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introduction
Advanced radiotherapy techniques, such as intensity 
modulated radiotherapy (IMRT) or arc therapy, aim at the 
concentration of the dose inside the tumor while sparing 
the organs at risk. Hence, treatment plans often involve 
high gradient dose distributions, thus emphasizing the need 
for control of the beam delivery and patient positioning.1,2 
The accuracy of the dose delivery for IMRT treatments 
should be determined by an accurate quality assurance 
(QA) procedure.3 Linear accelerators (linacs) are equipped 
with an electronic portal imaging device (EPID), origi-
nally designed for patient positioning;4 however, because 
EPIDs have high sensitivity, spatial resolution, immediate 
digital format, and minimal setup requirements, they have 
also been utilized to determine the dose for the routine 
QA of linacs or dose verification of IMRT fields.5–8 For 

pre-treatment dosimetric verification, different approaches 
can be used. In general, these approaches divided into two 
categories: EPID-based three-dimensional (3D) volumetric 
dosimetry and EPID-based two-dimensional (2D) planar 
dosimetry. For EPID-based 3D volumetric dosimetry, 
by use back-projection algorithms, 3D dose distribution 
reconstructs for pre-treatment dosimetric verification. For 
EPID-based 2D-planar dosimetry, EPID image converts 
into a 2D dose distribution and compare it with 2D dose 
predicted by TPS or independent engines, either analytical 
or based on Monte Carlo (MC).6,9 These approaches must 
be validated in non-reference conditions—in particular, the 
accuracy and precision of these calibration models must 
be tested under various clinical situations. Another draw-
back of these methods is their requirement for a detailed 
model of the EPID. However, accurate technical details 
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Objective: The accuracy of dose delivery for intensity 
modulated radiotherapy (IMRT) treatments should be 
determined by an accurate quality assurance procedure. 
In this work, we used artificial neural networks (ANNs) 
as an application for the pre-treatment dose verifica-
tion of IMRT fields based two-dimensional-fluence maps 
acquired by an electronic portal imaging device (EPID).
Methods: The ANN must be trained and validated before 
use for the pretreatment dose verification. Hence, 60 
EPID fluence maps of the anteroposterior prostate and 
nasopharynx IMRT fields were used as an input for the 
ANN (feed forward type), and a dose map of those 
fluence maps that were acquired by two-dimensional 
Array Seven29TM as an output for the ANN.

Results: After the training and validation of the neural 
network, the analysis of 20 IMRT anteroposterior fields 
showed excellent agreement between the ANN output 
and the dose map predicted by the treatment planning 
system. The average overall global and local γ field pass 
rate was greater than 90% for the prostate and naso-
pharynx fields, with the 2 mm/3% criteria.
Conclusion: The results indicated that the ANN can be 
used as a fast and powerful tool for pretreatment dose 
verification, based on an EPID fluence map.
Advances in knowledge: In this study, ANN is proposed 
for EPID based dose validation of IMRT fields. The 
proposed method has good accuracy and high speed in 
response to problems. Neural network show to be low 
price and precise method for IMRT fields verification
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are not always available; moreover, these methods are time 
consuming and require very complex calculation algorithms.9 
In several other studies, artificial neural networks (ANNs) and 
other knowledge-based applications have been widely used as a 
powerful tools in clinical and radiation therapy applications.10–22 
It was shown that patient-specific QA of IMRT based on EPID 
can be performed with neural networks algorithms.23–26

One of the main tools used in machine learning is ANNs. ANNs 
are very similar to human neural network in term of learning and 
structural. Neural networks consist of input, hidden and output 
layers, the hidden layer is placed between the input and output 
layers and units (nodes) of hidden layer transform the input into 
something that the output layer can use. Hidden layer works 
like processor layer which find patterns that ANN must be work 
based that.20 Learning is a fundamental component to an ANN, 
although a precise definition of learning is difficult to produce. 
In an ANN, learning typically occurs during a specific training 
phase. In the training phase, an ANN by using a teaching method 
and sample data can be trained to solve specific problems. After 
completing the network training, ANN learn function that based 
that, ANN capable to recognize similarities among different input 
patterns.20–22 In this work, we used ANNs as an application for 
the pre-treatment dose verification of IMRT-fields-based 2D-flu-
ence maps acquired by an EPID. The methodology generates a 
precise estimate of 2D-dose maps for IMRT fields. The fluence 
maps of IMRT treatment fields (without patient) in gantry zero 
position (GZP) obtained by an EPID were used as the inputs for 
the ANN and a dose map of those fluence maps, measured by the 
2D Array Seven29TM, as an output for the ANN in the training 
and validation phase.

methods and materials
ANN training
In the training phase of the ANN, for each IMRT field, a 2D-flu-
ence map (image) acquired by an aSi1000 EPID and a 2D-dose 
map acquired by 2D Array Seven29TM(PTW, Freiburg, Germany) 
are used as the input and output of the ANN, respectively.

After completing of the training phase, the ANN learned the 
function that the training was based on, and can convert 2D-flu-
ence maps of the EPID to 2D-dose maps proportional to them. 
The next step was an accuracy test (validation phase) and the 
response evaluations of the ANN. To this end, the IMRT fields 
that were not shown earlier by the trained ANN was used and 
the 2D-dose was modeled by the ANN. Each 2D-dose modeled 
by the ANN were compared with the 2D-dose predicted by the 
Eclipse (v. 13.6) treatment planning system (Varian Medical 
Systems, Palo Alto, CA) via the γ evaluation algorithm.27 The 
Eclipse treatment planning system was used to calculate the dose 
distributions of the IMRT fields. The IMRT 2D-dose map was 
calculated for the GZP treatment fields of different prostate and 
nasopharynx cases. Subsequently, the calculated 2D-dose maps 
were converted into a 5 cm depth of 30 cm-long cubic phantom, 
made of virtual water. The grid size for the dose maps in the 
training phase of the ANN was 1 cm, and an analytical aniso-
tropic algorithm (AAA) was used for the dose calculation in the 
treatment planning system (TPS). Each plan was exposed twice, 

once for the delivery to the EPID and once for the delivery to the 
2D array.

In this study, 30 dynamic IMRT GZP treatment fields (without 
patient) of the prostate and 30 dynamic IMRT GZP treatment 
fields (without patient) of the nasopharynx were used for the 
ANN training. The prescribed dose, dose calculation grid size, 
algorithm of plan optimization and dose constraint for struc-
tures were the same for all of the IMRT plans. Subsequently, 
10 dynamic IMRT GZP treatment fields of the prostate and 10 
dynamic IMRT GZP treatment fields of the nasopharynx (20 
fields) were used for testing and evaluating the accuracy of the 
ANN performance. All the IMRT treatment fields were delivered 
to the linac treatment console via the ARIA record and verifica-
tion system (Varian Medical Systems, Palo Alto, CA).

EPID setup and acquisition of fluence maps
Clinical IX, Varian linear accelerators (Varian Medical Systems, 
Palo Alto, CA) equipped with Millennium™ 120 leaf multileaf 
collimator with two banks (left and right) each with 60 tungsten 
alloy rounded-end leaves mounted on a carriage, was used for 
irradiations. An amorphous silicon (a-Si)-based aSi1000 EPID 
(Portal vision; Varian Medical Systems, Palo Alto, CA) was used 
to acquire the images. The Portal Vision aSi1000 flat-panel EPID 
weigh about 7 kg. The active areas of the detector panels were 
40 × 30 cm2 containing 1024 × 768 pixels, which gives a spatial 
resolution of 0.39 × 0.39 mm2. Each pixel consists of a light-sen-
sitive photodiode and a thin-film transistor to enable the read-
outs. The aSi-1000 EPID consists of a 1 mm copper metal plate 
and a gadolinium oxysulphide phosphor screen. The array is 
overlaid with a copper plate (of 1 mm thickness) and a scin-
tillating layer (gadolinium oxysulphide),4,5 rendering the portal 
imager an indirect detection system. The total water-equivalent 
thickness of the construction materials in front of the photodi-
odes is 8 mm, as specified by the manufacturer. The thickness 
of the construction material (without the guard cover) in front 
of the photodiodes is 1.3 cm (water-equivalent thickness is 8 
mm). The guard cover of the EPID removed, and all the IMRT 
EPID images (fluence map) were acquired at the source EPID 
distance (SED) of 98.7 cm with 4.2 cm water-equivalent addi-
tional build-up on the copper plate, in 5 cm water-equivalent 
depth (behind the build-up region of 6 Mv X-ray in water); the 
maximum frame acquisition rate was 9.574 frames/s. We used a 
set of RW3 polystyrene plates (PTW, Freiburg, Germany) for the 
additional build-up (Figure 1a). The RW3 slab phantom consists 
of 33 plates machined to 30 × 30 cm of various thicknesses. The 
mass density of RW3 is 1.045 g/cm3 and the electron density has 
a factor relative to water of 1.012.

When the EPID is used for dosimetry applications, such as the 
pretreatment verification of the intensity modulated beams, 
sufficient build-up must be applied to eliminate the contribution 
of scattered electrons to the dosimetric images.5,9 An absence 
of build-up during the measurement will generate large devia-
tions between the acquired and expected images, inhibiting both 
the relative and absolute evaluations of the dynamic delivery.9 
Hence, we used sufficient build-up for the image acquisition.
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The EPID was calibrated by the acquisition of dark field (DF) 
and flood field (FF) images. The DF image was acquired with 
no radiation and records the pixel offsets. The FF image was 
acquired by irradiating the EPID with an open field “uniform” 
irradiation covering the entire region of the imager (40 × 30 cm2) 
to determine difference in individual pixel sensitivity.5 The EPID 
images were acquired in the integrated mode and were saved in 
the dicom format.

2D array setup and acquisition of 2D-dose maps
The radiation detector used for the 2D-dose distribution acquisi-
tion in this study was the 2D Array Seven29TM (T10024) model 
(PTW, Freiburg, Germany). This device is a 2D detector array 
with 729 vented ionization chambers arranged in a 27 × 27 
matrix.

The ionization chambers are equally spaced, i.e. 1 cm center to 
center and they encompass an active area of 27 cm × 27 cm. Each 
chamber has a volume of 0.5 cm × 0.5 cm × 0.5 cm. The linear 
dimensions of the 2D Array Seven29 are 2.2 cm × 30.0 cm × 42.0 
cm. The ionization chambers are enveloped with a 5-mm-thick 
PMMA front plate that is a part of the construction. The effec-
tive depth of measurement was found to be located at the back 
surface of the 5-mm-thick PMMA front plate, i.e. in the entrance 
plane of the air-filled chamber volumes. Therefore, the resulting 
water-equivalent depth is 6 mm. The 2D array measurement 
setup used throughout this work is shown in Figure 1b. For the 
build-up and the backscatter material, we used a set of RW3 
polystyrene plates. The total thickness of the build-up was 5 cm 
water equivalent, and the backscatter material was 5.0 cm water 
equivalent.

The 2D Array Seven29 TM reference point of measurement was 
subsequently located at 100 cm from the radiation source. Before 
all the measurements were performed, for correct response of 
ionization chamber of detector, the 2D Array was calibrated 
using a cross-calibration procedure. In this procedure, a known 
dose was delivered and the response of the central detector was 
used to calculate a cross-calibration factor.

The architecture of the neural network
A feed-forward multilayer ANN was used to convert fluence map 
to dose map. The design, training, and testing of ANN, as well as 
data processing were performed using the software MATLAB (v. 
Work, USA).

The FF is a type of backpropagation NN that trained based a 
Levenberg–Marquardt algorithm in this study. The backpropa-
gation NN is essentially a network of simple processing elements 
operating together to produce a complex output. These elements 
or nodes are arranged in different layers: input, hidden, and 
output. The input layer propagated a particular input vector’s 
components to the hidden layer. The hidden layer, which are 
neuron nodes stacked in between the inputs and outputs, allow 
NNs to learn more complicated features and compute output 
values, which subsequently become the inputs to the output 
layer. The output layer computes the network output for a partic-
ular input vector. In the training phase, ANN produces an output 
vector for a given input vector based on the current state of the 
network weights. The training set is repeatedly presented to the 
network and the weight values are adjusted in the training set.17,26 
Before use of 2D-dose map acquired by 2D Array Seven29TM as 
output of neural network in training phase a selected region of 
interest after applying a threshold of 5% of measured maximum 
dose, was considered. The created mask was applied for 2D-dose 
map.

Figure  2 shows the architecture of the neural network in 
this study. It consists of an input layer with nine nodes and a 
hidden layer with four nodes, and an output layer that leads 
to the terminal response. The choice of the proper input vari-
ables plays a crucial role on the performance of the ANN. The 
input layer has nine nodes (Figure 2) that consist of the pixel 
coordinates (i,j), pixel intensity X(i,j), row distance of target 
pixel from central pixel F(i), column distance of the target 
pixel from the central pixel F(j), and X(i-1,j), X(i + 1,j), X(i,j-
1), X(I,j + 1), which are the neighboring pixel intensities of the 
target pixels. The accuracy of the network can be improved by 
introducing neighboring pixels.20,23 Typically only one or two 

Figure 1. (a) Set-up of aSi1000 EPID for acquisition fluence maps of IMRT plan AP fields with 4.2 cm water equivalent additional 
build-up in SED = 97 cm(guard cover of EPID separated).(b) Set-up of 2D Array Seven29TM for acquisition 2D-dose map of IMRT 
plan AP fields with 4.4 cm water equivalent additional build-up and 5.0 cm thick backscatter material (reference point of meas-
urement was then located at 100 cm from the radiation source)‍‍ 2D,two-dimensional; AP, anteroposterior; EPID, electronicportal 
imaging device; IMRT, intensity modulated radiotherapy; SED, source EPIDdistance.
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hidden layers based on the complexity of the pattern is enough. 
Adding one hidden layer increase both the complexity of the 
algorithm and the required time for convergence. In addition, 
using two hidden layers worsen the problem of local minima. 
Furthermore the number of hidden layers, by using hidden 
layers with a small number of nodes, it shown empirically 
that generalization to novel input patterns is improved. Use of 
small hidden nodes obliges the input patterns to be mapped 
through a low-dimensional space, enforcing proximities 
among hidden-layer representations that were not needfully 
present in the input-pattern representations. Nevertheless, 
we need to be reminded that there are also cases for which 
reduction of the number of hidden nodes did not improve 
generalization. In this investigation, we found that one hidden 
layer with four hidden nodes exhibited sufficient performance, 
and the regression of the network is beyond 0.96. Due to that, 
using more hidden nodes increase response time of ANN and 
results of regression are more than 0.95 so we refused to add 
more hidden node. The output layer of the ANN is the layer 
that yields a terminal response, which is a 2D-dose modeled 
by an ANN.

We noticed that the neural network training function continues to 
train the ANN until the improvement in the mean squared error 
(MSE) performance was minimal (< ‍10−3‍). After 70 epochs, the 
ANN performance did not change significantly, and sufficient 
convergence between the training and test was obtained. The best 
training performance (minimum mean square error) was shown at 
epoch six (Figure 3). An epoch is a single step in training a neural 
network; in other words when a neural network is trained on every 
training samples only in one pass we say that one epoch is finished. 
So, training process may consist more than one epochs.20

results
ANN 2D-dose maps
For the validation and response evaluations of the ANN, we used 
20 dynamic IMRT GZP treatment fields of the prostate and naso-
pharynx. The pixel intensity of the 2D-dose map predicted by the 
TPS (target) and that of the 2D-dose map modeled by the ANN 
(output) were compared with using Bland–Altman plots. The 95% 
limits of the difference between the target and output intensity vali-
dated the ANN as ready for responses (Figure 4). Threshold of 5% 
of measured maximum dose, was considered for predicted dose by 
TPS as threshold used for measured dose by 2D Array Seven29TM 
in training phase of ANN.

Figure 4. Bland–Altman plots of difference in pixel intensity 
between target (2D dose map predicted by TPS) and output 
(2D dose map modeled by ANN) data in validation phase of 
designed ANN. Solid horizontal lines is mean difference and 
dashed lines is the 95% limits of agreements (±1.96 SD of the 
difference). 2D,two-dimensional; ANN, artificial neural net-
work; SD, standard deviation; TPS, treatmentplanning system.

Figure 2. The schematic presentation of input variables of 
FF-ANN contains: Pixel coordinates (i,j), pixel intensity X(i,j), 
row distance of target pixel from central pixel F(i), and column 
distance of target pixel from central pixel F(j) and X(i-1,j), X(i + 
1,j), X(i,j-1), X(i,j + 1), which are the neighboring pixel intensities 
of target pixels (∑1, ∑2, ∑three and ∑four are nodes of hidden 
layer). ANN, artificial neural network; FF, flood field

Figure 3. Performance of ANN architectures for the same set 
of training shows sufficient convergence between training and 
test data, best training performance (minimum mean squared 
error) seen at epoch 6. ANN, artificial neural network.
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After the training and validation, the ANN modeled the 2D-dose 
map of the fluence map from the EPID. A 2D-dose map modeled 
by the ANN is shown by Figure 5.

γ evaluation of neural network model
Usually two types of γ evaluation are available for compare two 
2D-dose maps: global γ and local γ evaluation. In global γ evalu-
tion, to compare the ANN 2D-dose map with that from the TPS, 
we normalized the ANN dose map to its maximum dose. Similarly, 
the 2D-dose map from the TPS was normalized to the maximum 
dose. The γ evaluation of the 2D-dose prediction by the TPS and 
the 2D-dose modeled by the ANN indicate very similar results. The 
average overall field pass rate was beyond 96 and 95% for the prostate 
and nasopharynx fields, respectively, when the distance to agreement 
(DTA) of (less than or equal to symbol) 2 mm and a dose difference 
(DD) of (less than or equal to symbol) 3% were used. The pass rates of 

nasopharynx fields are 93.5±0.4% and 81.4±0.9% for the two sets of 
criteria: 2 mm/2% and 1 mm/1%, respectively. The pass rates of pros-
tate fields are 94.4±0.4% and 86.4±0.9% for the two sets of criteria: 2 
mm/2% and 1 mm/1%, respectively. This means that the average pass 
rates decrease when the criteria are made tighter, as expected.

To evaluate the robustness and accuracy of the trained ANN, we 
tested the trained ANN (as described in "ANN training") under 
stress conditions. Hence, we recalculated the 2D-dose of 10 pros-
tate and 10 IMRT nasopharynx GZP fields as predicted by the TPS 
with different grid sizes: 0.8 cm, 0.6 cm, 0.4 cm, 0.2 cm, and 0.1 cm. 
A γ evaluation was used to compare the 2D-dose map predicted by 
the TPS with different grid sizes, with the 2D-dose map modeled 
by the trained ANN. For all grid sizes, the average γ value pass rates 
do not significantly change when the 2D-dose map grid sizes are 
lower (p-value < 0.05).

Figure 5. The ANN modeled the 2D dose map of the fluence map from EPID. The fluence map EPID of nasopharynx case that was 
used as input for ANN (a), 2D-dose map modeled by ANN for nasopharynx case (b). The fluence map EPID of prostate case that 
was used as input for ANN (c), 2D-dose map modeled by ANN for prostate case (d). The blue line depicts the boundaries of the 
ANN replicated dose. 2D,two-dimensional; ANN, artificial neural network; EPID, electronic portalimaging device.

Table 1. Local and global γ index evaluation between 2D-dose map modeled by trained ANN and 2D-dose map predicted by TPS 
for prostate fields with 1, 0.8, 0.6, 0.4, 0.2, and 0.1 cm grid sizes: pass rate with γ evaluation of 3%2 mm, 2%2 mm, and 1%,1 mm

2D-dose map grid size(cm)

γ criteria

3%/2 mm 2%/2 mm 1%/1 mm

Global Local Global Local Global Local
1 96.2±0.2% 92.5% ± 0.2 94.4±0.3% 73.5±0.4% 86.4±1.4% 61.4±0.9%

0.8 95.7±0.1% 91.9% ± 0.1 94.0±0.3% 73.1±0.3% 86.1±1.1% 60.5±1.1%

0.6 95.5±0.1% 91.5% ± 0.3 93.3±0.5% 72.5±0.5% 85.9±1.3% 59.9±1.3%

0.4 95.2±0.2% 91.1% ± 0.2 93.0±0.1% 72.1±0.3% 85.8±1.4% 58.8±1.4%

0.2 95.0±0.1% 90.8% ± 0.1 92.5±0.4% 71.7±0.1% 85.4±0.9% 56.4±0.9%

0.1 94.6±0.3% 90.5% ± 0.0 92.1±0.2% 71.5±0.1% 85.0±0.2% 55.0±0.5%

ANN, artificial neural network; 2D, two-dimensional; TPS, treatment planning system.
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Local γ evaluation where percent dose difference is calculated 
relative to dose at each point. Local γ evaluation had more accu-
racy in compare global γ. Average global and local γ for prostate 
and nasopharyng summarized in Tables 1 and 2 respectively.

With 3%/2 mm γ criteria, overall passing rate with local γ was 4.2 
and 4% smaller on the average than global γ rates for prostate and 
nasopharynx, respectively.

discussion
Previous studies have used ANN for modeling a 2D-dose distri-
bution, percentage depth dose, and the dose profiles of different 
fields.18–22 In this study, we used method for portal dosimetry, 
where an ANN facilitated the pretreatment verification of the 
IMRT treatment fields.

In this study, ANN used to model a 2D-dose map, based on a 
fluence map obtained by aSi1000 EPID. Thirty fluence maps of 
dynamic IMRT GZP treatment fields (without patient) of the pros-
tate and thirty fluence maps of dynamic IMRT GZP treatment fields 
(without patient) of the nasopharynx obtained by the EPID were 
used as the inputs for the ANN (feedforward type), and a dose map 
of those fluence maps, measured by the 2D Array Seven29TM as 
the output for the ANN in the training and validation phases. After 
the training and validation of the neural networks, the analysis 
of 10 IMRT prostate GZP field plans and 10 IMRT nasopharynx 
GZP field plans that were not shown earlier by the trained ANNs, 
showed excellent agreement between the ANN-modeled 2D-dose 
map and the dose map predicted by the TPS. The average overall 
global γ field pass rate was beyond 95% for both the prostate and 
nasopharynx IMRT fields when the 2 mm/3% criteria was used. 
Since the local γ evaluation is stricter than global γ evaluation, as 
expected average overall field pass rate for local γ in compare global 
γ evaluation, significantly decreased. Results of γ index analyze for 
2D-dose modeled by ANN in this study well demonstrate that our 
portal dosimetry method has high accuracy, comparable with other 
complex portal dosimetry methods and commercial portal dosim-
etry softwares.15

In a similar study, Kalantzis et al23 used 2D-dose predicted by TPS 
for training of ANN. The dose maps reconstructed by the ANN 
were evaluated and compared with the TPS, where the γ index was 

used. The most important limitations of the method proposed by 
Kalantzis23 and our previous similar study25 may be the absence 
of independence from the TPS calculation. The ANN has been 
trained with the dose distribution calculated by the TPS. This could 
be very dangerous because systematic errors would not be detected. 
In our study, the training of our designed ANN was independent 
from the TPS, as explained in the “Material and methods” section. 
All the fluence map measurements in the study of Kalantzis et al 
were performed without additional build-up that can be impressed 
by scattered electrons and a high-gradient dose region. These 
conditions are a source of uncertainty in the dose measurement 
and should ideally be avoided in the TPS prediction.12,24 All the 
IMRT EPID images in our study (fluence map) were acquired with 
sufficient build-up materials (5 cm water-equivalent build-up). 
The suitable and optimized responses of our designed NN can 
be attributed to the precise introduction of input nodes and used 
enough data for training of ANN.

The good response and performance of the ANN trained by the 
2D-dose map of 1 cm grid size in comparison to the 2D-dose 
predicted by the TPS with different grid sizes indicated the 
robustness and accuracy of the ANN in different and more strin-
gent conditions. This phase of study increases our confidence 
about the performance of the trained ANN in different and stress 
conditions that were not shown earlier by the ANN.

The extension of our method would be to evaluate the ability of 
ANNs to predict the dose intensity for in vivo dosimetry in hetero-
geneous irradiation fields for different clinical situations. Another 
method to extend and evaluate the ANN ability for portal dosimetry 
is to use different NNs and compare their abilities for the task. Use 
of ANN for rapid arc pretreatment verification by true composite 
dose evaluation also can be another method that can think about it.

Conclusion
The results of this study showed that ANN can be used as efficient 
tool for patient-specific QA based on electronic portal imaging 
devices for IMRT fields. Further, the results indicate that ANN 
have lower price and higher speed in compare other commercial 
methods used for pre-treatment verification of IMRT treatments 
based EPID.

Table 2. Local and global γ index evaluation between 2D-dose map modeled by trained ANN and 2D-dose map predicted by TPS 
for nasopharynx fields with 1, 0.8, 0.6, 0.4, 0.2, and 0.1 cm grid sizes: pass rate with γ evaluation of 3%2 mm, 2%2 mm, and 1%,1 mm

2D-dose map grid size(cm)

γ criteria

3%2 mm 2%2 mm 1%1 mm

Global Local Global Local Global Local
1 95.5% ± 0.2 91.5% ± 0.2 93.5±0.4% 72.5±0.4% 81.4±0.9% 60.4±0.9%

0.8 95.2% ± 0.1 91.2% ± 0.1 93.1±0.3% 72.1±0.3% 80.5±1.1% 59.5±1.1%

0.6 94.7% ± 0.3 90.7% ± 0.3 92.5±0.5% 71.5±0.5% 78.9±1.3% 58.9±1.3%

0.4 94.3% ± 0.2 90.3% ± 0.2 92.1±0.3% 71.1±0.3% 77.8±1.4% 57.8±1.4%

0.2 94.1% ± 0.1 90.1% ± 0.1 91.7±0.1% 70.7±0.1% 75.4±0.9% 55.4±0.9%

0.1 94.0% ± 0.0 90.0% ± 0.0 91.5±0.1% 70.5±0.1% 75.0±0.5% 54.0±0.5%

ANN, artificial neural network; 2D, two-dimensional; TPS, treatment planning system.
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