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Abstract

Epithelial cells in the field of lung injury can give rise to distinct premalignant lesions that may 

bear unique genetic aberrations. A subset of these lesions may escape immune surveillance and 

progress to invasive cancer, however the mutational landscape that may predict progression has not 

been determined. Knowledge of premalignant lesion composition and the associated 

microenvironment are critical for understanding tumorigenesis and the development of effective 

preventive and interception strategies. To identify somatic mutations and the extent of immune cell 

infiltration in adenomatous premalignancy and associated lung adenocarcinomas, we sequenced 
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exomes from 41 lung cancer resection specimens including 89 premalignant atypical adenomatous 

hyperplasia lesions, 15 adenocarcinomas in situ, and 55 invasive adenocarcinomas and their 

adjacent normal lung tissues. We defined non-synonymous somatic mutations occurring in both 

premalignancy and the associated tumor as progression-associated mutations whose predicted 

neoantigens were highly correlated with infiltration of CD8+ and CD4+ T cells as well as 

upregulation of PD-L1 in premalignant lesions, suggesting the presence of an adaptive immune 

response to these neoantigens. Each patient had a unique repertoire of somatic mutations and 

associated neoantigens. Collectively, these results provide evidence for mutational heterogeneity, 

pathway dysregulation, and immune recognition in pulmonary premalignancy.

Introduction

One of the major driving forces of carcinogenesis is somatic mutagenesis [1]. Atypical 

adenomatous hyperplasias (AAH), small focal proliferative lesions often found in the distal 

airways of patients with lung adenocarcinoma (ADC), as well as those at risk, are 

considered to be the earliest premalignant lesions in the progression from normal airway 

epithelium to ADC [2]. Targeted sequencing of AAH lesions identified mutations in several 

cancer-related genes and clonality between AAH and associated ADC [3]. As suggested by 

the clinical efficacy of checkpoint blockade immunotherapies for lung cancer [4, 5], non-

synonymous mutations can yield neoepitopes resulting in immune recognition.

However, the earliest molecular events associated with lung carcinogenesis and the clinical 

evidence for neoepitope recognition in pulmonary premalignancy have not yet been defined. 

Here we report evidence for mutational heterogeneity, pathway dysregulation and immune 

recognition in pulmonary adenomatous premalignancy. We performed whole exome 

sequencing of AAH, the associated non-invasive adenocarcinoma in situ (AIS) and invasive 

adenocarcinoma in 41 surgical resection specimens and characterized the genomic 

relationship in the lung cancer continuum. We identified progression-associated somatic 

mutations and oncogenic pathways as well as the association between putative neoantigens 

and adaptive immune responses in AAH. High heterogeneity between premalignant lesions 

in different patients suggests that future therapies that target progression-associated 

neoantigens in cancer interception and immunoprevention may need to be tailored to 

individual patients. We anticipate that based on these findings, future studies will develop 

approaches for targeting clinically actionable neoepitopes across the spectrum of 

premalignancy to invasive disease, before the development of invasive cancer.

Materials and Methods

Specimen identification and processing.

FFPE tissue blocks from 41 patients with premalignant lesions and lung adenocarcinoma 

were obtained from the UCLA Lung Cancer Tissue Repository, and were subjected to 

pathology review by two independent pathologists to identify specific histologic areas for 

LCM. All patients provided written informed consent. The studies were approved by the 

UCLA institutional review board. Tissues were first sectioned at 7 μm thickness onto 

membrane PEN slides (Leica Microsystems), and serial sections were stained with 
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haematoxylin and eosin. LCM was performed utilizing a Leica LMD7000 in the California 

NanoSystems Institute Advanced Light Microscopy/Spectroscopy (ALMS) Core at UCLA. 

The following regions were dissected from distal airways: a) at least one region of normal 

airway epithelial cells (type I and II pneumocytes) adjacent to but not contiguous with the 

tumor, b) a minimum of two premalignant AAH lesions, c) all AIS regions (if present), and 

d) at least one ADC region. The location of the resection specimens from which the regions 

of interest were excised is indicated in Supplementary Table S1.

Genomic DNA isolation and library preparation for DNA sequencing.

DNA was extracted from microdissected cells utilizing the HiPure FFPE DNA isolation kit 

(Roche). Sequencing libraries were constructed using NuGen Ovation Ultralow V2 system, 

followed by exome capture using the Roche SeqCap EZ kit as recommended by the 

manufacturers. The quality of each library preparation and exome capture reaction was 

evaluated by utilizing a Bioanalyzer instrument (Agilent), Quant-iT assay and qPCR. 

Sequencing was then performed on an Illumina HiSeq2000 instrument as 100 bp paired-end 

runs with the aim of ~50× per base (based on the Illumina Sequencing Coverage Calculation 

with an assumption of 35% PCR duplication and a minimum of 85% target coverage). 

Samples with an estimated library size < 2×107 based on Picard MarkDuplicates function 

were re-sequenced to achieve a higher depth of coverage.

Whole exome sequencing analysis and variant calling.

Sequencing Alignment.—Sequence reads were aligned to the human genome based on 

the NCBI human genome reference build 37 (GRCh37) by following the pipeline suggested 

by Genome Analysis Toolkit (GATK) [6]. In brief, raw reads were first pre-processed to 

remove adapter contamination by scythe adapter trimmer (https://github.com/vsbuffalo/

scythe) and low quality base calls (Phred score Q <15) and short reads (length < 20) by 

sickle (https://github.com/najoshi/ sickle). Reads were mapped to the reference human 

genome by Burrows-Wheeler Aligner (v 0.7.7) [7], and then marked for PCR and optical 

duplicates with the Picard (v 1.77) MarkDuplicates tool. The GATK 2.7 was used for local 

indel realignment and base recalibration. For cases with multiple normal samples, their bam 

files from the bases recalibration step were combined and re-aligned to local indels before 

being subjected to variant calling analysis. In case samples were re-sequenced by multiple 

runs, raw reads in each run were first aligned and base recalibrated independently. Their bam 

files were then combined and re-aligned for indel realignment. Default values were set for 

the parameters unless noted otherwise.

Variant Calling and Annotation.—Somatic variants between pairs of abnormal regions 

(i.e. AAH, AIS, and ADC) and matched normal tissue were determined by VarScan2 [8]. 

Tumor and normal cells having exomes sequenced were obtained from LCM, and VarScan2 

was performed with a) tumor purity set to 1, and b) minimum coverage for normal and 

abnormal exomes set to 4. Because multiple exomes from different areas were sequenced 

per patient, the p-value threshold was set to 0.1 in somatic variant calling of individual 

exomes, and adjusted further in the next step of mutation calling in which somatic variants 

from all regions were analyzed together to identify mutations for each patient. The 

remaining VarScan2 parameters were set at default values. The output single nucleotide 
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variant (SNV) calls were filtered further to remove false positive calls due to sequencing- or 

alignment-related artefacts by utilizing VarScan2’s associated fpfilter.pl script. The resulting 

somatic SNV and indel calls were then annotated by ANNOVAR [9] to identify non-

synonymous (n.s.) variants from silent variants and common SNPs.

Mutation calling.—For each patient, a n.s. somatic mutation was defined if a n.s. variant 

was: 1) supported by at least three reads, and 2) observed in either: a) more than one lesion 

with p-value ≤ 0.1, or b) a single lesion with p-value ≤ 0.01.

Genetic homogeneity analysis.

The similarity in n.s. somatic mutations between any pair of regions was assessed by Jaccard 

index, which was defined as the ratio between the number of shared mutations between the 

regions and the total number of mutation identified in the regions.

Phylogenetic analysis.

Non-synonymous somatic mutations were first converted into the format with 1 being 

mutated and 0 otherwise. For each patient, the analysis only considered n.s. somatic 

mutations that were present in more than one region to determine resemblance among AAH, 

AIS and ADC regions based on their mutation profiles. The analysis was performed in R by 

using ape and phangorn packages [10, 11]. In brief, the Unweighted Pair Group Method 

with Arithmetic Mean (UPGMA) approach was utilized to cluster regions based on their 

mutation-defined binary format matrix. Unrooted phylogenetic trees were then drawn with 

relative branch lengths disproportionate to the number of shared mutations among 

corresponding regions.

Mutational architecture analysis.

For each individual patient, n.s. mutations in all regions were pooled together and 

categorized into three groups: premalignant mutations, progression-associated mutations 

(PAMs) and malignant-specific mutations (MSMs) based on their presence in different 

regions. A premalignant mutation was defined as n.s. mutation observed only in AAH 

lesion(s), while a MSM was only identified in AIS/ADC lesion(s), and finally a PAM was 

present in both AAH and AIS/ADC lesions. For each patient, the number of mutations in 

each category was then normalized to the total number of n.s. mutations observed in the 

corresponding patient. For each individual region, its PAM was normalized to the total 

number of mutations identified in the respective region.

Identification of patient HLA typing.

The OptiType algorithm [12] was applied to deduce a four-digit HLA genotype from whole 

exome sequencing data. Before applying the algorithm, raw reads were first pre-processed to 

a) remove adapter contamination by scythe, and b) remove low quality base calls (Phred 

score Q <20) by sickle, and c) keep reads that mapped on HLA reference regions by bwa 
and had a length of at least 50 bp by fastqutils [13]. For pair-end data, sequences from each 

end were pre-processed independently before subjecting them to the OptiType algorithm.
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Identification of putative neoantigens.

For every patient, each n.s. single nucleotide mutation was able to generate a maximum of 

ten 10-mer peptides having the mutated amino acid at different locations. Similarly, for each 

indel which did not cause early termination, ten 10-mer peptides were also created that had 

from 1–9 amino acids altered from the reference sequence. MHC-I binding prediction tools 

downloaded from Immune Epitope Database (IEDB) [14] were utilized to predict the 

binding affinity of 10-mer peptides to the patient’s HLA germline alleles. IEDB protocol 

recommended using multiple algorithms including: a) Artificial Neural Network [15, 16], b) 

Stabilized Matrix Method [17], and c) NetMHCpan [18] for predicting binding strength to a 

given HLA allele due to the allele’s available database and preferred algorithms previously 

proven to have outstanding performance for such allele. The smallest IC50 value derived 

from multiple algorithms was used as the predicted binding affinity of each peptide to each 

HLA allele. Approximately 60 peptide-MHC combinations (i.e. 10 peptides × 6 MHC-I) 

were derived from a single n.s. mutation. The peptide-MHC pair with the lowest predicted 

IC50 was selected to represent the candidate mutant peptide and its binding MHC-I partner. 

Finally, candidate neoantigens were defined as those with the predicted binding strength 

IC50 < 500nM. Neoantigens were categorized as premalignant, progression-associated 

(PAN) and malignant-specific neoantigen in accord with their corresponding tissue mutation 

group.

Pathway analysis.

In pathway analysis, every affected gene should be counted once for each individual patient 

even though multiple n.s. mutation sites were identified on the same gene. Therefore, n.s. 

mutated sites were first consolidated to their corresponding gene identity. In our study, n.s. 

somatic mutations were categorized into three different groups based on their presence in 

various tissues. Thus, their affected genes should be assigned to the corresponding groups to 

evaluate their effects on molecular pathways, especially related to tumor initiation and 

development. To achieve this, for each patient, eligible genes were first labelled based on 

PAMs, which were then removed from the available gene list before labelling MSMs and 

premalignant mutations. The labelling procedure was then repeated for MSMs, followed by 

premalignant mutations. This meant that each patient had three mutually exclusive gene 

groups representing their PAMs, MSMs, and premalignant mutations.

For each individual patient, the enrichment of mutated genes in the group i involved in a 

specific the pathway j is measured by an enrichment score, ESij, defined as:

ESi j =
0   i f Hi j < 2

Hi j
Mi *(S j/P) =  

Hi j/M j
Si/P

i f   Hi j ≥ 2
Equation S1

where Hij is the number of mutated genes in the group i (e.g. PAM-, MSM-, and 

premalignant mutations-bearing genes) involved in the pathway j. Mi, Sj and P are the 

numbers genes in group i, pathway j, and the genome. In other words, the ES is the number 

of mutated genes involved in a pathway normalized by the estimated number based on the 
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numbers of genes in the interested groups i, pathways j and the genome. Note that a non-

zero ES requires a minimum of two mutated genes associated with the pathway of interest. 

Furthermore, for a given pathway j (i.e. denominator is constant in the right most side of 

Equation S1), the discrepancy in ES between two groups of interest is proportional to the 

difference of the percentage of genes that are associated with the pathway in those groups.

The false discovery rate of ES was estimated by the permutation approach in which mutated 

genes in each patient were first randomly sampled from the genome, and then assigned to 

PAM- and MSM-bearing groups. ES were then calculated according to the above equation 

for a total of 123 mutated gene groups (41 patients × 3 groups: PAM-, MSM-, and union of 

PAM- and MSM-bearing genes) based on 1341 canonical and hallmark pathways 

downloaded from the Molecular Signature Database [19]. A total of 100 permutations were 

executed.

Finally, a pathway was defined to be deregulated by a certain mutated gene group if the 

corresponding ES was greater or equal to 2 (FDR = 0.03). In each patient, the deregulation 

states of all pathways based on PAM- and MSM-bearing genes were represented in binary 

format with 1 being deregulated and 0 for otherwise. The pathway-based binary data from 

all patients were then combined into the matrix form and subjected to unsupervised 

clustering analysis to stratify patients into subgroups. The cluster analysis was performed in 

R by utilizing Ward’s clustering method (i.e. ward.D2).

Analyses using TCGA data sets (DNAseq, RNAseq and survival analysis).

Processed data sets from whole exome DNA and mRNA sequencing, as well as clinical 

information for lung adenocarcinoma (LUAD) samples were downloaded from the Cancer 

Genome Atlas (TCGA) data portal. The information of mutated genes in samples was 

extracted from somatic mutation calls (level 2 maf file), and organized into a table in which 

one was employed to indicate if the gene of interest had at least one non-silent mutation call 

located on its coding regions, and zero for otherwise in the specific sample. The frequency 

of how often a gene was mutated in the cohort was then calculated from the table.

In gene expression analysis, RSEM normalized gene expression (level 3 text files) files were 

utilized to build a data matrix of all samples. The expression data was processed by 

removing a) genes with low abundance (i.e. < 1 copies per million reads in >30% samples), 

and b) tumor samples without whole exome sequencing data. Pathway activities per 

individual sample were derived from its gene expression by using Gene Set Variation 

Analysis (GSVA) [20]. The information of gene sets involved in the immune regulated 

pathways was obtained from the Molecular Signature Database. To eliminate the effect of 

genes commonly shared among pathways, the original gene sets were modified such that the 

overlapping genes were kept in the “child” and removed from the “parent” set. A “child” set 

was defined as the one having more than 90% of members overlapping with the parent set. 

The GSVA scores of the interested pathways were then subjected to the unsupervised 

hierarchical cluster analysis to stratify samples into subgroups. The cluster analysis, which 

was performed in R, used Ward’s clustering method (i.e. ward.D2) and Spearman correlation 

coefficient as the metric measuring similarity between sample pairs. Finally, patient survival 

among the subgroups was compared by log-rank test.
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Evaluation of lymphocytic infiltration.

For each lesion, a section stained with hematoxylin and eosin underwent an initial 

qualitative evaluation by a board-certified pathologist to assess the overall degree of 

lymphocytic infiltration. This assessment utilized a simple graded scale: 0 (absent), 1 (focal 

with <3 clusters of 3 lymphocytes), 2 (multifocal with 3 or more clusters) and 3 (diffuse). X2 

test was used to compared distributions of scores in different histological lesions (normal, 

AAH, AIS and ADC).

Immunohistochemistry analyses.

For nine cases, additional serial sections of 5 μm thickness were obtained from FFPE tissue 

blocks. Single-color immunostaining was performed on the Leica Bond III autostainer using 

Bond Low (H1) and High (H2) heat retrieval solutions, wash buffer, and Refine Polymer 

Detection system. Heat-induced epitope retrieval was performed in the autostainer, except 

for PD1 and PD-L1, which were treated in a pressure cooker. Antibodies used for detection 

of a single marker per slide included: CD8 (Dako #M7103), CD4 (Cell Marque #104R-16), 

Granzyme B (Dako #M7236), PD1 (Cell Marque #315M), PD-L1 (Spring Bio M4420), and 

FOXP3 (Bio SB #BSB676).

All slides were scanned at an absolute magnification of 3200 (resolution of 0.5 mm per 

pixel). Bright field image analysis was performed using the Indica Labs Halo platform. With 

the assistance of a board-certified pathologist, each region of interest (AAH, AIS and ADC) 

was identified and outlined on the hematoxylin and eosin guide slide, excluding necrotic 

areas and stroma. The guide slide was aligned and synchronized with the corresponding 

serial sections immunostained for each marker. Existing Halo algorithms developed for 

detection of positive staining were accepted or modified based on the positive control slide 

for each marker. The final algorithm was then used to analyze the density (cells/mm2) and 

percentage cellularity (% positive cells/all nucleated cells) for each marker on each region of 

interest. This raw data was then exported for statistical analysis.

Statistical analyses.

All analyses were performed utilizing R 3.2. Appropriate rank-based statistical tests were 

applied according to the nature of variables. For instance, Kendal’s τ coefficient was used to 

assess association between the pairs of variables, such as percentage of PAMs, percentage of 

positively stained cells and log transformed neoantigen numbers, while the Kruskal-Wallis 

rank sum was applied to compare variables of interest between groups. R lmerTest package 

was utilized in linear mixed effects model, which incorporates individual patient variation.

Results

Pulmonary premalignant lesions reveal a spectrum of intra- and inter-patient genetic 
heterogeneity.

To identify the somatic mutations relevant for progression from premalignancy to cancer, we 

performed whole exome sequencing of 89 AAH, 15 AIS, and 55 ADC lesions 

(Supplementary Table S1) from lobectomy specimens from 41 patients who had undergone 

surgery for early stage ADC (Supplementary Tables S1 and S2). All patients provided 
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written informed consent. The cells of interest were dissected from the following regions of 

distal airways utilizing Laser Capture Microdissection (LCM): a) normal airway epithelial 

cells (1–3 regions per patient), b) AAH lesions (1–4 anatomically independent lesions per 

patient), c) AIS (all independent lesions per patient where present), and d) ADC (all 

independent primary lung tumors per patient). Whole exome sequencing was conducted with 

at least 2×1010 bases sequenced per exome. The median number of unique mutations per 

patient was 1323, whereas in individual premalignant and malignant lesions it was 351 per 

lesion (Supplementary Table S1). The mutational load per patient did not increase 

significantly by the addition of more sequenced regions (Kruskal-Wallis rank sum test p = 

0.20), and within individual patients it was independent of lesion type (linear mixed effects 

model F-test p = 0.46). Analysis of the mutations in oncogenes and tumor suppressor genes 

(from the UniProt database) demonstrated that somatic mutations in these genes are found 

more frequently in ADC than in AAH lesions (Figure 1A). Somatic variants between 

abnormal lesions and matched normal lung tissue were determined as described in the 

Materials and Methods section below. Recent studies demonstrated that normal lung 

epithelium can harbor oncogenic driver mutations [21, 22]. The mutation calling algorithm 

would not call the mutations if they were present in both normal and abnormal tissues. To 

avoid the oncogenic mutations in normal lung tissues mutations being undetected, we 

inspected whole exome sequencing data of the normal lung tissues aligned against the 

human genome reference for mutations in driver genes. This analysis did not reveal any 

additional known driver mutations. To characterize the genomic heterogeneity among 

sequenced lesions, we utilized the Jaccard index, which measures the similarity of non-

synonymous (n.s.) somatic mutations between a pair of lesions, and is inversely proportional 

to the level of heterogeneity. We found that lesions obtained from within individual patients 

most often had significantly higher Jaccard indices and, thus, lower heterogeneity compared 

to lesions between different patients (Kruskal-Wallis rank sum test p < 10−16) (Figure 1B). 

With the exception of the first four patients (P01 — P04, Figure 1C), individual patients had 

higher indices (lower heterogeneity) among lesions compared to those from different 

patients. In some patients, certain lesion pairs had very low heterogeneity indicated by high 

(>95 percentile) Jaccard indices (black circles in Figure 1C) compared to the rest of the 

lesion pairs. Thus, the individual patients most often demonstrated unique repertoires of n.s. 

somatic mutations rarely shared with other patients.

To explore the relationship between sequenced lesions for each individual patient, 

phylogenetic trees were constructed. AAH, AIS and ADC were all present in 10 out of 41 

patients and their mutational profile-based phylogenetic trees are illustrated in Figure 1D. In 

the majority of cases, the mutational profiles of ADC (brown labels) were closely related to 

the profiles of AIS (orange labels), but not AAH (blue labels), except: a) case P30 where 

one of two primary ADCs was related to AAH, while another primary ADC — to AIS, b) 

case P34 where ADC clustered with AAH but not AIS, c) case P10 where AAH and AIS 

lesions were closely related to each other, but not to the ADC (Figure 1D). Phylogenetic 

trees for the remainder of the patients that had only AAH and ADC, but not AIS, are shown 

in Supplementary Figure S1.
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Premalignant lesions bear somatic mutations associated with progression.

To determine how n.s. somatic mutations affect tumor development at various stages, we 

classified them into three different categories: a) premalignant mutations which were 

observed only in AAH lesions, b) progression-associated mutations (PAMs) which were 

located in both AAH and AIS/ADC lesions, and c) malignant-specific mutations (MSMs) 

which were only identified in AIS/ADC lesions (Supplementary Figure S2). Recent studies 

that have focused on tumor heterogeneity and cancer evolution, have classified mutations as 

trunk (or clonal), branch, and private (subclonal) mutations [23, 24]. Our classification takes 

into account the histology of the lesion in which the mutations are located. Thus, MSMs are 

composed of branch and private mutations, while PAMs are comprised of trunk and branch 

mutations and are indicative of the homogeneity among AAH and ADC within each patient. 

The distribution of mutation groups in 41 cases is summarized in Figure 2A (the cases are 

ordered based on the percentage of PAMs in the total number of somatic mutations 

identified in the corresponding patient). The percentage of PAMs per patient varied over a 

wide range (0.2% to 44%) (Figure 2A). In addition to the aggregated patient level analysis, 

PAMs were also characterized in each individual lesion. We found that the percentages of 

PAMs in the individual AAH lesions were similar to those in the associated ADC 

(Supplementary Table S1; linear mixed effects model F-test p = 0.25). The percentage of 

PAMs per individual AAH lesion varied over a wide range (0.2% to 77.8%) (Figure 2B). 

AAH lesions with high PAM percentages (Figure 2B rightmost patients) have higher 

homogeneity with the associated ADC, whereas those with low PAM percentages (Figure 

2B leftmost patients) are distantly related to the associated ADC and may have 

independently accumulated additional mutations over time. For instance, patient P06 has 

three AAH lesions, of which one has significantly higher PAM percentage compared to two 

others, suggesting that the two AAH lesions with low PAM percentages might have 

originated from the same precursor, which was distinct from the third AAH (Supplementary 

Figure S1).

PAMs and MSMs lead to deregulation of distinct cancer-related pathways.

We next evaluated the role of somatic mutations in tumor development. We found that 49% 

of patients had somatic mutations in at least one of 29 driver genes known to be frequently 

mutated in lung ADC [1, 25]. Here, these driver mutations were predominantly found in 

ADC but rarely in AAH (Supplementary Table S3). Of note, oncogenic KRAS mutations 

were also found in ADC from 4 patients that were not included in Supplementary Table S3 

because these mutations were present in low numbers of reads and our mutation calling 

algorithm could not classify them as true positives; nonetheless, these mutations produced a 

positive signal on allele-specific PCR. Oncogenic BRAF and KRAS mutations were found 

only in ADC, but not in AAH lesions from the same patients. Consistent with findings of 

Sivakumar et al. [26], BRAF and KRAS mutations were mutually exclusive within the 

lesions. Previous studies have shown that a significant percentage of lung ADCs lack 

mutations in known driver genes [1, 27]. Therefore, to assess the possible driver gene 

mutation-independent mechanisms of progression, we next investigated the mutations in the 

context of molecular pathways.
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For the pathway analysis, enrichment scores (ES) of the mutated genes involved in each 

specific pathway were defined (see Methods). Deregulation of the 1341 well-defined 

hallmark gene sets and canonical pathways from the Molecular Signature Database [19] was 

evaluated in both the current cohort and TCGA LUAD. We found that these pathways were 

deregulated at similar frequencies in both data sets (Supplementary Figure S3A and 

Supplementary Table S4). We identified 59 and 42 frequently deregulated pathways for the 

current cohort and TCGA data sets, respectively (Supplementary Figure S3A). Twenty-four 

of these pathways involved in tumor proliferation and invasion were shared between the data 

sets (Fisher’s exact test p=3.2 × 10−24). Thus, patients in both cohorts demonstrated 

common affected pathways involved in carcinogenesis.

Because some genes in ADC were affected by PAMs and other genes by MSMs, it was 

essential to dissect the input of each of the gene groups in the pathway regulation context. 

The ES of each gene group was calculated for all 1341 pathways. The majority of the 

pathways were deregulated by MSMs at significantly higher frequencies than by PAMs. The 

recurrence rate of the top 27 pathways that are frequently deregulated by the MSM-bearing 

genes is shown in Figure 2C. The O-glycan biosynthesis pathway was the only pathway 

more frequently deregulated by PAMs then by MSMs.

To dissect the role of PAM- and MSM-deregulated pathways in tumor initiation and 

development, we performed unsupervised hierarchical cluster analysis and identified three 

patient groups designated as high (H, n=12), intermediate (I, n=20), and low (L, n=9) 

according to the number of pathways deregulated by PAM- and MSM-bearing genes (Figure 

2D). Group H had the highest number of deregulated pathways among the three groups 

(Supplementary Figure S3B) and pathways and driver genes in this group were frequently 

affected by both PAMs and MSMs (Figures 2D and S3B). In Group H, mutations in KRAS, 

BRAF and EGFR genes were MSMs, whereas PI3KCA and PI3K/AKT pathway 

components were PAMs. However, these PAMs were present only in a subset of AAH 

lesions in each patient, appearing to be branch mutations and suggesting that deregulation of 

additional driver gene(s) was required for progression. Similarly, higher overall number of 

deregulated pathways in group H suggests higher genetic complexity of the tumors in this 

group. The intermediate group included the majority of study patients, in which MSMs (but 

not PAMs) were the predominant source of pathway deregulation and were frequently found 

in the driver genes (Figures 2D and S3A). Thus, in the H group, the somatic mutations in 

driver genes were likely essential for malignant progression. Group L, the smallest group, 

had infrequent pathway deregulation by either PAM- or MSM-bearing genes, suggesting that 

the transformation in this group could be caused by events other than the somatic driver 

mutations that were not readily detectable by whole exome sequencing, such as gene 

rearrangements, copy number variation, epigenetic changes, deregulation of gene expression 

or alternative splicing.

Cell-mediated immunity and adaptive responses in pulmonary premalignancy.

To evaluate the presence of early adaptive immune responses against pulmonary 

premalignancy, we first assessed the degree of lymphocyte infiltration in premalignant (n = 

328) and malignant lesions (n = 15 AIS and 50 ADC), along with adjacent histologically 
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normal areas (n = 50) in the entire cohort of study patients. The median number of lesions 

evaluated per patient was six for AAH and two for malignant lesions. Lymphocyte 

infiltration was graded 0-to-3 based on H&E staining (see Methods) and was significantly 

increased in AAH vs. normal areas (X2 test p<10−16), and became highest in AIS and ADC 

vs. AAH (X2 test p<10−14) (Figure 3A). We then assessed the expression of regulators of 

cell-mediated immunity, including CD4, CD8, FOXP3, PD-1 and PD-L1 in AAH and ADC 

by immunohistochemistry (Supplementary Figure S4). We found both infiltration of T 

effector and cytotoxic cells and expression of the PD-L1 checkpoint in premalignancy, 

suggesting that cell-mediated immunity and possible recognition of neoepitopes occur in 

pulmonary premalignancy.

Somatic mutations produce putative neoantigens in pulmonary premalignancy.

We next sought to determine if somatic mutations and corresponding putative neoantigens 

were associated with immune responses observed in AAH lesions. Putative neoantigens 

were derived from n.s. somatic mutations as outlined in Supplementary Figure S2. Multiple 

algorithms were applied to predict binding affinity (IC50) between mutant proteins and 

patient HLAs based on the Immune Epitope Database recommendations [14]. Mutant 

peptides with predicted IC50 < 500 nM were considered neoantigens. In accordance with our 

mutation classification, the neoantigens were also categorized into three groups as 

premalignant, progression-associated (PANs) and malignant-specific neoantigens. The total 

number of aggregated putative neoantigens per lesion was highly correlated with the 

corresponding mutational load (Kendall’s τ = 0.9) (Supplementary Table S1).

We next evaluated the association of putative neoantigen load and the number and 

phenotypes of infiltrating immune cells by lesion- and patient-wise comparisons. The lesion-

wise comparison evaluated neoantigens and infiltrating immune cell characteristics from the 

individual AAH lesions, while in the patient-wise analysis these endpoints were aggregated 

for the corresponding patient. At the patient level, the percentage of PANs significantly 

correlated with the average percentage of CD8+ T cells infiltrating AAH lesions (Kendall’s τ 
= 0.61, p = 0.02, Figure 3B upper panel) but not to those infiltrating AIS/ADC (Kendall’s τ 
= 0.14, p = 0.7, Figure 3B lower panel). At the lesion level, we found that the percentage of 

CD8+ T cells infiltrating AAH correlated strongly with the percentage of PANs in the 

respective lesions (Kendall’s τ = 0.56, p = 0.0003) (Figure 3C). Furthermore, AAH lesions 

with greater neoantigen loads had significantly more infiltrating CD4+ T cells (Kendall’s τ = 

0.32, p = 0.05) (Figure 3D) and PD-L1-positive cells (Kendall’s τ = 0.44, p = 0.01) (Figure 

3E). These results indicate that the high percentage of PANs promotes CD8+ T cell 

infiltration in AAH lesions, whereas the overall neoantigen load in AAH is associated with 

CD4+ T cell infiltration and PD-L1 expression.

The evidence of apparent immune responses in lung cancer premalignancy and the notion 

that somatic mutations can contribute to modulation of the pathways regulating tumor 

immunity, prompted us to determine if the activity of such pathways was associated with 

outcomes in early stage ADC. The expression of genes involved in 16 pathways from the 

Molecular Signature Database [19] was analyzed in the TCGA LUAD cohort (444 tumors 

and 58 normal samples). Gene Set Variation Analysis [20] was utilized to estimate the 
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activities of immune-modulating pathways in individual patients, and these were then 

subjected to unsupervised hierarchical cluster analysis to stratify samples. Based on the 

pathway activity, we identified three major groups (Figure 4A). Among them, group 0 (Gr0, 

annotated by black) had the highest levels of immune-related gene expression and included 

51 tumors and the majority of normal samples (n = 52), whereas the other two groups 

included the remainder of the tumor samples (X2 test p<10−16): Gr1 (n = 198, blue) with 

intermediate and Gr2 (n = 201, red) with lowest expression of immune-related genes. These 

groups were not significantly associated with tumor stage (X2 test p = 0.14 for stage I vs. 

stage II and higher), however, the overall survival was marginally higher in Gr1 compared to 

Gr2 (log-rank test (LRT) p = 0.063). Remarkably, the difference in survival between Gr1 and 

Gr2 was most prominent for stage I patients (LRT p=0.05, Figure 4B), but not for stage II 

and higher patients (LRT p=0.44, Figure 4C). Together, these results suggest that modulation 

of the immune-related pathways, especially at the earliest stages of lung ADC, may have a 

significant impact on outcomes of lung cancer patients.

Discussion

Recent studies suggest the immune response exerts selective pressure on tumor cells, as well 

as premalignant cells, throughout the course of carcinogenesis [28–30]. This process of 

immune editing may result in resolution of a premalignant lesion or, alternatively, 

progression with persistent or newly developed neoantigens in the context of a 

microenvironment hostile to effective cell-mediated immune responses [31]. Here we report 

that neoantigens are expressed in the earliest pulmonary premalignant lesions. Neoantigen 

load in these lesions correlates with the extent of CD8 T-cell infiltration and levels of PD-L1 

expression. These findings suggest that specific immune recognition of neoepitopes can 

occur at the earliest points of pulmonary premalignancy and lung cancer development, 

indicating the potential for future strategies utilizing immunoprevention in lung cancer 

interception.

We sought to identify somatic mutations in adenomatous premalignancy and associated lung 

adenocarcinoma and also, to determine the extent of immune cell infiltration of 

premalignant lesions and the associated tumors. Our findings indicate that premalignant 

AAH lesions from within an individual patient may have distinct mutational profiles 

(Figures 1D and S1) and bear a range of PAMs (Figures 2A and B). Analysis of 29 driver 

genes, frequently mutated in ADC, demonstrated that driver mutations were predominantly 

found in ADC but rarely in AAH (Supplementary Table S3), suggesting that malignant 

progression was induced by the driver mutations occurring in some, but not all, premalignant 

lesions.

Furthermore, we demonstrate that heterogeneity between different lesions from an individual 

patient is significantly lower than that among lesions from different patients (Figure 1B and 

C). In the majority of cases the mutational profiles of AIS are distinct from those of AAH 

and highly overlap with those of ADC (Figure 1D). Previous studies suggest that passenger 

mutations can promote malignant progression by modulating the activity of oncogenic or 

tumor suppressor pathways [32, 33]. Therefore, beyond the individual mutations, we 

assessed the effect of premalignant somatic mutations in the context of pathways. One of the 
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most frequently deregulated pathways in both the UCLA and TCGA cohorts is the O-glycan 

biosynthesis pathway that includes mucin proteins which protect epithelial cells from 

physical and chemical damage. Deregulated expression of mucins promotes tumor cell 

invasion and migration, and increases drug resistance in a variety of malignancies [34, 35]. 

Genetic variation of MUC4 has been associated with increased lung cancer risk [36], and 

here we find that PAMs of MUC4 were present in over 90% of patients. These mutations 

produced a total of 132 PANs in 31 of 41 patients. Two of the recurring PAN-producing 

mutations in MUC4 were found in 4 patients, 6 of these were in 3 patients and 18 in 2 

patients. The functional significance of these and other recurring PANs will be assessed in 

our future studies. Also, focal adhesion, extracellular matrix-receptor interaction and 

calcium signaling pathways were frequently deregulated (Supplementary Table S4). These 

pathways have established roles in carcinogenesis, including proliferation, invasion and 

resistance to therapy [37, 38].

The analysis of an immune contexture of the lung cancer continuum revealed histologic 

evidence of immune recognition of AAH lesions, characterized by lymphocyte infiltration 

and checkpoint molecule upregulation consistent with adaptive immune responses. From the 

whole exome sequencing data, putative neoantigens were identified. We demonstrated that 

the neoantigen load in AAH lesions correlates significantly with CD4+ T cell infiltration and 

PD-L1 expression. Progression-associated neoantigens (PANs) were detected in all patients, 

with 37 out of 41 patients expressing them at greater than 1% frequency. CD8+ T cell 

infiltration was strongly correlated with the percentage of PANs in individual AAH lesions. 

These findings provide evidence of adaptive immunity in pulmonary premalignancy and are 

consistent with recent studies demonstrating that gene sets associated with suppressed 

antitumor and elevated pro-tumor immune signaling are enriched in AAH development and 

progression [26]. Furthermore, we identified frequent premalignancy-specific putative 

neoantigens. Consistent with the immunoediting concept of Schreiber [39], this suggests 

active immune- editing in the progression of adenomatous premalignancy to invasive 

adenocarcinoma.

Neoantigens, produced by PAMs, are potential immunotherapy targets, but these 

neoantigens do not necessarily correspond to known driver genes. Consistent with findings 

in melanoma [40] and colorectal cancer [41], our analysis of mutations in lung 

adenocarcinoma indicates that while there are many common driver mutations among 

tumors from different patients, mutations producing PANs are most often unique to 

individual patients. Due to high genomic plasticity, established cancers have highly 

heterogeneous mutational landscapes in different areas of the tumor due to potential parallel 

evolution and subclonal expansion [42–44]. This has been postulated to be one of the 

reasons for tumor resistance to therapies targeting actionable somatic events. Our data 

suggests that future therapies targeting PANs in cancer interception [45], as well as 

prevention strategies, may need to be tailored to individual patients.

The notion that genes bearing somatic mutations often encode tumor specific neoantigens 

capable of eliciting immunity and tumor rejection was first described in murine models sixty 

years ago [46]. Furthermore, the concept of immune surveillance first proposed by Burnet 

[47], suggests that the host immune response is able to recognize and destroy the incipient 
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tumors at the earliest point of development before clinical recognition. While extensive data 

exists in laboratory models, the clinical evidence for the relevance of immune surveillance in 

human lung cancer has not yet been defined, nor is it yet known when an individual’s 

immune system begins to engage in the defense against the disease. Our findings warrant 

further investigations to evaluate the efficacy of persisting neoantigens, such as PANs, as 

interception targets for immunoprevention strategies. This approach may include 

“vaccination” of post-surgery lung cancer patients with the autologous T cell clones 

recognizing strong persisting neoantigens. Alternatively, autologous dendritic cells 

presenting persistent neoantigens could be administered in order to block the progression of 

remaining premalignant lesions.

In accord with the cancer immune surveillance theory, our current findings support the 

concept that the immune system is capable of recognizing cancer precursors [48, 49]. 

Because evasion of immune surveillance has been implicated as an emerging hallmark of 

cancer development, future investigations will focus on stimulating specific immune 

responses [50]. Thus, it has been suggested that unleashing the immune response against 

pulmonary premalignancy may facilitate a blockade of the progression of premalignancy to 

invasive cancer at the earliest stages of disease [51]. This will require a more complete 

understanding of the immune microenvironment of pulmonary premalignancy as well as the 

identification of premalignant markers that could be targeted in immunoprevention 

strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowdgements

The authors thank Drs. Antoni Ribas and Siwen Hu-Lieskovan for the assistance with the HALO system, Lauren 
Winter for the administrative support, Francis Rosen for clinical coordination, the UCLA Jonsson Comprehensive 
Cancer Center for shared resources, the UCLA CNSI Advanced Light Microscopy/Spectroscopy Facility and, the 
UCLA Institute for Digital Research and Education for providing the Hoffman2 Cluster. Grant support: Research 
supported by a Stand Up To Cancer-LUNGevity-American Lung Association Lung Cancer Interception Dream 
Team Translational Cancer Research Grant (Grant Number: SU2C-AACR-DT23–17). Stand Up To Cancer is a 
division of the Entertainment Industry Foundation. Research grants are administered by the American Association 
for Cancer Research, the scientific partner of SU2C. DOD W81XWH-16-1-0194 (Kostyantyn Krysan), UC 
Tobacco-Related Disease Research Program (TRDRP) 27IR-0036 (Kostyantyn Krysan), DOD 
W81XWH-17-1-0399 (Steven M. Dubinett), Stand Up To Cancer SU2C-AACR-DT-23–17 (Steven M. Dubinett, 
Avrum E. Spira), NCI HTAN (PCA) 1U2CCA233238–01 (Avrum E. Spira, Steven M. Dubinett), NIH/NCI 
Molecular Characterization Laboratory 5U01CA196408–04 (Steven M. Dubinett, Denise Aberle, Avrum E. Spira), 
NIH/NCI EDRN (Steven M. Dubinett, Avrum E. Spira, David A. Elashoff, Denise Aberle) 1U01CA214182, NIH/
NCATS—UCLA Clinical and Translational Science Institute UL1TR001881 (Steven M. Dubinett), VA Merit 
Review 1I01CX000345–01 (Steven M. Dubinett), NIH/NHLBI T32HL072752 (Brandon S. Grimes, Ramin Salehi-
rad).

References

1. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. 
Nature 2014;511:543–50. [PubMed: 25079552] 

2. Niho S, Yokose T, Suzuki K, Kodama T, Nishiwaki Y, Mukai K. Monoclonality of atypical 
adenomatous hyperplasia of the lung. Am J Pathol 1999;154:249–54. [PubMed: 9916939] 

Krysan et al. Page 14

Cancer Res. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Izumchenko E, Chang X, Brait M, Fertig E, Kagohara LT, Bedi A, et al. Targeted sequencing reveals 
clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat 
Commun 2015;6:8258. [PubMed: 26374070] 

4. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of 
somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet 
2016;48:607–16. [PubMed: 27158780] 

5. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the 
treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018–28. [PubMed: 25891174] 

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome 
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. 
Genome Res 2010;20:1297–303. [PubMed: 20644199] 

7. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 2009;25:1754–60. [PubMed: 19451168] 

8. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarSca 2: somatic mutation 
and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–
76. [PubMed: 22300766] 

9. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res 2010;38:e164. [PubMed: 20601685] 

10. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. 
Bioinformatics 2004;20:289–90. [PubMed: 14734327] 

11. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011;27:592–3. [PubMed: 
21169378] 

12. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA 
typing from next-generation sequencing data. Bioinformatics 2014;30:3310–6. [PubMed: 
25143287] 

13. Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation 
sequencing datasets. Bioinformatics 2013;29:494–6. [PubMed: 23314324] 

14. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune 
epitope database (IEDB) 3.0. Nucleic Acids Res 2015;43:D405–12. [PubMed: 25300482] 

15. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web 
accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 
8–11. Nucleic Acids Res 2008;36:W509–12. [PubMed: 18463140] 

16. Lundegaard C, Lund O, Nielsen M. Accurate approximation method for prediction of class I MHC 
affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. 
Bioinformatics 2008;24:1397–8. [PubMed: 18413329] 

17. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological 
processes with the stabilized matrix method. BMC Bioinformatics 2005;6:132. [PubMed: 
15927070] 

18. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a method for MHC 
class I binding prediction beyond humans. Immunogenetics 2009;61:1–13. [PubMed: 19002680] 

19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression 
profiles. Proc Natl Acad Sci U S A 2005;102:15545–50. [PubMed: 16199517] 

20. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-
seq data. BMC Bioinformatics 2013;14:7. [PubMed: 23323831] 

21. Kadara H, Sivakumar S, Jakubek Y, San Lucas FA, Lang W, McDowell T, et al. Driver Mutations 
in Normal Airway Epithelium Elucidate Spatiotemporal Resolution of Lung Cancer. Am J Respir 
Crit Care Med 2019.

22. Kadara H, Wistuba, II. Field cancerization in non-small cell lung cancer: implications in disease 
pathogenesis. Proc Am Thorac Soc 2012;9:38–42. [PubMed: 22550239] 

23. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal 
neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 
2016;351:1463–9. [PubMed: 26940869] 

Krysan et al. Page 15

Cancer Res. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in 
localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014;346:256–9. 
[PubMed: 25301631] 

25. Berger AH, Brooks AN, Wu X, Shrestha Y, Chouinard C, Piccioni F, et al. High-throughput 
Phenotyping of Lung Cancer Somatic Mutations. Cancer Cell 2016;30:214–28. [PubMed: 
27478040] 

26. Sivakumar S, Lucas FAS, McDowell TL, Lang W, Xu L, Fujimoto J, et al. Genomic Landscape of 
Atypical Adenomatous Hyperplasia Reveals Divergent Modes to Lung Adenocarcinoma. Cancer 
Res 2017;77:6119–30. [PubMed: 28951454] 

27. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, et al. Multi-
institutional Oncogenic Driver Mutation Analysis in Lung Adenocarcinoma: The Lung Cancer 
Mutation Consortium Experience. J Thorac Oncol 2015;10:768–77. [PubMed: 25738220] 

28. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al. The role of tumor-
infiltrating immune cells and chronic inflammation at the tumor site on cancer development, 
progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol 2011;6:824–
33. [PubMed: 21173711] 

29. McGranahan N, Swanton C. Cancer Evolution Constrained by the Immune Microenvironment. 
Cell 2017;170:825–7. [PubMed: 28841415] 

30. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-
Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017;171:1259–71 e11. 
[PubMed: 29107330] 

31. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A Cancer Cell Program 
Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell 2018;175:984–97 e24. 
[PubMed: 30388455] 

32. Leedham S, Tomlinson I. The continuum model of selection in human tumors: general paradigm or 
niche product? Cancer Res 2012;72:3131–4. [PubMed: 22552286] 

33. Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. Passenger deletions generate 
therapeutic vulnerabilities in cancer. Nature 2012;488:337–42. [PubMed: 22895339] 

34. Brockhausen I Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta 
1999;1473:67–95. [PubMed: 10580130] 

35. Rao CV, Janakiram NB, Mohammed A. Molecular Pathways: Mucins and Drug Delivery in 
Cancer. Clin Cancer Res 2017;23:1373–8. [PubMed: 28039261] 

36. Zhang Z, Wang J, He J, Zheng Z, Zeng X, Zhang C, et al. Genetic variants in MUC4 gene are 
associated with lung cancer risk in a Chinese population. PLoS One 2013;8:e77723. [PubMed: 
24204934] 

37. Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell 
proliferation and survival. Nat Rev Cancer 2008;8:361–75. [PubMed: 18432251] 

38. Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 
2009;28:35–49. [PubMed: 19169797] 

39. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its 
three component phases--elimination, equilibrium and escape. Curr Opin Immunol 2014;27:16–25. 
[PubMed: 24531241] 

40. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of 
response to CTLA-4 blockade in metastatic melanoma. Science 2015;350:207–11. [PubMed: 
26359337] 

41. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, et al. 
Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct 
tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 2015;16:64. 
[PubMed: 25853550] 

42. De Sousa EMF, Vermeulen L, Fessler E, Medema JP. Cancer heterogeneity--a multifaceted view. 
EMBO Rep 2013;14:686–95. [PubMed: 23846313] 

43. McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in 
cancer evolution. Cancer Cell 2015;27:15–26. [PubMed: 25584892] 

Krysan et al. Page 16

Cancer Res. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic 
heterogeneity in cancer evolution. Nature 2013;501:338–45. [PubMed: 24048066] 

45. Blackburn EH. Cancer interception. Cancer Prev Res (Phila) 2011;4:787–92. [PubMed: 21636545] 

46. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 
1957;18:769–78. [PubMed: 13502695] 

47. Burnett FM. Immunological surveillance. Oxford: Pergamon Press; 1970.

48. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and 
immunosubversion. Nat Rev Immunol 2006;6:715–27. [PubMed: 16977338] 

49. Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer immunosurveillance: 
prognostic, predictive, and mechanistic signatures. Immunity 2013;39:11–26. [PubMed: 
23890060] 

50. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. 
[PubMed: 21376230] 

51. Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, et al. Precancer Atlas to Drive 
Precision Prevention Trials. Cancer Res 2017;77:1510–41. [PubMed: 28373404] 

Krysan et al. Page 17

Cancer Res. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statement of Significance

Findings identify progression-associated somatic mutations, oncogenic pathways, and 

association between the mutational landscape and adaptive immune responses in 

adenomatous premalignancy.
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Figure 1. Genetic heterogeneity of pulmonary lesions.
A) A density heat map of mutated oncogene and tumor suppressor gene frequencies in ADC 

(y-axis) or AAH (x-axis). Oncogenes (upper panel) and tumor suppressor genes (lower 

panel) are mutated at higher frequencies in ADC than in AAH (above diagonal line; 

Wilcoxon test *p < 7.2 × 10−9 and **p < 1.7 × 10−8). B) Distribution of Jaccard indices 

comparing n.s. somatic mutation heterogeneity between pairs of lesions from the same 

(intra-) or different (inter-) patients. C) Distribution of intra-patient Jaccard indices in 41 

individual patients. The subjects are displayed in the low-to-high order based on their 

median values. Black circles indicate lesion pairs with >95 percentile Jaccard indices. In B 
and C, the side triangles represent the heterogeneity levels inversely proportional to Jaccard 

indices, and the dashed line marks the 90 percentile level of inter-subject Jaccard index. D) 
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Phylogenetic trees for 10 patients with AAH (blue), AIS (orange) and ADC (brown). The 

numbers are lesion IDs. Phylogenetic trees for the entire cohort are shown in Supplementary 

Figure S1.
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Figure 2. Progression-associated mutation (PAM) and malignant-specific mutation (MSM) 
distribution and the role in pathway deregulation.
A) Distribution of PAMs and MSMs in 41 study patients. The patients are displayed in the 

low-to-high order based on their percentages of PAMs. Red arrows in A and in B indicate 

nine patients whose cellular immune response was evaluated. B) Percentage of PAMs in 

individual AAH lesions from 41 patients. The cases are displayed in the low-to-high order 

based on their median levels, and not in the same order as those in A. C) The top 27 

pathways frequently affected by MSM- (red) and PAM- (blue) bearing genes. D) Heatmap of 

the pathways affected (red) by PAM- (top) and MSM- (bottom) bearing genes. The 

mutations in the 29 driver genes observed in PAM and MSM are indicated by orange bars 

above the heatmap.
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Figure 3. Immune cell infiltration, neoantigens and the immune response in adenomatous 
premalignancy.
A) Local lymphocyte infiltration index (0 — lowest, 3 — highest) in adjacent normal tissue, 

AAH, AIS and ADC (**X2 test p < 10−10). B) Average percentages of infiltrating CD8+ T 

cells observed in AAH (upper panel) and ADC (lower panel) plotted against percentage of 

patient-wise PANs. Each patient is represented by a data point indicated by a unique symbol. 

ADC in one patient was not evaluated. C) Correlation between the percentage of infiltrating 

CD8+ T cells and the percentage of PANs in corresponding AAH lesions. D-E) Correlation 

between the percentage of infiltrating CD4+ T cells (D) and PD-L1+ cells (E) plotted against 

the corresponding log-transformed neoantigen number identified in AAHs. In C-E each 

region is represented by a point, while each patient is marked by the symbol identical to 

those in B. P-values are based on Kendall rank correlation coefficient. The trend line (dashed 

line) in C-E indicates the linear association between variables. Other pair-wise comparisons 

between immune marker levels and neoantigen-related variables were insignificant.
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Figure 4. Analysis of immune pathway deregulation and patient outcomes in TCGA LUAD.
A) Heatmap of gene expression scores of 16 immune-related pathways in TCGA LUAD and 

normal lung samples. B-C) Kaplan-Meier survival curves of stage I (B) and stage II and 

higher (C) patients from the groups identified in (A).
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