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Abstract

Protein glycosylation plays a key role in various biological processes and disease-related 

pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach 

that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There 

have been numerous significant technological advances in this field, including improved 

glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software 

packages, and effective quantitation strategies, as well as more dedicated workflows. With 

increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted 

this approach to explore different biological systems both in terms of in-depth glycoproteome 

profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables 

researchers to discover novel glycosylation-based biomarkers in various diseases with potential to 

offer better sensitivity and specificity for disease diagnosis. In this review, we present recent 

methodological developments in MS-based glycoproteomics and highlight its utility and 

applications in answering various questions in complex biological systems.
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1. Introduction

As one of the most common protein post-translational modi-fications (PTMs), protein 

glycosylation plays an important role in protein stability, intra- and intercellular signaling, 

fertilization, embryogenesis, organ development, hormone activity, and immunological 

regulation [1]. It is estimated that half of the proteins expressed in cells are glycoproteins. 

There are many types of protein glycosylation, and the most widely studied types are N-

linked (amide nitrogen of asparagine residue) and O-linked (hydroxyl oxygen of serine or 

threonine residue). There is a consensus amino acid sequence (Asn-X-Thr/Ser (X is any 
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amino acid except proline)) that contains the glycosylation site of N-glycoproteins, while no 

consensus sequence has been found for O-linked glycoproteins yet.

Numerous studies have shown that altered glycosylation played a key role in the 

pathological process during disease progression. Mass spectrometry (MS)-based 

glycoproteomics is a powerful, high-throughput approach that enables system-wide 

screening of glycosylation-based biomarkers. In fact, many current disease biomarkers are 

glycoproteins, such as CEA for colorectal cancer, CA-125 for ovarian cancer, and AFP for 

hepatocellular carcinoma etc., and the glycans attached to them have been shown to be 

altered during oncogenesis [2–4]. With glycosylation being particularly sensitive to 

malignant transformation, glycosylation-based bio-markers hold great promise to improve 

the sensitivity and specificity of current protein-based biomarkers and may eventually 

contribute to disease early diagnosis and better treatment [5]. Therefore, comprehensive 

profiling of protein glycosylation is prerequisite to better understand its role in these 

pathological and physiological processes.

Over the past decade, substantial progress has been made to obtain detailed information of 

protein glycosylation, including glycan structures, glycosylation site and its occupancy, and 

protein sequence. Traditionally, there are two different approaches to study protein 

glycosylation: (1) the ‘glycomics’ approach, which focuses on the glycan structures after 

glycan release from proteins and other sugar-containing moieties and (2) the 

‘glycoproteomics’ approach, which examines the localization of glycosylation site and 

structural elucidation of glycans, as well as protein sequence. In this review, we will focus 

on MS-based glycoproteomics approach. Substantial advances have been made in this field, 

and here we highlight recent methodological developments and their applications toward 

comprehensive understanding of the function of protein glycosylation.

2. Glycopeptide enrichment

Comprehensive profiling of the glycoproteome from a complex biological sample is still 

challenging due to the wide dynamic range of proteins and the micro- and macro-

heterogeneity of glycosylation [6,7]. Isolating glycopeptides from complex samples by an 

appropriate enrichment method is the most efficient way to reduce the sample complexity 

and achieve an in-depth glycoproteome analysis.

2.1. Hydrazide chemistry enrichment

Hydrazide chemistry (HC) enrichment is based on the formation of covalent bonds between 

the NaIO4 oxidized cis-diol on N-and O-linked glycans and the hydrazide groups on the 

hydrazide beads. The advantage of HC method is its high enrichment spec-ificity, as 

normally 90% of the enriched peptides are glycopeptides [8]. In the original workflow, the 

glycopeptides captured on hydrazide beads were deglycosylated and released by the 

treatment of PNGase F for glycosylation site analysis [9,10]. Recently, the capture and 

release steps were modified to allow glycopeptides to be released without losing the glycan. 

Specifically, samples were treated with moderate NaIO4 to selectively oxidize the terminal 

sialic acid of the glycan to generate an aldehyde while leaving the other parts intact. Next, 

the sialylated glycopeptides were captured by the hydrazide beads and released through acid 
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hydrolysis of the glycosidic bond of sialic acid by trifluoroacetic acid (TFA) [11,12]. This 

method enabled sialylated glycopeptides to be analyzed, but, unfortunately, the degree of 

sialylation information was lost [13]. To preserve the sialylation information, Nishimura et 

al. employed ice-cold 1M hydrochloride to cleave hydrazone bond between the sialic acid 

and hydrazide beads, allowing the sialic acid to remain on the glycan [14].

2.2. Lectin affinity chromatography

Lectin affinity chromatography (LAC) is another popular enrichment method for protein 

glycosylation analysis and has been approved by FDA for cancer glycoprotein biomarker 

detection [15]. Several well-characterized lectins had been used for selective enrichment of 

specific type of N- or O-linked glycopeptides, which is based on the affinity of lectins to 

glycans with specific structure motif. For example, Concanavalin A (Con A) binds to 

mannose, wheat germ agglutinin (WGA) binds to sialic acid and N-acetyl-glucosamine, 

Vicia villosa (VVA) binds to N-acetyl-galactosamine, Aleuria aurantia lectin (AAL) binds to 

fucose, and Ricinus communis Agglutinin (RCA120) captures terminal β-galactose [16–19]. 

Multiple lectins can be combined to improve the glycoproteome coverage [20–22], and 

including additional enrichment methods sequentially after LAC enrichment would further 

improve the enrichment specificity [23]. Moreover, lectin enrichment has also been 

incorporated in serial online reactors to allow simultaneous online proteolysis and 

glycopeptide enrichment, which is useful for the glycopeptide analysis where sample 

amount is very limited [24].

2.3. Hydrophilic interaction chromatography

Hydrophilic interaction chromatography (HILIC) as a universal glycopeptide enrichment 

method is based upon glycopeptides being more hydrophilic than non-glycopeptides due to 

the attached N- or O-linked glycans [25,26]. To increase the hydrophilicity difference 

between glycopeptides and non-glycopeptides, ion pairing reagents like TFA can be used 

[27]. Compared with the HC and LAC method, the HILIC method is more versatile and thus 

can provide a more comprehensive glycoproteome profile [28]. The disadvantage of HILIC 

is its poor enrichment specificity, which calls for the development of new HILIC materials 

with stronger hydrophilic functional group to improve the specificity [29–33]. The 

enrichment specificity can also be further improved by combining the HILIC with other 

enrichment methods such as LAC [34,35]. New devices, which integrate the HILIC 

materials in micro-column or tip, have been developed to minimize the sample loss during 

enrichment procedure and facilitate the detection of low abundance glycopeptides [33,36–

39].

Other than the three enrichment methods summarized above, methods using boronic acid 

materials [40–43], titanium dioxide [44,45], responsive smart polymers [46–49], porous 

graphitized carbon (PGC) [50], acetone precipitation [51,52], size exclusion chromatography 

[53], and molecular weight cutoff filter [54] for the enrichment of glycopeptides are also in 

the ascendant. It is worth mentioning that most of current glycopeptide enrichment methods 

are suitable for both the N- and O-linked glycopeptides; however, due to the relatively high 

abundance of N-linked glycopeptides, to efficiently analyze O-linked glycopeptides, 
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deglycosylation of N-linked glycopeptides or deep fractionation of sample should be 

performed.

3. Characterization and quantitation of glycopeptides

Qualitative characterization of glycopeptides includes two aspects: glycosylation site 

profiling and site-specific intact glyco-peptide analysis. A typical MS-based 

glycoproteomics workflow is shown in Fig. 1.

3.1. Glycosylation site profiling

3.1.1. N-glycosylation site profiling—Since N-glycosylation site profiling was 

originally performed by deglycosylation with peptide-N-glycosidase F (PNGase F) or endo-

b-N-acetylglucosaminidase F&H (endo F&H), several studies focused on improving the 

deglycosylation efficiency. Huang et al. found that when glycosylation site profiling was 

performed by HC method, glycopeptides with an N-terminal serine/threonine can be 

oxidized on both the N-termini and glycans; thus, this type of glycopeptides cannot be 

released by PNGase F treatment due to being covalently coupling to the hydrazide beads 

through the N-termini. To overcome this problem, they utilized a peptide N-terminal 

protection strategy to block the primary amine groups on peptides, which avoided the 

adjacent amino alcohols on peptide N-termini being oxidized. The results showed that this 

strategy successfully prevented the oxidation of peptide N-termini and significantly 

improved the coverage of glycoproteome [55]. Recently, the same group found that releasing 

the glycopeptides captured on hydrazide beads by PNGase F deglycosylation was inefficient 

due to steric hindrance in the heterogeneous condition. Thus, they developed a 

hydroxylamine-assisted PNGase F deglycosylation method which used the hydroxylamine 

to efficiently cleave hydrazone bonds by transamination and release intact glycopeptides. As 

deglycosylation of the released glycopeptides was performed under homogeneous condition, 

the recovery rate of deglycosylated peptides was improved significantly [56]. Another study 

by Weng et al. reported that N-terminal glycosylated peptides are difficult to be 

deglycosylated due to the limitation of PNGase F enzymatic specificity, which cannot cleave 

N-glycans attached to N- or C-termini and require the presence of an extra amino acid at the 

termini. To overcome this drawback, they developed an N-terminal site-selective 

succinylation strategy by incorporating an amide bond to mimic an amino acid at the peptide 

N-termini, which greatly improved N-glycosylation site coverage [57].

Other studies involved combining different sample preparation techniques, enrichment 

methods, and fractionation strategies to improve the glycoproteome coverage. Mann and 

coworkers developed an N-glyco-FASP sample preparation approach, where the lectin 

column in conventional method was replaced with ultrafiltration units, to decrease the 

glycopeptide loss. In this method, the glycopeptides were enriched by binding to lectins on 

top of a filter, which greatly reduced the sample loss and improved the glycosite coverage. 

The robustness of this approach was successfully demonstrated in the large-scale 

glycosylation site profiling in mouse plasma and four different tissues where 6367 N-

glycosylation sites were identified. Combining different enrichment methods is also an 

effective approach to increase the glycosite coverage [58]. Recently, Qian group combined 
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two widely used glycopeptide enrichment methods, HC and HILIC, for N-glycosylation site 

analysis of the secretome of two human hepatocellular carcinoma (HCC) cell lines. A total 

of 1212 unique N-glycosylation sites from 611 N-glycoproteins were confidently identified. 

Overall, the overlap of N-glycosylation sites determined by the two methods was only 

28.4% [59]. Zou group performed a similar strategy which combined the click maltose-

HILIC and the HC method to comprehensively map the N-glycosylation sites of human liver 

tissue. Altogether,14,480 N-glycopeptides, corresponding to 2210 N-glycoproteins and 4783 

N-glycosylation sites, were identified [60]. As another example, Yang group combined 

seven protease treatments (trypsin, trypsin coupled with Lys-C (Try + Lys), trypsin coupled 

with Glu-C (Try + Glu), Lys-C, Glu-C,chymotrypsin and pepsin), four different enrichment 

techniques (HILIC, ZIC-HILIC, HC, and TiO2 chromatography), and two different 

fractionation strategies (SCX and high-pH RP), which aided in identifying a total of 13,492 

N-glycopeptides, corresponding to 8386 N-glycosylation sites on 3982 proteins in the mouse 

brain. Considering the efficiency and simplicity, a workflow combining the use of trypsin, 

Try + Lys and Try + Glu for protein digestion, HILIC and ZIC-HILIC for glycopeptide 

enrichment, and 1D-RPLCMS/MS for N-glycopeptide detection can also produce a 

comparable glycosite coverage [61].

3.1.2. O-glycosylation site profiling—Mapping of O-glycosylation is also an active 

area of research. Among the different types of O-glycosylation, the O-GlcNAcylation and O-

GalNAcylation are the most widely studied [62,63]. Profiling of O-glycosylation sites is 

even more difficult compared to N-glycosylation due to a lack of a consensus sequon and the 

lack of an enzyme that can effectively deglycosylate the O-linked glycans.

To date, the most successful approach for profiling of OGlcNAcylation has been metabolic 

and enzymatic labeling, which incorporates an azide-containing group to the O-GlcNAc 

moiety [64]. Then, the derivatized O-GlcNAc is enriched by an alkynyl biotin or photo-

cleavable tag containing alkynyl beads to be analyzed by LC-MS/MS. By using this highly 

specific strategy, tens to hundreds of O-GlcNAcylation sites can be mapped [65–68]. The 

drawback of this approach is relatively low labeling efficiency, leading to the limited 

coverage of O-GlcNAcylation sites [69]. Besides the enzymatic and metabolic labeling 

methods, Burlingame and coworkers developed a lectin weak affinity chromatography 

(LWAC) strategy to enrich O-GlcNAc peptides with wheat germ agglutinin (WGA) lectin 

[70]. The same group recently optimized this LWAC strategy and identified over 1750 sites 

of O-GlcNAcylation from murine synaptosomes [71]. Due to the particularly low 

abundance, low hydrophilicity of the O-GlcNAcylation peptides, and severe interference 

from other N/O-glycopeptides, isolating O-glycopeptides from a complex sample by HILIC 

enrichment was originally thought to be ineffective. However, after combining PNGase F, 

sialidase and O-glycosidase to selectively cleave and remove most of the N/O-linked glycans 

in glycoproteins, Shen et al. were able to eliminate the interference of other N/O-

glycopeptides while still preserving the O-GlcNAcylation modified peptides. Benefiting 

from the improved enrichment specificity of the OGlcNAc peptides, a total of 474 O-

GlcNAc peptides from 457 proteins were identified from a human urinary sample. In 

comparison, performing HILIC enrichment without the deglycosylation step only identified 
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107 O-GlcNAc proteins, and an immunoprecipitation (IP) approach using an anti-O-GlcNAc 

antibody only profiled 31 O-GlcNAc proteins [72].

For O-GalNAcylation, the glycan structures are of higher diversity than O-GlcNAcylation. 

To facilitate the MS identification of these glycopeptide sequences and their attached sites, 

Medzihradszky et al. utilized exoglycosidase digestion to partially deglycosylate O-

GalNAcylation peptides and reduce the complexity of glycan structures and was able to 

identify 124 O-GalNAcylation sites in 51 O-GalNAcylated proteins from human serum 

samples [73]. Besides this in vitro approach, Clausen and coworkers developed an 

alternative method called SimpleCell strategy in vivo, which utilized a zinc-finger nuclease 

gene targeting to block the O-GalNAcylation elongation pathway to generate short glycan 

homogenous O-GalNAcylation. This strategy allowed directly enrichment by the LWAC 

method followed by MS/MS detection of OGalNAcylation peptides from different cell lines 

[74]. Recently, they extended this approach to characterize samples from 12 human cell lines 

and profiled almost 3000 O-GalNAcylation sites in over 600 OGalNAcylation glycoproteins, 

which represented the first map of the human O-glycoproteome [75].

3.2. Site-specific characterization of intact glycopeptides

Along with rapid development of glycosylation site profiling, two major breakthroughs have 

significantly facilitated the site-specific characterization of intact glycopeptides. These 

breakthroughs are the advancement of MS/MS dissociation methods towards acquiring both 

the glycan and peptide backbone fragments and the development of new search engines to 

decipher the MS/MS spectra of intact glycopeptides.

3.2.1. Comparison of dissociation methods for intact glycopeptides—The 

dissociation modes for peptide analysis mainly include collision-induced dissociation (CID), 

beam-type CID (occurs in triple quadrupole (QQQ) and quadrupole time-of-flight (Q-TOF) 

instruments, and the so-called high-energy collisional dissociation (HCD) in Thermo-

Fisher™ instruments), and electron-induced dissociation (ExD, such as electron transfer/

capture dissociation, ETD/ECD). Each of these methods alone cannot provide a full picture 

of the glycopeptide structure [76]. CID prefers to break glycosidic bonds, and it generates 

strong characteristic ions of peptides bearing different numbers of glycans after the stepwise 

release of peripheral monosaccharides (Y ions) (Fig. 2). It provides abundant information for 

deciphering glycan structures but limited information for peptide backbone identification. 

As for HCD dissociation, in low collision energy, a series of Y ions are preferentially 

generated, which is similar to CID; while in high collision energy, the peptide backbone 

fragmentation yielded a decreased intensity of Y ions. ExD mode mainly fragments the 

peptide backbone while leaving the glycan intact (Fig. 2), which is suitable for the 

localization of glycosylation sites with a wealth of peptide fragments [77].

3.2.2. Intact glycopeptide analysis by combining different dissociation 
methods—As no single dissociation method is available to produce a complete picture of 

intact glycopeptides, combining the complementary fragment information from multiple 

dissociation modes is an effective strategy to decipher the intact glycopeptides. Larson and 

coworkers combined CID and ExD to analyze desialylated glycopeptides, where CID-MS2 
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spectra of glycopeptides were used for the glycan characterization and the subsequent CID-

MS3 spectra of selected CID-MS2 fragment ions for peptide sequence identification. 

Moreover, ExD as a complementary peptide fragmentation mode was used for the 

characterization of O-glycosylation sites, where 58 N- and 63 O-glycopeptides from 53 

glycoproteins were identified and 40 of the 57 putative O-glycosylation sites were accurately 

localized [78]. However, the requirement of prior knowledge of the targeted peptides to be 

selected for MS3 and the longer duty cycle due to ExD reaction time in ExD-MS2 limit its 

capacity compared to HCD- and CID-MS2, and currently only tens to hundreds of intact 

glycopeptides can be profiled from complex biological samples using this strategy [79].

Sun et al. developed an integrated method that enabled comprehensive characterization of N-

linked glycans and glycosite-containing peptides of glycoproteins and generated the glycan 

and glycosylation site database for spectral interpretation of intact glycopeptides acquired 

from another enrichment. This strategy allows simultaneous profiling and monitoring of N-

linked glycans, glycosites, glycoproteins and site-specific glycosylation in a single 

experiment [80]. Chen et al. developed an alternative complementary method that enabled 

analysis of intact glycopeptides by sequentially interrogating the deglycosylated peptides 

and intact glycopeptides using CID and HCD, respectively. A total of 811 N-glycosylation 

sites from 567 glycoproteins were identified from HEK293T membrane proteins, and 177 

intact N-glycopeptides were also identified by manually integrating the CID and HCD 

spectra. The number of identified intact glycopeptides was much smaller than the number of 

identified N-glycosites, which can be attributed to the low ionization efficiency of intact 

glycopeptides and manual interpretation of the complicated MS/MS spectra [81]. Recently, 

the same group developed a fully-automated software platform for high-throughput 

characterization of intact N-glycopeptides. They used the strong correlation of retention time 

to effectively remove the random matches and were able to control the probability of random 

matches within 1%. In total, 2249 intact glycopeptides, representing 1769 site-specific N-

glycans on 453 glycosylation sites, were identified [82]. Liu et al. developed a similar 

strategy which profiled 1145 non-redundant glycopeptides from 225 core peptides and 95 

glycoproteins from human serum samples [83].

3.2.3. Intact glycopeptide analysis by integrated dissociation methods—
Rather than implementing two dissociation methods to obtain the complementary structure 

information in two separate LC-MS/MS runs, it would be beneficial if hybrid fragmentation 

spectra were acquired in a single run. To this end, the evolution of several new dissociation 

approaches offered an effective solution to this problem. Among them, the stepped collision 

energy HCD (step-HCD), beam-type CID with high energy, and electron-transfer/higher-

energy collision dissociation (EThcD) show great potential.

As different HCD collision energies could generate complementary fragments, performing 

step-HCD (e.g. 30 ± 10%) will give a more complete intact glycopeptide structure 

information in a single spectrum. Qian and coworkers first applied the step-HCD to analyze 

partially deglycosylated core-fucosylated glycopeptides in mouse liver tissue and HeLa cell 

samples and found that the overall performance increased by 7-fold [84]. Recently, this 

method has been widely used in intact glycopeptide analysis with impressive results being 

reported [85,86]. Current MS instruments can only provide a three-step collision energy in 
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one spectrum, and more flexible collision energy settings could definitely improve intact 

glycopeptide analysis.

Under typical beam-type CID conditions, ions produced from dissociation of the peptide 

backbone are in low abundance. Zaia and coworkers reported that abundant peptide 

backbone fragments could be generated by increasing the collision energy, along with 

oxonium ions and intact peptide ions with varying numbers of saccharide units attached. 

They successfully used this approach for intact glycopeptide analysis from several standard 

N-glycoproteins [87]. Recently, Sung et al. utilized the same strategy in complex sample 

analysis and profiled 36 intact glycopeptides of 26 glycoproteins in a HeLa cell sample [88]. 

Ye & Zou and coworkers continuously explored this strategy in intact O-GalNAcylation 

peptide analysis and established an automated workflow for O-GalNAcylation peptide MS2 

spectral interpretation, enabling identification of 407 intact O-GalNAcylation peptides from 

93 glycoproteins in human serum sample [89].

Integrating the HCD and ETD in one spectrum (Fig. 2), EThcD also enables information of 

both glycan and peptide fragments to be acquired [35,90,91]. Li and coworkers first 

optimized the parameters of EThcD for intact glycopeptide analysis, and determined that the 

efficiency of dissociation was greatly improved by using charge-dependent optimized ETD 

reaction times. Large-scale experiments in rat carotids collected over the course of restenosis 

progression resulted in over 2000 N-glycopeptide identifications [92]. Qian and coworkers 

found that EThcD provided more complete fragmentation information on O-GalNAcylation 

peptides and a more confident site localization of O-GalNAcylation than HCD method. By 

combining multiple enzyme digestions and multidimensional separation, they identified 173 

O-glycosylation sites, 499 non-redundant intact O-glycopeptides, and 6 glycan compositions 

originating from 49 O-glycoprotein groups from normal human serum [93].

3.2.4. Database search for intact glycopeptide analysis—One of the biggest 

challenges for intact glycopeptide charac terization is the accurate interpretation of the 

resulting spectra. Based on different strategies, several new search engines have been 

developed for intact glycopeptide identification, such as Glyco-Master DB [94], GPQuest 

[95], I-GPA [96], Byonic [97], SweetNET [98], pGlyco [99], pGlyco 2.0 [85], etc. 

Particularly, pGlyco 2.0 conducted a comprehensive false discovery rates (FDR) evaluation 

at all three levels of glycans, peptides and glycopeptides, greatly improving the accuracy of 

intact glycopeptide identification (Fig. 3). Moreover, a quantitative analysis method utilizing 
15N/13C meta bolically labeled glycoproteome samples to validate glycopeptide 

identification was specifically designed [85]. By taking advantage of the optimized step-

HCD collision for fragmentation of the HILIC enriched intact glycopeptides and 

sophisticated algorithm of pGlyco 2.0, the researchers were able to identify 10,009 distinct 

glycopeptides in five mouse tissues, in site-specific manner, corresponding to 1988 

glycosylation and 955 glycoproteins. Some other analytical tools, like MAGIC and 

SugarQb, which translate the intact glycopeptide spectra and enable them to be analyzed 

using current peptide search engines, have also been developed [86,88,100]. More details 

about the development of search engines can be found in several recent reviews [101,102]. 

Due to space limitations and lack of standard glycopeptide spectral datasets, a fair 

comparison between different software has not been performed [103]. Comprehensive 
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evaluation of the current software regarding the coverage of the glycoproteome and quality 

control of the identification results would provide valuable insights for future software 

design [104]. Large-scale glycoproteomics research would especially benefit greatly from 

the improvement of automated glycopeptide identification, due to the large volumes of data 

being generated.

3.3. Quantitation of glycopeptides

Quantitation of protein glycosylation can be performed at the glycan, glycopeptide or 

glycoprotein level based on the target molecule, and at relative or absolute quantitation 

levels based on the strategies used. Absolute quantitation is often conducted by employing 

targeted MS approach. As the theme of the current review is non-targeted bottom-up 

glycoproteomics, the quantitation strategy discussed here will focus on quantitation at the 

glycopeptide level.

3.3.1. Label-free quantitation—The label-free approach has been regularly used in 

proteomics studies to measure protein abundance changes, and it offers the advantage of a 

simple workflow, low cost and high proteome coverage [105]. Normalization is needed to 

overcome the MS response variations in different samples and reliable quantitation results 

could be obtained by normalizing the data to the total ion abundance [106,107]. However, it 

could be problematic for glycopeptide analysis due to the low ionization efficiency of 

glycopeptides, which means small changes of nonglycosylated interferences could lead to 

large variability in quantitative assays. To overcome this problem, Desaire and coworkers 

developed a new normalization strategy based on the intensity of all glycopeptides and a 

twotiered quantitative analysis to discriminate between glycosylation changes of a given 

protein and glycoprotein’s concentration changes [108]. Additionally, the large volumes of 

data produced by label-free experiments need rigorous statistical assessment for accurate 

data processing and interpretation, which requires effective algorithm models and software 

tools to be developed [109]. Mayampurath et al. developed a novel ANOVA-based mixed 

effects model for label-free glycopeptide quantitation and demonstrated its effectiveness by 

applying this method to biomarker discovery in human serum [110]. To facilitate 

simultaneous identification and label-free quantitation of glycopeptides, Park et al. 

developed an automated Integrated GlycoProteome Analyzer (I-GPA) platform and 

successfully quantified 598 N-glycopeptides from human plasma sample [96].

3.3.2. Label-based quantitation—Compared with label-free methods, the greatest 

advantage of stable isotope labeling is that different samples are mixed together and 

analyzed simultaneously, which largely reduces instrument time and run-to-run variations. In 

general, stable isotope labeling can be classified into three major categories: metabolic 

labeling, chemical labeling and enzymatic labeling.

The most commonly used metabolic labeling in quantitative proteomics is the stable isotope 

labeling by amino acids in cell culture (SILAC), which incorporates stable isotope-encoded 

essential amino acids into living cells [111]. The main advantage of SILAC is that it allows 

different samples to be combined at the intact cell level, minimizing the possible 

quantitation error introduced by the sample preparation process [112]. By incorporating a 
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glycopeptide enrichment step, the regular SILAC workflow can be easily modified for 

quantitative glycoproteomics studies. After treatment with PNGase F, the total glycosylation 

expression changes at each site can be quantified through comparison of light and heavy-

labeled deglycopeptides, and a number of studies have successfully utilized this approach to 

quantify glycosylation changes on hundreds of N-glycosites [113–117]. Furthermore, Parker 

et al. utilized the SILAC approach to quantify the intact glycopeptides without PNGase F 

treatment, which enabled the changes in N-glycosylation micro-heterogeneity to be revealed 

[118]. By combining glycopeptide enrichment using hydrazide chemistry with SILAC, Taga 

et al. conducted a quantitative analysis of O-glycosylation and showed increased 

glycosylation of collagen in Osteogenesis Imperfecta [119].

However, the disadvantage of metabolic labeling is that some biological systems are not 

suited to efficient metabolic labeling and the cost is relatively high [120]. To this end, 

chemical labeling approaches have been developed to label proteins or peptides extracted 

from tissues/cells or biofluids with stable isotope-incorporated tags. In early 2003, Zhang et 

al. used stable isotope labeling by succinic anhydride after glycoprotein capture by 

hydrazide beads for identification and quantitation of N-glycopep-tides [9]. However, 

succinic anhydride labeling method requires repeated labeling to achieve reaction 

completeness and side reactions may happen during the process [121]. To overcome this 

problem, Sun et al. developed an approach that enables sequential glycopeptide enrichment 

and dimethyl labeling on hydrazide beads, which showed high quantitation accuracy over 

two orders of magnitude in dynamic range [122]. However, both succinic anhydride and 

dimethyl labeling have limited capability for quantitative analysis across different samples; 

hence, isobaric tags have been developed to allow for multiplexing capability, such as 10-

plex tandem mass tag (TMT) [123,124], 8-plex isobaric tags for relative and absolute 

quantitation (iTRAQ) [125,126], and 12-plex N,N-dimethyl leucine (DiLeu) isobaric tags 

[127,128] etc. Employing a 6-plex TMT labeling strategy, Kroksveen et al. conducted a 

quantitative glycoproteomics analysis between 21 subjects in relapsingremitting multiple 

sclerosis group and 21 subjects in neurological control group, and successfully quantified 

1700 deglycopeptides with 235 deglycopeptides showing significant differences between 

disease group and control group [129]. Notably, Melo-Braga et al. conducted a global 

comparative proteomic study, as well as changes in N-glycosylation, phosphorylation, and 

Lys-acetylation with 4-plex iTRAQ tagging scheme [130]. The reason that multiple 

quantitative PTMs analysis could be conducted in parallel is because both proteome and 

PTMs analysis shared the same upper stream steps and samples could be split into aliquots 

and subject to different PTMs-targeted enrichment methods after isobaric labeling. Such 

capacity allows multiple PTMs to be analyzed from a limited amount of sample and largely 

facilitates the study of crosstalks between different PTMs. Besides chemical labeling, 

enzymatic labeling was also developed by incorporating 18O into the peptides during the 

enzyme-catalyzed digestion process [131]. Later, Liu et al. developed a tandem 18O stable 

isotope labeling strategy for quantitation of N-Glycoproteome by combining 18O labeling in 

the C-terminal carboxylic acid during proteolytic process and another 18O labeling in the 

asparagine residue during deglycosylation process by PNGase F hydrolysis [132].
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4. Application of MS-based glycoproteomics in complex biological 

samples

4.1. In-depth glycoproteome profiling in complex biological samples

4.1.1. Human serum and other human tissues—In-depth glycoproteome profiling 

has been extensively conducted in different biological systems, including body fluids, cells 

and tissues, etc. Serving as an indicator of physiological and pathological states alteration in 

the body system, serum/plasma is the most common clinical specimen for disease diagnosis. 

The majority of serum proteins are glycosylated as many proteins are secreted in 

glycosylated form, with an estimated 50% after removing high abundance proteins [133]. To 

facilitate the detection of low abundance glycoproteins, Sparbier et al. utilized magnetic 

lectins (ConA, LCA, WGA) beads and boronic acid beads for the enrichment at both protein 

and peptide levels, resulting in 95 N-glycosylation sites from 193 N-glycoproteins [134]. 

Nevertheless, the coverage is still not desirable mainly due to the extreme complexity of 

serum and the wide dynamic range of proteins with concentrations spanning over 10 orders 

of magnitude [135]. To further decrease sample complexity, various approaches have been 

applied, including immunoaffinity depletion of high-abundance serum proteins (albumin, 

IGG etc.), sequential enrichment strategies (lectins, HILIC etc.), off-line fractionation (HpH, 

SCX) and 2D-LC, which yielded more than 600 N-glycosylation sites from over 300 N-

glycoproteins [136,137]. Faced with the challenges of sample complexity brought by various 

glycoforms, several studies focused on a subset of total glycopeptides such as core-

fucosylated peptides which could be enriched by highly specific binding afforded by lectin 

LcH [138–140]. Park et al. developed a novel automated Integrated GlycoProteome 

Analyzer (I-GPA) with FDR control for fast and confident intact N-glycopeptide 

identifications, and successfully identified 619 intact N-glycopeptides with an FDR below 

1% from human serum [96]. Compared to N-glycosylation, O-glycosylation in serum is less 

studied mainly due to its lack of consensus motif and diversity of core structures. Recently, 

Zhang et al. developed a systematic strategy that combined multiple enzyme digestion, 

multidimensional separation and EThcD fragmentation, and identified 499 non-redundant 

intact O-glycopeptides in serum, covering singly, doubly and triply O-glycosylated peptides 

[93]. Besides serum, in-depth glycoproteome profiling has also been conducted in other 

human body fluids/tissues such as urine [141–143], liver [60,144] and so on.

4.1.2. Cell culture—In addition to human serum, the glycoproteome of different cell 

types have also been extensively explored. Cell culture has helped us gain valuable insights 

into various biological processes and disease-related pathological alterations, and has 

contributed enormously in drug discovery and development [145]. Adding glycoproteome 

data to the cellular models would help us gain a better understanding of the inherent 

complexity in biological systems [146]. Notably, the Clausen group developed a robust 

SimpleCell approach for an O-GalNAc study [75], and successfully mapped human O-

GalNAc glycoproteome with almost 3000 glycosites from over 600 O-glycoproteins in 12 

human cell lines from different organs [147]. Although SimpleCell approach has shown 

extraordinary performance in terms of O-glycosite mapping, it falls short in intact 

glycopeptide analysis due to glycan truncation during the process. To this end, Bertozzi 

group developed an IsoTaG strategy for intact glycopeptide characterization [148], and 1375 
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intact N-glycopeptides and 2159 intact O-glycopeptides were successfully identified from 15 

human tissue-derived cell lines [149]. Later, this approach was also applied for human T-

cells O-GlcNA-cylation analysis, with over 2000 O-GlcNAcylation peptides identified 

[150]. Some other studies focused on the glycoproteome on the cell surface, which are 

crucial for the understanding of cell-cell communication and cell-environment interaction 

[151,152]. In order to selectively capture surface glycoproteins, in 2009, Wollscheid et al. 

developed a powerful unbiased cell surface-capturing (CSC) technology through covalently 

labeling cell surface N-glycan moieties [153]. Since then, this approach has been widely 

used for cell surface N-glycoproteome profiling including embryonic stem cells [154], 

induced pluripotent stem cells (iPSCs) [155], gastric adenocarcinoma cells [156], 

hepatocellular carcinoma cells [157], and hundreds of surface glycoproteins have been 

identified. Another rich source of glycoproteins come from the secreted proteins, or 

secretome, as many proteins undergo glycosylation prior to secretion [158]. For secreted 

glycoprotein analysis, conditioned media from serum-free cell culture is usually collected, 

followed by extraction of the secreted proteins, and then is subject to a typical 

glycoproteomics workflow. Li et al. have extensively conducted glycoproteome profiling of 

hepatocellular carcinoma cell lines [59] and have mapped 1213 unique N-glycosites from 

611 N-glycoproteins [159]. Cell component analysis revealed that these N-glyco-proteins 

were primarily localized to the extracellular space and plasma membrane, indicating 

important role of N-glycosylation in the secretory pathway. The study of secreted 

glycoproteome of other commonly used cell lines such as human embryonic kidney (HEK) 

cells [160], Chinese hamster ovary cells (CHO) and endothelial cells [161], and some 

microorganisms such as green algae [162] and filamentous fungi [163] have also been 

conducted, which provide valuable insights into the secretory pathway and their responses to 

the environmental stimuli.

4.1.3. Animal tissues and plants—Due to their easy accessibility, the glycoproteome 

of animal tissues and plants have also been comprehensively profiled. Among them, mouse 

or rat brain is perhaps among the most extensively studied tissue. By employing different 

enrichment strategies, including lectin, HILIC, hydrazide chemistry and TiO2, Zhang et al. 

have successfully mapped 3446 unique glycosylation sites from 1597 N-glycoproteins in 

mouse brain, and 65% of the identified N-glycoproteins are membrane or extracellular 

proteins [28]. To take a step further, Fang et al. further increased the coverage by optimizing 

protease treatments and fractionation strategies and identified 8386 glycosylation sites on 

3982 N-glycoproteins, representing the largest N-glycosylation site dataset in mouse brain 

ever reported [61]. Site-specific N-glycoproteome study in rat brain has also been conducted 

by utilizing a combined glycomics and glycoproteomics approach, resulting in the 

identifications of 863 unique intact N-glycopeptides [164]. The N-glycosylation site 

mapping studies in other mouse/rat tissues such as liver, kidney, heart, plasma, stomach, 

ovary etc. revealed a tissue-specific expression pattern of N-glycosylation, indicating the 

close relation between glycosylation and the specialized function of different organs/tissues 

[58,165,166]. Compared with the large number of glycoproteome studies in mammalian, the 

glycoproteome studies in plants are quite limited, despite an increased interest in 

deciphering the plants glycoproteome [167–169]. So far, hundreds of N-glycosites have been 

mapped in rice [170], cereal crop Brachypodium distachyon L. [136], tomato[22], flowering 
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plant Arabidopsis [171] etc., providing valuable insights into the biological role of this 

ubiquitous protein modi-fication in different plant species.

4.1.4. Microorganisms—As one of the most popular models for basic biological 

research, yeast has also attracted substantial interest in the glycoscience field. Breidenbach 

et al. started out mapping the N-glycosites in yeast, yielding a total of 133 N-glycosites 

spanning 58 glycoproteins, which were mainly distributed in the yeast ER, plasma 

membrane, vacuole, and cell wall [172]. It has been a puzzle for researchers that O-

GlcNAcylation was found in all eukaryotic cells except yeast until Halim et al. discovered 

and mapped nucleocytoplasmic O-mannose glycoproteome in yeast in 2015, which opened 

new avenues for the investigation of O-glycosylation based biological events in yeast [173]. 

Later, Neubert et al. successfully mapped 2300 O-mannosylation sites in 500 O-

glycoproteins from whole yeast cell lysates, and one interesting finding was that these O-

mannosylation sites were in the proximity of N-glycosylation sites, indicating their potential 

interplay [174]. The glycoproteome of some common bacteria [175–177] and viruses 

[178,179] have also been mapped, providing a molecular foundation for further 

understanding of glycosylation-assisted physiological processes.

4.2. Comparative MS-based glycoproteomics in complex samples

4.2.1. Disease biomarker discovery—Previously, glycosylation-based biomarker 

studies relied on lectin staining or 2D gel electrophoresis approaches to measure the total 

glycosylation changes or the total glycoprotein changes, which suffer from low-throughput, 

limited sensitivity, and limited site-specific glycosylation information [180,181]. With the 

advancement of glycoproteomics methodologies, glycosylation level changes can be 

pinpointed on a specific site and further micro-heterogeneity differences can be revealed 

through intact glycopeptide analysis in a high-throughput manner.

In a quantitative proteome and glycoproteome study of relapsing-remitting multiple sclerosis 

and neurological controls, Kroksveen et al. identified 96 altered deglycopeptides where their 

associated protein abundance was not affected, indicating the alterations were due to 

glycosylation occupancy changes instead of changes at the protein level [129]. Similarly, 

Zhang and coworkers utilized an integrated proteomics and glycoproteomics approach to 

explore the mechanism of castration resistance for androgen-deprivation therapy in prostate 

cancer [182]. This integrated omics approach not only allowed the detection of changes in 

glycosylation occupancy and microheterogeneity, but also identi-fied associated altered 

fucosyltransferase and fucosidase expression. To take one step further, after the initial 

finding of the increased terminal galactosylation and up-regulation of B4GalT5 

galactosyltransferases upon TNF-Alpha-Induced insulin resistance in adipocytes through an 

integrated proteomics and glycoproteomics approach, Parker et al. showed that the 

knockdown of B4GalT5 down-regulated the terminal galactosylation, confirming the 

involvement of B4GalT5 in the TNF-alpha-regulated N-glycome [118]. Instead of analyzing 

the whole glycoproteome, some other studies focused on a specific type of glycopeptides 

(fucosylated, sialylated etc.) to improve the coverage depth. Tan et al. employed an LCA 

enrichment approach to selectively enrich core-fucosylated glycopeptides, and were able to 

identify 613 core-fucosylated peptides and 8 of them exhibited a significant difference 
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between pancreatic cancer and controls [183]. Due to close crosstalks between cells and the 

extracellular space, the secreted glycoproteins in extracellular space is another rich source 

for biomarker discovery. Li et al. conducted a glycoproteomics study in the secretome of 

human hepatocellular carcinoma metastatic (HCC) cell lines, and two glycoproteins FAT1 or 

DKK3 were proposed as novel prognostic biomarkers of HCC after validation with Western 

blot and tissue array immunohistochemistry (IHC) [159]. Specifically, extracellular vesicles 

(EVs) in the secretory system have been exploited as an attractive source for biomarker 

discovery. Very recently, Chen et al. identified 1453 unique deglycosylated glycopeptides 

from 556 glycoproteins in plasma-derived EVs, among which 20 were veri-fied to be 

significantly higher in breast cancer patients [184]. Additionally, 5 of these glycoprotein 

candidates were later successfully validated in patients and healthy individuals through a 

novel polymer-based reverse phase glycoprotein array (polyGPA) platform.

4.2.2. Biological process exploration—With glycosylation playing a key role in 

many biological processes, comparative glycoproteomics could reveal the dynamic changes 

and further shed light upon its functions along these processes. In a recent study, Kang et al. 

employed quantitative glycoproteomics approach to explore the molecular mechanism 

underlying the increased insulin secretion of normal pancreatic islet b-cells (PBCs) in 

response to elevated blood glucose levels [185]. Their results showed that altered sialylation 

of surface glycoproteins, such as integrins, integrin ligands, semaphorins and plexins was 

involved in the process of glucose-stimulated insulin secretion (GSIS). In order to uncover 

the glyco-markers in the neuronal differentiation process, Tyleckova et al. have successfully 

quantified hundreds of N-glycoproteins at onset and upon neuronal differentiation, as well as 

in mature hNT neurons using the cell surface capture (CSC) technology, and validated the 

glycosylation alterations of several cell adhesion glycoproteins using selected reaction 

monitoring (SRM) strategy [186]. Glycosylation has been known to affect the development 

of central nervous system (CNS) and defective glycosylation has also been shown to impair 

development and neurological function [187]. To this end, Palmisano et al. conducted a 

glycoproteomics study to monitor the glycosylation changes associated with cell signaling 

during mouse brain development using the postnatal mice from day 0 until maturity at day 

80 [188]. Their results confirmed the role of sialylation in organ development and provided 

the first extensive global view of dynamic changes in N-glycosylation during mouse brain 

development. A comprehensive N-glycoproteomics analysis was also conducted to 

investigate the role of N-glycosylation during the deetiolation process, which is one of the 

most dramatic developmental processes known in plants [189]. The study has shown 186 N-

glycosylation sites from 162 N-glycoproteins were significantly regulated over the course of 

the 12-h de-etiolation period, indicating the important role of N-glycosylation during 

deetiolation process. Besides the biological process without disturbance, the biological 

processes that are the result of environmental stimuli, such as infection, have also been 

investigated. Melo-Braga et al. explored the modulation of N-glycosylation in grape by 

Lobesia botrana pathogen infection and demonstrated the importance of N-glycosylation in 

plant response to biotic stimulus through the glycosylation changes of disease-resistance 

response glycoprotein DDR206 [130]. In another study into regulation of protein N-

glycosylation in human macrophages and their secreted microparticles (MPs) upon 

Mycobacterium tuberculosis infection, Hare et al. showed an increased complex-type 
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glycosylation and concomitant down-regulation of paucimannosylation of macrophages 

upon infection [190].

5. Concluding remarks

With rapid advancements in various methodologies, including improved enrichment 

methods, novel MS/MS fragmentation techniques, powerful workflows, and advanced 

bioinformatics, MS-based glycoproteomics is gaining more attention and has been 

increasingly applied to studies of various biological systems. Unprecedented glycoproteome 

depth has been achieved in different complex samples, providing valuable molecular basis 

for further structure-function studies of glycosylation. Due to the advances in hybrid 

fragmentation methods and maturing search engines for intact glycopeptide analysis, site-

specific glycoproteomics have become increasingly feasible and will eventually become a 

routine and practical approach for large-scale glycosylation analysis, which could help 

decipher the long-time puzzle of glycosylation microheterogeneity. Although great 

advancements have been made, limitations still exist in the following aspects. The current O-

glycopeptide enrichment efficiency is not ideal, and intact O-glycan structure information 

was often lost in many existing O-glycopeptide enrichment methods. Because of these 

remaining challenges, the O-glycoproteome information from different complex samples is 

still quite sparse, with most of the studies focusing on O-glycosite mapping or O-

glycoproteome profiling with truncated O-glycans information. More efficient O-

glycopeptide enrichment methods that preserve native O-glycan structures are highly 

desirable to advance the O-glycoproteomics forward. Furthermore, integrated workflows 

that enable both N-glycosylation and O-glycosylation to be analyzed simultaneously are in 

great demand. Additionally, the current glycoproteomics methodologies only allow glycan 

composition and partial glycan structure information to be revealed; although isomer 

differentiation has been advanced by utilizing PGC columns [191], more diverse tools are 

needed to improve the resolution for isomer differentiation. Future direction includes 

improving glycan structural analysis by incorporating isomer differentiation tools such as 

infrared spectroscopy (IR) or ion mobility (IM) into the workflow.
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Fig. 1. 
A typical workflow for MS-based glycoproteomics in different complex biological samples.
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Fig. 2. 
MS/MS of 3 + charge state precursor ion at m/z 1577.9 of bovine fetuin triantennary N-

glycopeptide KLCPDCPLLAPLNDSR (AA 126–141). Alternating between CID/ETD/

EThcD resulted in different sets of ions. (a) CID and ETD spectra (inset). Asterisk (*) in the 

peptide sequence indicates carbamidomethylation. (b) EThcD spectrum. Starred peaks (*) in 

the spectra were deconvoluted and annotated in the inset. Adapted from Ref. [68] with 

permission.
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Fig. 3. 
Design of a dedicated software pGlyco 2.0 for intact glycopeptide interpretation. Adapted 

from Ref. [60] with permission.
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