tools become essential 
for controlling the TPS. However, to our knowledge, only one 
TPS provides an advanced complexity metric. Moreover, the 
integration of complexity metrics into the cost function remains 
confined to MUs or treatment time limitations.

For future developments, one can imagine the wide implemen-
tation of complexity metrics into TPSs, their automated analysis 
and their use as a feedback to the system in an inverse optimiza-
tion control loop.
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