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There is evidence that human activities are reducing the population genetic
diversity of species worldwide. Given the prediction that parasites better
exploit genetically homogeneous host populations, many species could be
vulnerable to disease outbreaks. While agricultural studies have shown
the devastating effects of infectious disease in crop monocultures, the wide-
spread nature of this diversity–disease relationship remains unclear in
natural systems. Here, we provide broad support that high population gen-
etic diversity can protect against infectious disease by conducting a meta-
analysis of 23 studies, with a total of 67 effect sizes. We found that parasite
functional group (micro- or macroparasite) affects the presence of the effect
and study setting (field or laboratory-based environment) influences the
magnitude. Our study also suggests that host genetic diversity is overall a
robust defence against infection regardless of host reproduction, parasite
host range, parasite diversity, virulence and the method by which parasite
success was recorded. Combined, these results highlight the importance of
monitoring declines of host population genetic diversity as shifts in parasite
distributions could have devastating effects on at-risk populations in nature.
1. Introduction
Most natural populations are genetically diverse [1]. Given there is often
specificity between hosts and parasites [2], host population genetic diversity
is thought to increase the chance that one or more individuals is resistant to
infection. The likelihood of a parasite encountering a susceptible host is thus
reduced [3]. Genetically homogeneous host populations are conversely pre-
dicted to be more vulnerable to infection, given the uniformity of host
susceptibility. This negative relationship between host genetic diversity and
parasite success is often referred to as the ‘monoculture effect’ [4].

The study of the monoculture effect in agricultural settings is extensive
[5–7]. A recent meta-analysis showed that with increased diversity in intraspeci-
fic cultivar mixtures, disease presence is reduced and crop yields increased [7].
However, crop plants are under artificial selection for high yield, and may
therefore exhibit less genetic polymorphism than hosts in the wild. We conse-
quently know little of the extent to which low genetic diversity influences
parasite success across species and environments beyond agricultural contexts.

Threats to within-species genetic diversity are on the rise. There is evidence
that habitat alterations, pollution and global temperature changes, as well as the
restriction of species geographical ranges, may lead to increased genetic drift
and reduced population genetic diversity [8,9]. Impacts of humans on local
species biodiversity, however, remain controversial [10,11]. Populations with
reduced genetic diversity might suffer diminished evolutionary potential [12]
and increased inbreeding depression [13,14]. Knowing whether there is an
additional threat of outbreaks in these populations is crucial for disease
management and species conservation approaches.

Theory has illuminated the dynamics of parasite spread [4,15–18] in diverse
host populations as well as examined the level of diversity required to stop
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transmission [19,20]. However, whether population genetic
diversity can impact parasite success in nature more broadly
remains unclear for several reasons. First, given that parasite
transmission can be determined by host density [3], the rela-
tive effects of density versus host genetic diversity need to be
elucidated [20]. Shrinking habitats, for example, can result in
higher population densities (and lower resource availability)
where parasites can transmit better due to more contact
between hosts [21,22]. Second, even when focusing on host
genetic diversity alone, there is great variation across systems
in the conditions under which infection and diversity are
measured. In comparison to diverse populations, genetically
homogeneous bumblebee (Bombus terrestris L.) populations,
the microsporidian Nosema bombi has higher success, but
the trypanosomelid Crithidia bombi does not [23]. In other
cases, we see an increase in parasite success on the homo-
geneous host populations when multiple parasite species
infect [23–26] but not always between one host–parasite
species pair [27,28]. Third, because parasite success is
measured differently across studies, and even within systems,
there is the potential that the relevant measure of parasite
success is not used. For example, in honeybee (Apis mellifera)
host populations, genetic diversity has a negative impact on
parasite success when infection prevalence or parasite load
is measured, but not always when host survival is calculated
[29]. Host survival might be less informative because the
interplay of virulence, force of infection and the timing of
infection might determine the overall spread of pathogens
in host populations [30]. It is therefore unclear whether the
effect of low host genetic diversity on parasite success is rel-
evant to host–parasite interactions in non-agricultural
systems across the tree of life.

We tested the effect of host population genetic diversity
on parasite success with a formal meta-analysis across a
range of host–parasite systems. We searched the published
literature for all publicly available data sources and compared
the effects of low and high host genetic diversity on parasite
success using Hedges’s effect size g (with positive values
indicating an effect of low host genetic diversity on parasite
success) with a nested random mixed effects meta-analysis
model. We also tested whether biological traits associated
with the species in the interaction, as well as study settings
and measures, could explain variation in the effects of genetic
diversity on parasite success.
2. Material and methods
(a) Literature search
In July 2019, the literature was searched using keyword searches
on Web of Knowledge, Google Scholar and PubMed, with a
subset of the terms ‘host genetic diversity’, ‘low versus/and
high host genetic diversity’, ‘heterogeneous versus/and hom-
ogenous host populations’, ‘monoculture effect’, ‘disease
spread’ and ‘parasite prevalence’ to investigate the effect of low
versus high host population diversity on parasite disease
impact (see electronic supplementary material, figure S1 for
PRISMA flowchart [31] summarizing study collection process).
We gathered data of parasite success in host populations of vary-
ing genetic diversity. We define ‘parasite success’ as any measure
of a parasite’s ability to proliferate within a host population
reported in a given study. As parasite presence within a host
population is measured differently across studies, the following
terms were included as measurements of parasite success:
parasite load, parasite virulence, parasite abundance, host mor-
tality rate, viral concentrations, viral load, infection rate and
infection intensity. We also checked reference lists for other
potential papers. Studies were also searched for and extracted
from review papers.

Papers were included in this study if they met the following
inclusion criteria:

(i) The study was published in a peer-reviewed academic
journal.

(ii) The study collected parasite success data from two distinct
comparable host population groups with any measured
difference in diversity, such as low versus high genetic diver-
sity, inbred versus outbred, and monoculture versus
polyculture.

(iii) In the study, both host population groups contained the
same species.

(iv) The study measured genetic diversity at the host population
level and not community diversity or individual-level
genetic heterozygosity.

(v) The study was not conducted in an agricultural system.
(vi) The study did not interfere with parasite or host life cycle, as

in passaging manipulations.

We excluded agricultural studies as a recent meta-analysis had
already demonstrated the benefits of intraspecific diversity to
crop yields (and thus host fitness) in the presence of infectious
disease [7].

(b) Statistical analysis
We calculated Hedges’s g from studies using the method
described in Hedges [32]. This is a standard and widely used
method of calculating effect sizes in meta-analyses which takes
into account small sample sizes [33,34]. To calculate effect size
g, the mean parasite measurements and their standard deviation
for each treatment were extracted in the order of low host popu-
lation diversity and high host population diversity. We extracted
data from either paper figures, reported statistics in the text, or
raw data received from authors. Where means and standard
deviations in each group were not available (2 out of 23 studies),
t-values and degrees of freedom were extracted.

We calculated the standard mean differences using the escalc
function in the package metafor in R v. 3.6.0 (R Development
Core Team) before performing a nested random mixed effects
meta-analysis model using the rma.mv function. We chose this
model to account for the fact that we collected several effect
sizes per study, where some studies shared the same host species,
which has the potential for pseudo-replication and phylogenetic
non-independence. Estimates of effect size g were extracted from
the model. We first tested for an overall relationship between
host population genetic diversity and parasite success using the
entire dataset. We then tested whether the magnitude of the
relationship was dependent on the following moderator variables:
study setting, parasite success measure, host reproduction, para-
site functional group, parasite’s host range, parasite diversity
and ability of parasite to cause host death (see electronic sup-
plementary material, table S1 for variable definitions). The
measure of heterogeneity of moderator variables was reported
as Cochran’s Q test, where Q is the weighted sum of squares
about the fixed effect estimate between subgroups [35].

We tested for an effect of both study setting (field or
laboratory-based environments) and parasite success measure
on the relationship between host genetic diversity and parasite
success. For the latter, we separated measures into three groups
based on those used in studies included in the meta-analysis:
parasite prevalence, parasite load and host mortality (electronic
supplementary material, table S1). Studies looking at overall
parasite presence in a host population were placed under the



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20191811

3
category ‘parasite prevalence’. Where measures of parasite pro-
pagules per host were taken, studies were placed under
‘parasite load’. Measures of mortality within a population were
placed under ‘host mortality’. In order to incorporate studies
publishing survival data, measures of host mortality were
taken as the inverse of published survival measures.

We then focused on the impact of host and parasite biological
traits on variation in the magnitude and direction of effect sizes.
We first considered host reproductive mode, given sexual and
asexual strategies can generate disparate levels of population
genetic diversity. However, one study was placed under a separ-
ate reproduction group as the host (Daphnia magna) had
undergone both sexual and asexual reproduction in the study.
Second, we looked at infection by parasite functional group
(micro- or macroparasites) as the former tends to be associated
with higher mortality [36], and third, the parasite’s host range
(1 host species or greater than 1 host species), as this factor has
been shown to have an impact in crop studies [37,38] due to
the reduced genetic specificity between hosts and multi-host
parasites. Fourth, we separated studies into three categories—
one genotype of one parasite species (1 genotype), multiple para-
site genotypes of one parasite species (greater than 1 genotypes),
and multiple parasite species (greater than 1 species)—to deter-
mine whether the diversity–disease relationship was dependent
on parasite diversity. Higher levels of parasite diversity might
increase the pool of susceptible hosts in a diverse population.
Lastly, we tested whether effect sizes were dependent on the
parasite’s ability to cause host death. Compared to less harmful
parasites, virulent parasites could select for greater levels and
variation of resistance in the host population.

(c) Assessing for potential publication bias
Studies that report larger effects are more likely to get published
in comparison to studies reporting smaller effects [34]. To check
for publication bias, we visualized the spread of our effect sizes
by creating a funnel plot (electronic supplementary material,
figure S2). We then performed a fail-safe n analysis to calculate
the number of additional studies needed to reduce the significance
level of the weighted average effect size [39].

3. Results
We found 32 unique host–parasite interactions in 23 papers
containing data that followed the inclusion criteria. Papers
often included results from multiple experiments or
exposures to multiple parasite species. A total of 67 effect
sizes were retrieved from this dataset, covering a diverse
range of host and parasite species (table 1).

After the construction of a funnel plot, we find no indi-
cation of a publication bias in this meta-analysis dataset,
with the majority of points falling symmetrically within the
plot (electronic supplementary material, figure S1). The unu-
sual shape of the plot can be explained by the fact that small
sample sizes were predominantly found in laboratory studies,
whereas large sample sizes were predominantly found in field
studies. Consequently, studies with large sample sizes had
higher errors than those with small sample sizes explaining
the shape of the plot (we highlight this by colourising the
plot by study setting). Rosenberg’s fail-safe n analysis
showed that an additional 604 studies would need to be
added to reduce the significance level of this meta-analysis.

Our results are consistent with the hypothesis that low
host genetic diversity results in higher parasite success (g =
0.3527, p < 0.0001; figure 1a). We found that the effect size is
influenced by study setting (Q = 9.2111, d.f. = 1, p = 0.0024;
figure 1b), where the magnitude of the effect size is
significantly greater for field studies (g = 0.7003) in compari-
son to laboratory studies (g =−0.5249). Parasite success
measures used in the studies do not significantly influence
the effect size (Q = 2.6526, d.f. = 2, p = 0.2655; figure 1c).

We found no evidence of an effect of host reproduction on
the direction or magnitude of the effect size (Q = 4.0711, d.f. =
2, p = 0.1306; figure 2a), even when we excluded the Daphnia
study by Altermatt & Ebert [40] (Q = 0.9147, d.f. = 1,
p = 0.3389). Conversely, we found that the effect size was
dependent on parasite functional group (Q = 8.3621, d.f. = 1,
p = 0.0038, figure 2b). The success of microparasites (g =
0.6277), and not macroparasites (g =−0.1725), was limited
by high host population genetic diversity. Neither the direc-
tion nor magnitude of the effect size was influenced by
host range (Q = 0.2864, d.f. = 1, p = 0.5925; figure 2c), parasite
diversity (Q = 3.1047, d.f. = 2, p = 0.2118; figure 2d ) or whether
parasites caused host mortality (Q = 3.5504, d.f. = 1,
p = 0.0595; figure 2e).

4. Discussion
Our meta-analysis shows that host population genetic diver-
sity reduces parasite success across multiple natural systems.
In particular, we find that host population genetic diversity
is effective at limiting microparasite infection success, with
little to no effect on the macroparasites tested, and the protec-
tion is stronger when measured in the field. Our findings
additionally highlight the potential damage that emerging
infectious diseases may have on genetically homogeneous
host populations.

The parasites included in our meta-analysis were highly
variable in terms of their host range. However, we found
no evidence that a parasite’s host range affected its success
in host populations of low or high genetic diversity.
Indeed, we see evidence of resistance in more diverse popu-
lations involving highly specialized interactions [40,68,71], in
broad-spectrum interactions at the genotypic level [55] and in
those that cross host species boundaries [25,26,72]. That host
range is not a factor here is in contrast with those results
found in crop studies. For example, in rusts and powdery
mildews, disease severity is driven by a pathogen’s host
specificity [6]. The mirroring of parasite virulence genes to
host resistance genes means that crop mixtures need to con-
tain both susceptible and resistant cultivars to avoid a
monoculture effect. When there is a lack of host specificity,
mixed cultivar populations are just as susceptible as mono-
cultures. For example, mixed cultivar populations have
been observed to be slightly more susceptible to infection
[37] or completely susceptible [38] in comparison to monocul-
tures to the fungal pathogen Mycosphaerella graminicola. These
findings suggest that the threat to crops from generalist
parasites is greater than specialist parasites.

Given that host range did not influence whether parasite
success was reduced by host genetic diversity, it is possible
that novel parasites, just as well-adapted parasites, could
have high success in host populations with low genetic diver-
sity. Essentially, homogeneous populations could be
vulnerable to outbreaks with spill-over or emerging infec-
tious diseases which are less likely to be host specific [73],
but for which there is clearly genetic variation for resistance.
The resistance to emerging parasites in these cases could be
due to historical contact or similar mechanisms of infection
applied by parasites with an evolutionary history to the
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Figure 1. Impact of study setting on the effect of host genetic diversity on parasite success. Positive values indicate that low host genetic diversity has an impact on
parasite success (i.e. a negative association between genetic diversity and parasite success). Negative values represent the opposite relationship. At an effect size of
zero (dashed line), there is no relationship between host genetic diversity and parasite success. (a) Overall effect size (n = 67). (b) Moderator analysis of study type
between field (n = 36) and laboratory (n = 31) studies. (c) Moderator analysis of parasite success measures between parasite load (n = 19), parasite prevalence
(n = 35) and host mortality (n = 13). The size of the dot corresponds to the sample size. Effect sizes are shown with 95% confidence intervals.
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host [8]. Nevertheless, this result is concerning from a conser-
vation perspective as global climate change has the potential
to reduce within-species genetic diversity [74] and alter host
population ranges [9,41]. Natural movement of individuals
between populations has always served to bolster host diver-
sity [9], and introducing new genotypes is an approach
applied by conservation biologists to improve population via-
bility [14]. While adding individuals to a population could
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increase diversity and reduce inbreeding [43], a risk may be
that new individuals, new species and changes in ecological
opportunities bring in new parasites to the population
[44,45]. There is potential here for an increased overlap
between host populations with low genetic diversity and
novel infections. Given that we found a stronger effect in
field studies, these consequences are of real concern.

The difference in parasite success between diverse and
homogeneous host populations was more pronounced in
field studies, compared to laboratory studies, despite the
additional environmental noise data collection in nature
might involve. One reason could be that less diverse popu-
lations in the wild are more susceptible to infection than
they are in the laboratory for reasons unrelated to genetic
diversity. Hosts on islands as well as social insects, such as
bees [65], ants [51] and termites [42], live in tight proximities
to each other making parasite transmission easier in homo-
geneous populations. The stronger effect in field studies
highlights the importance of the maintenance of diversity in
natural populations.

In our meta-analysis, the success of macroparasites was
not impeded by genetic heterogeneity in host populations.
The macroparasites in the studies included herein were all
ectoparasites, and their biology may explain our result. Ecto-
parasite transmission is often dependent on host-to-host
contact [46,48], and thus host density is probably a critical
factor in parasite success [46]. Host density may play a
more important role than host genetic diversity here such
that similarly aggregated populations varying in diversity
might be equally susceptible to infection. It has been shown
that the clustering of captive animal populations restricted
by movement or wild animal populations restricted
by ranges are highly vulnerable to ectoparasites [44,50].
Moreover, host social behaviours, such as grooming [29] or
preening [26], can reduce ectoparasite success. In fact, in
populations where social grooming is correlated with related-
ness, ectoparasite load is dramatically reduced in highly
related individuals [53]. Taken together, host diversity on
its own does not always explain a reduction in parasite
success, particularly in the case of ectoparasites.

Understanding the impact of host population genetic
diversity on parasite infection outside of agricultural systems
is crucial because of anthropogenic threats to the diversity of
wild populations. This meta-analysis reveals that the suscep-
tibility conferred by low host genetic diversity is a
widespread phenomenon in nature, with microparasites
most likely to encounter resistance in diverse host popu-
lations. Indeed, these broad patterns show that genetic
diversity is a robust weapon against infection, similar to the
effects of species biodiversity [60]. Our findings suggest
that further erosion of within-species genetic diversity
could drive outbreaks of both coevolving and emerging
infectious diseases. Conservation efforts should focus on pre-
serving population genetic diversity in vulnerable
populations to improve their ability to fight off infections.
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