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Crackles and Wheezes: Agents of Injury?
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In the midst of rampant tuberculosis
plaguing Europe, René Laennec invented the
stethoscope in 1816 as a result of both his
genius and respect for patient modesty (1,
2). The auscultation method of ear-on-chest
was replaced by a new technology that
eventually brought clearer and more
uniform sound quality. Since that time, the
stethoscope has evolved into the universal
symbol of clinical medicine. The World
Health Organization estimates 10 million
physicians and 20 million nurses
worldwide are involved in direct patient
care (3). Equipped with stethoscopes, tens
of millions of lungs are likely examined
every day. For its 200-year history, the
stethoscope has been an invaluable tool for
pulmonologists to diagnose diseases that
produce sounds like crackles and wheezes,
which are well known signs of disease. In
this note, however, I will explore a novel
proposal: that the mechanical events
creating these sounds also cause disease.

How do mechanical stresses and strains
cause disease or injury? This question
falls into the general topic of
mechanotransduction (4). Mechanically
perturbed cells respond in many possible
ways: growth, remodeling, altered
metabolism, modified gene expression,
release of bioactive molecules, membrane
rupture, tissue failure, and death. For
example, endothelial cells respond to blood
flow shear stresses (5), osteocytes to force
loading (6), and lung epithelium to inflation
and deflation (7). Often, the forces and their
responses are part of the natural function, as
in newly laid-down matrix in bone or
production of surfactant in the lung.
However, the forces can also create disease

or injury, as in formation of blood clots
promoted through endothelium responses
or ventilator-induced lung injury (8). In the
lung, mechanical perturbations can also
create sound, and this poses a particularly
interesting thought reversal. Can crackles
and wheezes both indicate and cause
disease? Let’s take a look at the possibilities.

Expiratory wheezes are a sign of
obstructed airways, as occur in asthma and
emphysema. The airflow couples with the
elastic airway walls to create flow-induced
oscillations. Mechanically, this is very much
like blowing up a balloon, then releasing the
air while stretching the outlet and making it
squeal. As a reference point, in Figure 1, air
flowing at a critical speed, U, through a
model flexible airway causes wall oscillations
of frequency, f, and wavelength, l, which
travel at wave speed c= f3 l (9). The
oscillations shake the epithelial cells up and
down, as indicated in Figure 1. It is f that we
hear, and it covers a wide audible frequency
range. For an airway, wheezing also can
signify local flow limitation (10).

Can these oscillations of the epithelial
cells injure them? In a study aimed at snoring
and sleep apnea, cultured human bronchial

epithelial cells were vibrated at 60 Hz to assess
their response (11). The vibratory stimulus
triggered an inflammatory cascade, as
measured by an increase in IL-8 (interleukin-
8) release. In a following study, vibrations were
applied to the upper airway of an in vivo rat
model in a snoring pattern: 1 second of
vibration followed by 3 seconds of no vibration
(12). Examining the soft palate tissue, it was
shown that vibration significantly increased
the gene expression of the proinflammatory
cytokine TNF-a (tumor necrosis factor-a)
and neutrophil attractant chemokine MIP-2
(macrophage inflammatory protein-2), which
is a rodent equivalent of human IL-8. So the
mechanical stimulus of vibration triggers an
early proinflammatory process in respiratory
epithelium. For an obstructed airway,
vibratory stimulation of epithelial cells already
inflamed can contribute to a vicious cycle,
because increased inflammation exacerbates
bronchoconstriction, provoking more
wheezing.

Turning to inspiration, airway-related
crackles are considered the rupturing of
liquid plugs, or menisci, in small airways as
they “pop open.” The sound mechanism is
very similar to drinking through a straw

c, wave speed
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Figure 1. Wheezing as flow-induced oscillations of an airway. Air flows at critical velocity, U, the walls
and cells oscillate at frequency, f, for wavelength, l, creating a traveling wave at speed c= f3l.
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when you get down to the last sips at the
bottom of the cup. The gurgling is a mixture
of liquid and air with popping bubbles and
rupturing plugs. They can occur with excess
airway liquid, like that found in pulmonary
edema or pneumonia, and in mechanical
ventilation become more prevalent with low
end-expiratory volumes, or low regional
volumes, in a process of small airway closure
and reopening. Figure 2 shows a typical
sequence at five times. At time t1, inspiration
starts the liquid plug propagating to the
right at speed V in a tube of radius a.
It is pushed because of the air pressure
difference, P12 P2. Surface tension, s, is
present at the air–liquid interfaces. At time
t2, the plug has traveled farther downstream
but is thinner because it is losing volume to
the airway surface liquid lining the wall. At
time t3 into the inspiration, the thinning has
finally caused the plug to rupture. Rupture is
an explosive event, which equalizes the air
pressure, while the surface tension snaps
liquid back onto the cells. Both of those
actions contribute to the acoustical
signature of a crackle. The rupture sequence
t3-t4-t5 is a time span measured in
milliseconds. An additional feature would
be wall flexibility, so that the radius of the
tube suddenly increases at rupture (i.e., pops
open).

Can crackles cause disease? In a
microfluidic system mimicking a small
airway, similar to Figure 2, liquid plugs
were forced to flow over cultured human
airway epithelial cells (13). The cells
in general were damaged by plug
propagation, t1 to t3. The rupture event,
however, registered acoustically as a
crackle, and the underlying cells had a very
high death rate. During the rupture
sequence, t3 to t5, the snapped flow creates
very high local stresses calculated from
computational fluid dynamics simulations

(14). The ratio s/a scales the stress levels,
so higher surface tension and smaller
airways promote larger potential for
damage. Surface tension injuries have been
shown in ex vivo rat lungs that received a
3-ml instillation of normal saline, partially
filling the lung. It was followed by air
cycling, an arrangement of mixed air and
liquid that creates many liquid plugs (15).
Injury was evaluated by measuring cell
membrane defects. For comparison, normal
air-filled lungs and completely saline-filled
lungs, which are free of air, were also studied.
By far the greatest damage was in the partially
filled saline group, where surface tension is so
prevalent, leading to the conclusion that
surface tension forces are responsible for the
injury.

An additional study was done for in
vivo, open-chest rabbits undergoing low
end-expiratory volume ventilation using
zero end-expiratory pressure (16). Under
these circumstances, airways close near end-
expiration and then reopen during
inspiration. Histologic indexes of
bronchiolar injury were present, but not
in an additional group that received a
tracheally instilled surfactant. Airway
reopening is accompanied by crackles (17),
and here is why. Because the airways are
liquid lined, closure is ultimately due to a
liquid plug formation, made easier for
decreasing airway radius or collapse during
expiration. Then reopening expands the
airway but also propagates the liquid plug, as
shown in Figure 2, leading to rupture.
Surfactants reduce surface tension, so
that the stress scale s/a is reduced.
Consequently, they are protective for this
kind of reopening injury. As a follow-up to
the surfactant-free studies of Huh and
colleagues (13), plug propagation and
rupture with surfactants showed protection
of the underlying cells (18). These surface

tension injuries promote an inflammatory
response in small airways, which could also
exacerbate the development of acute
respiratory distress syndrome. Often
crackles occur in sequentially related groups
called an “avalanche” (19), which can
potentially damage a distributed pathway in
the lung.

Now, is any of this clinically relevant?
A first good response to that important
question might be: “Is anyone looking?”
Pulmonary acoustics are inherently linked
to lung mechanical perturbations. Lung air
is confluent with room air, which lends to
the sounds being an indicator of mechanical
events. As an extreme example, the loudest
sound a lung generates is a severe cough,
which can cause a pneumothorax (i.e., tissue
failure) (20). Cough sends a large stress wave
through the lung on a global scale, which
can cause shear injury to tissue, including
the pleura. The sound we hear correlates to
this very large mechanical perturbation. At a
smaller stress scale, crackles and wheezes are
part of this continuum. The literature shows
that mechanical stresses caused by
perturbations found in crackles and wheezes
certainly can injure cells, damage their
membranes, promote inflammatory
responses, and cause cell death.

If there are clinical injuries from
crackles and wheezes, for example, how
would those be measured? To what degree is
their effect, if any? Do they simply make bad
conditions more challenging to treat, like
asthmatic wheezing? Can they create injury
in an otherwise healthy small airway, like
crackles from pulmonary edema due to
congestive heart failure?Mechanically, those
two situations are not very different from
the experiments described above. In general,
what may be the implications of hearing
crackles and wheezes, knowing they are not
only a sign of underlying pathology but also
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Figure 2. Liquid plug propagation and rupture causing crackle sounds. The plug travels at speed V in a tube of radius a, because of the air pressure
difference P12P2. Inspiration starts at time t1; the plug thins at t2 and ruptures at t3 to t5, reopening the airway. The surface tension is s.
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a cause of inflammation and injury? Could
that insight drive a more aggressive
treatment approach to stop the sounds? If
there is injury from congestive heart failure–
related crackles, would they someday be
treated with diuretics and antiinflammatory
agents? Is there a role for exogenous
surfactants?

I think a hopeful answer to the
question “Is anyone looking?” might be
“No, not yet!” Investigative journeys,
even paradigm shifts, sometimes need a
starting point, often coming from a
different perspective. My laboratory has
focused for more than 35 years on the
intersection of pulmonary function

with fundamental biofluid mechanics in
experimental and computational formats.
Perhaps this note will stimulate a
productive conversation. Dr. Grotberg
supported by NIH HL136141 n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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