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Abstract

Background: The incidence of esophageal adenocarcinoma (EAC) has risen dramatically over 

the past half century, and the underlying reasons are incompletely understood. Broad shifts to the 

upper gastrointestinal microbiome may be partly responsible. The goal of this study was to 

describe alterations in the esophageal microbiome that occur with progression from Barrett’s 

esophagus (BE) to EAC.

Methods: A case-control study of patients with and without BE who were scheduled to undergo 

upper endoscopy. Demographic, clinical, and dietary intake data were collected, and esophageal 

brushings were collected during the endoscopy. 16S rRNA gene sequencing was performed to 

characterize the microbiome.

Results: A total of 45 patients were enrolled and included in the analyses (16 controls; 14 BE 

without dysplasia (NDBE); 6 low grade dysplasia (LGD); 5 high grade dysplasia (HGD); and 4 

EAC). There was no difference in alpha diversity between non-BE and BE, but there was evidence 

of decreased diversity in patients with EAC as assessed by Simpson index. There was an apparent 
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shift in composition at the transition from LGD to HGD, and patients with HGD and EAC had 

decreased Firmicutes and increased Proteobacteria. Additionally, patients with HGD or EAC had 

increased Enterobacteriaceae and Akkermansia muciniphila and reduced Veillonella. In the study 

population, patients taking proton pump inhibitors had increased Streptococcus and decreased 

Gram-negative bacteria overall.

Conclusions: Shifts in the BE-associated microbiome were observed in patients with HGD and 

EAC, with increases in certain potentially pathogenic bacteria.

Impact: The microbiome may play a role in esophageal carcinogenesis.

INTRODUCTION

The incidence of esophageal adenocarcinoma (EAC) has increased 10-fold since the late 

1960s (1), and Barrett’s esophagus (BE) incidence likely began to rise as early as the 1950s. 

Known modifiable risk factors for EAC do not adequately explain these incidence trends. 

GERD prevalence began to rise in the 1970s (2,3), and modeling studies suggest that only a 

minority of EAC cases are attributable to GERD (4). The obesity epidemic did not begin 

until 1980, and obesity may only account for a small fraction of the rise in EAC (5).

Helicobacter pylori infection is associated with a 30-40% reduced risk of BE and EAC (6), 

and H. pylori prevalence has plummeted since the mid-20th century (7). When present, H. 
pylori dominates the gastric microbiome, and its absence results in major shifts to gastric 

microbiome composition (8,9). Thus, dramatic changes in the upper GI microbiome in 

western populations likely occurred at the same time that BE and subsequently EAC began 

to rise in incidence. Any role of the microbiome the development of EAC is likely complex 

and multi-factorial, and may represent a co-factor in the development of BE, the progression 

from BE to EAC, or both.

There is ample evidence that elements of the microbiome can directly contribute to the 

development of colon cancer (10). However, the role of the microbiome in the progression of 

Barrett’s esophagus (BE) to EAC has not been well described. In health, the esophageal 

microbiome is broadly similar in composition to the oral microbiome, with a high relative 

abundance of the phylum Firmicutes (11). Previously published data suggest that the 

esophageal microbiome in patients with reflux esophagitis or BE is heavily populated with 

Gram-negative bacteria, which may contribute to a chronic inflammatory, pro-neoplastic 

state (12,13). More recent analyses of EAC surgical resections have shown that the tumor-

associated microbiome demonstrates decreased microbial richness and diversity compared to 

non-dysplastic BE and normal squamous tissue (14).

In order to understand the potential role of the microbiome in esophageal carcinogenesis, 

knowledge of microbiome alterations that occur along the neoplastic pathway from BE to 

EAC is needed. The current study aimed to elucidate shifts in the esophageal microbiome 

that occur in the setting of progression from Barrett’s esophagus to associated dysplasia and 

adenocarcinoma.
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MATERIALS AND METHODS

Study Population

This was a case-control study of patients ≥18 years old, enrolling subjects without or with a 

diagnosis of Barrett’s esophagus who were scheduled to undergo upper endoscopy for 

clinical indications. Analysis of the salivary microbiome in these patients has been 

previously reported (15). Subjects were prospectively enrolled over 18 months at a single 

academic medical center (Columbia University Medical Center, New York, NY). Barrett’s 

esophagus subjects had histologically confirmed BE measuring ≥2 cm, had never received 

endoscopic therapy, and were taking at least once daily proton pump inhibitors (PPI) for the 

prior month. BE subjects were categorized based on worst prior or current confirmed 

pathology: no dysplasia (NDBE), low grade dysplasia (LGD), high grade dysplasia (HGD), 

or adenocarcinoma (EAC). Controls were patients with no prior history of BE and were 

included if taking at least once daily PPI or no acid suppression (PPIs or H2-receptor 

antagonists) for the prior month. Other details of the exclusion criteria have been described 

previously. (15)

Demographics, clinical data, and anthropometric measures were collected. History of reflux 

symptoms was assessed using by questionnaire (16), and dietary fat and fiber intake over the 

preceding 4 weeks was used using a food frequency questionnaire (17,18). All participants 

provided written informed consent. The Institutional Review Board of Columbia University 

approved the study on February 25, 2015.

Sample Collection

Details of the sample collections have been described previously. (15,19) The microbiome 

was sampled by brushing the squamous esophagus as well as BE tissue (BE patients) or 

gastric cardia, within 1 cm of the squamo-columnar junction (controls). Sampling of any 

nodules, masses, or other focal lesions was avoided, in case grossly altered topography 

affected bacterial colonization. Biopsies were also taken from the mid-BE segment or gastric 

cardia for subsequent gene expression analyses.

Microbiome Characterization

After DNA extraction from esophageal brushings, the V4 hypervariable ribosomal RNA 

region was amplified using primers 515F and 806R (20). Sequencing of the 16S rRNA gene 

V4 region was performed, and sequence data were uploaded to the NCBI Sequence Read 

Archive (BioProjectID PRJNA517734). Greengenes was used as reference database (21). 

Clustering of taxonomic units was made at 97% sequence similarity using USEARCH. The 

functions classify.seqs and classify.otu (both with default settings) from the mothur project 

(22) were used to make taxonomic assignments to OTUs. FastTree version 2.1.7 was used to 

generate a phylogenetic tree of the contigs (23). Using mothur and the phylogenetic tree, 

weighted and unweighted UniFrac distances as well as diversity indices were calculated 

(24).

Semi-quantitative PCR (SsoAdvanced Universal SYBR Green Supermix, Bio-Rad, 

Hercules, CA) was also performed from esophageal brushing DNA for Enterobacteriaceae to 
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further assess key findings from 16S rRNA gene sequencing analyses using previously 

published primer pairs (25). ΔΔCt values were calculated, using as a reference the Ct value 

for Eubacteria for the corresponding sample. qPCR for Eubacteria represents the entire 

bacterial DNA in the sample; thus, the ΔΔCt values were analogous to relative abundance 

data from 16S rRNA gene sequencing.

Statistical Analyses

Continuous variables were analyzed using t-tests and rank sum tests, and categorical 

variables were analyzed using Fisher’s exact tests. ANOVA or Kruskal-Wallis tests were 

used to compare continuous variables across multiple categories. The main analyses for this 

study were of brushings from Barrett’s mucosa (BE patients) or gastric cardia (controls). 

Within-individual correlations were assessed between paired swabs from esophageal 

squamous lining and from paired swabs from BE or cardia by calculating Spearman rank 

correlation coefficients at the genus level for all genera with non-zero read counts in both of 

the paired swabs. There were high correlations between paired swabs from the same site 

within the same individual (esophageal squamous, mean rho 0.85, SD 0.15; BE or cardia, 

mean rho 0.86, SD 0.12). For the purpose of these analyses, the mean relative abundance for 

each taxon from paired swabs was calculated from each sampling site. Of note, there was 

also high within-individual correlation between esophageal squamous and BE or cardia 

brushings (mean rho 0.82, SD 0.13).

Alpha diversity was assessed by observed OTUs and Shannon and Simpson indices. Pair-

wise weighted and unweighted UniFrac beta diversity was calculated using functions 

implemented in QIIME. Non-parametric permutational MANOVA, as implemented in the 

FATHOM Toolbox for MATLAB, was used to compare beta diversity measures between BE 

vs. controls and between NDBE/LGD vs. HGD/EAC groups. Principal coordinate analyses 

for these tests were also performed using functions implemented in the FATHOM Toolbox 

for MATLAB. Differentially abundant taxa between groups were identified using linear 

discriminant analysis effect size (LEfSe) (https://huttenhower.sph.harvard.edu/galaxy/). 

Functional composition of the esophageal microbiome was assessed using predicted 

metabolic pathways derived by phylogenetic investigation of communities by reconstruction 

of unobserved states (PICRUSt) analysis (26). Analyses were performed focused on the 

relative abundance of Gram-negative bacteria; Gram-negative genera and species were 

identified using a reference list assembled by our group (Supplementary Table S1), and the 

relative abundances of these taxa were summed for each sample. Additional analyses were 

performed on relative abundance of Streptococcus, the most abundant genus in the 

esophagus; alterations in the relative abundance of this genus have been associated with a 

variety of esophageal conditions. (13,27,28)

Upon visual observation of relative abundance of phyla across levels of BE and associated 

neoplasia, it appeared that there were shifts in relative abundance of Firmicutes and 

Proteobacteria, the two most abundant phyla in the esophageal samples, with the transition 

from low- to high-grade dysplasia. (Supplementary Figure S1) Thus, additional analyses 

were performed with BE subjects categorized as NDBE/LGD or HGD/EAC. Multivariable 

linear regression analyses were performed to assess for covariates independently associated 
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with relative abundance of differentially abundant phyla and other select taxa. Full models 

were created including all covariates with a univariate p-value <0.10. Variables with the 

highest p-value and >0.15 were then sequentially removed to generate a final reduced model. 

Statistical significance was defined as p<0.05. Analyses were performed using Stata 14.1 

(StataCorp) and MATLAB (The MathWorks, Inc.).

RESULTS

A total of 45 subjects were enrolled and had brushings collected for analysis. The 

characteristics of the subjects are shown in Table 1. There were 16 non-BE subjects and 29 

subjects with BE (14 without dysplasia, 6 LGD, 5 HGD, and 4 intramucosal EAC).

Microbiome Analyses

There were no significant differences in alpha diversity comparing BE to non-BE patients, 

both in terms of richness and evenness. (Supplementary Figure S2) There was decreased 

diversity assessed by Simpson index, but not by Shannon index or observed OTUs, across 

levels of BE-associated neoplasia (NDBE, LGD, HGD, and EAC). (Supplementary Figure 

S3) In post hoc pairwise comparisons, the Simpson index in EAC was significantly reduced 

compared to NDBE (p=0.006), LGD (p=0.01), and HGD (p=0.01). None of the other 

pairwise comparisons were significant. On beta-diversity analyses there was no evidence of 

significant clustering comparing BE vs. controls. (Supplementary Figure S4)

The most abundant phyla in the samples from BE and gastric cardia were Firmicutes 

(46.2%), Proteobacteria (22.9%), Bacteroidetes (19.6%), Actinobacteria (5.6%), and 

Fusobacteria (5.1%). BE subjects had significantly reduced relative abundance of 

Bacteroidetes compared to controls (16.3% vs. 25.5%, p=0.04), although there was no 

association after adjusting for patient characteristics. (Supplementary Table S2)

There were no overall differences in relative abundance of phyla across levels of BE-

associated neoplasia. However, upon visual inspection of the results, it appeared that there 

was a shift in composition with regard to Firmicutes and Proteobacteria, the two 

predominant phyla, with the transition from LGD to HGD. (Supplementary Figure S1) Thus, 

subsequent analyses were performed with BE subjects categorized as (NDBE or LGD) and 

(HGD or EAC). Compared to NDBE/LGD, subjects with HGD/EAC had decreased relative 

abundance of Firmicutes (38.3% vs. 55.0%, p=0.04) and increased relative abundance of 

Proteobacteria (32.1% vs. 17.7%, p=0.04). (Figure 1) In multivariable analyses, HGD/EAC 

remained independently associated both with increased Firmicutes (p=0.03) and decreased 

Proteobacteria (p=0.01). (Supplementary Table S2) On beta-diversity analyses there was no 

evidence of significant clustering comparing HGD/EAC vs. NDBE/LGD. (Supplementary 

Figure S4)

Taxonomic Differences

As compared to controls, subjects with BE had increased relative abundance of 

Sphingomonas and an unclassified species of Campylobacter. Non-BE subjects had 

increased relative abundance of various taxa including Prevotella pallens, Porphyormonas 
endodontalis, and Aggregatibacter segnis. (Supplementary Table S3) Based on the 
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observations that there was a shift with transition from LGD to HGD at the phylum level, 

additional differences in relative abundance of taxa were assessed by LEfSe with subjects 

again categorized as NDBE/LGD and HGD/EAC. (Figure 2A) Patients with NDBE/LGD 

had significantly increased Veillonella. Several taxa were increased in the HGD/EAC 

subjects, notably in Enterobacteriaceae and Verrucomicrobiaceae, specifically Akkermansia 
muciniphila. (Figure 2B)

As members of Enterobacteriaceae can promote gut inflammation and neoplasia, the data on 

this family was examined in greater detail. Compared to NDBE/LGD, patients with 

HGD/EAC were more likely to be smokers (p=0.03) and had higher dietary fat intake 

(p=0.05). After adjusting for these two factors, HGD/EAC remained significantly associated 

with the relative abundance of Enterobacteriaceae (p=0.02). (Supplementary Table S2) Two 

subjects had very high relative abundance of Enterobacteriaceae; one of these had HGD and 

a relative abundance of 38.3%, and one had intramucosal EAC and a relative abundance of 

30.4%. These findings were replicated in the esophageal squamous brushings, where these 

two subjects again had the highest relative abundance of Enterobacteriacea in the study 

population. For each of these subjects, a single distinct OTU drove the high relative 

abundance. On further evaluation of these OTUs using NCBI BLAST, one matched 

predominantly to species in the genera Klebsiella and Enterobacter, and the other matched to 

species in genera including Escherichia and Shigella.

Esophageal and cardia biopsies were then analyzed by qPCR to assess whether they 

harbored differences compared to brushings in relative abundance of Enterobacteriaceae. 

There was no significant difference by qPCR comparing patients with NDBE/LGD and 

HGD/EAC (median ΔΔCt 12.5 vs. 12.8, respectively; p=0.57).

Gram-Negative Bacteria

In brushings the mean relative abundance of Gram-negative bacteria in all of the subjects 

was 54.7% (SD 23.0). There was no significant difference in the relative abundance of 

Gram-negative bacteria comparing non-BE controls to BE subjects (61.6% vs. 50.9%, 

p=0.14). There were also no significant alterations in the relative abundance of Gram-

negative bacteria across levels of BE-associated neoplasia (ANOVA p=0.66). In the entire 

study population (BE and non-BE), PPI users had decreased relative abundance of Gram-

negative bacteria compared to PPI non-users (51.1% vs. 67.3%; p=0.05). (Figure 3A)

Streptococcus

The mean relative abundance of Streptococcus in the study population was 32.6% (SD 

20.9%). There was no significant difference in the relative abundance of Streptococcus 
comparing BE patients to non-BE controls (35.7% vs. 26.9%, p=0.18) and no significant 

overall alteration in the relative abundance of Streptococcus across levels of BE-related 

neoplasia (ANOVA p=0.51). With regard to PPI use, all subjects (BE and non-BE) on PPIs 

had greater relative abundance of Streptococcus compared to controls not on PPIs (36.2% 

vs. 19.9%, p=0.03). (Figure 3B)
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Functional Profiling

PICRUSt analyses were performed to assess for functional alterations to the esophageal 

microbiome. Several gene pathways were significantly altered comparing patients with BE 

to non-BE controls. (Supplementary Figure S5A) Controls had increased RNA degradation 

and vitamin B6 metabolism, whereas BE patients had increased glycerolipid metabolism. 

Compared to patients with NDBE or LGD, those with HGD or EAC exhibited increased 

glycerophospholipid metabolism and decreased other glycan degradation. (Supplementary 

Figure S5B)

DISCUSSION

In the current study, we assessed the Barrett’s esophagus microbiome with progression to 

dysplasia and adenocarcinoma. We observed a shift in composition with progression, 

notably at the transition from LGD to HGD. This was manifested by significant clustering in 

beta diversity analyses, as well as alterations to the two predominant phyla, with reductions 

in Firmicutes and increases in Proteobacteria.

There is little previous data describing esophageal microbiome changes that occur in the 

development of EAC. Elliott et al. reported microbiome alterations comparing esophageal 

squamous samples from non-BE controls, Barrett’s samples from patients without dysplasia, 

and tumor tissue from patients with EAC (14). The authors noted that EAC tumors had 

decreased alpha diversity compared to BE, and in the present study there was some evidence 

of a decline in diversity with progression. However, many of the specific taxonomic 

alterations were distinct. This may be explained in part by the fact that the EAC tumor-

microbiome was analyzed in this prior study (14), whereas in the current study sampling 

were performed only of normal appearing Barrett’s mucosa, avoiding any nodules or lesions, 

in patients with EAC. Also in the current study, there were high within-individual 

correlations between squamous and BE or cardia brushings, but the across-group alterations 

were less marked in squamous as compared to BE or cardia (data not shown). Finally, the 

EAC subjects in the current study all had very early lesions (T1a), and thus microbiome 

alterations in these patients would not have been caused by stasis due to tumor obstruction.

The increased relative abundance of Enterobacteriaceae in esophageal brushings from 

patients with HGD and EAC has potential biological significance. Certain species within 

Enterobacteraiceae harbor the pks genomic island and can produce colibactin, a genotoxin 

that induces DNA damage (29). Colibactin-producing E. coli promote tumor growth in 

xenograft mouse models (30), modify the tumor microenvironment (31), and have been 

found in high abundance in colonic biofilms in patients with familial adenomatous polyposis 

(32). Members of the family Enterobacteriaceae have also been implicated in gut 

inflammation in inflammatory bowel disease (33–35). Thus, it is plausible that increased 

levels of Enterobacteriaceae in Barrett’s esophagus may promote progression to EAC, either 

directly via colibactin or other bacterial products or indirectly by triggering an immune 

response and local inflammation.

Interestingly, the Enterobacteriaceae findings from 16S analyses of esophageal brushings 

were not replicated by qPCR of esophageal biopsies. However, the two subjects with high 
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relative abundance of Enterobacteriaceae had similar findings in the squamous esophagus, in 

line with prior work demonstrating that there is little within-individual variability in the 

microbiome in the squamous and Barrett’s lining in patients with BE (36). Further, our 

group previously showed that patients with HGD or EAC have increased Enterobacteriaceae 
in saliva, and that there is strong within-individual correlation between the salivary and 

esophageal microbiome (15). Thus, possible explanations for the discrepant findings are that 

esophageal brushings are superior to biopsies for microbiome assessment, as previously 

reported by Gall et al (36), and that Enterobacteriaceae may reside predominantly within the 

esophageal biofilm rather than within the mucosa (37).

The increased relative abundance of Akkermansia muciniphila in subjects with HGD or 

EAC was also notable. In the colon, A. muciniphila has been associated with many 

beneficial effects related to obesity and metabolic syndrome (38). However, depending on 

the context, this species also can degrade mucins and thin the mucus layer (39), potentially 

leading to increased interaction between pathobionts and the underlying epithelium. In this 

fashion, the presence of A. muciniphila could conceivably lead to increased Barrett’s tissue 

inflammation and promote progression to EAC.

Yang et al previously described a microbiome associated with reflux esophagitis and BE that 

was characterized by decreased relative abundance of Streptococcus and increased relative 

abundance of Gram-negative bacteria (13). In the current study, there were no differences in 

relative abundance of Streptococcus or in overall Gram-negative bacteria comparing non-

dysplastic BE to controls (data not shown) or with progression from BE to EAC. However, 

controls not taking PPIs had increased Gram-negative bacteria and decreased Streptococcus 
compared to subjects on PPIs, and our group has previously demonstrated that PPIs cause 

significant increases in Streptococcus in the distal gut (40). If Gram-negative bacteria in the 

esophagus promote chronic inflammation and increase the risk of BE and EAC (12), then 

PPIs may provide a chemoprotective effect by reducing overall levels of Gram-negative 

bacteria. However, the PPI results from the current study should be interpreted with caution, 

as the PPI users were a mix of BE and non-BE patients.

The current study has several strengths. There were patients from all stages of BE-associated 

neoplasia, which permitted the ascertainment of microbiome shifts prior to the development 

of EAC. During the endoscopy only flat BE tissue was sampled, avoiding lesions so as to 

minimize confounding by the presence of bacteria that may have been mere colonizers due 

to an altered tumor macro- and micro-environment. Care was taken with regard to exclusion 

criteria to minimize the effects of certain factors on the microbiome such as antibiotics and 

immunosuppressants. Detailed clinical information and dietary intake data were recorded 

and assessed in the analyses.

There were also certain limitations. The sample size was relatively small, and the study may 

have been underpowered to detect additional important microbiome alterations associated 

with neoplastic progression in BE. The current study describes associations with various 

stages of BE neoplasia but no information on causative effects on progression. However, the 

findings provide key hypothesis-generating data for follow-up functional studies.
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In conclusion, there were pronounced shifts in the microbiome in Barrett’s esophagus 

associated with progression to EAC, particularly at the transition from low- to high- grade 

dysplasia. Notably, patients with HGD and EAC had increased relative abundance of 

Enterobacteriaceae, and members of this family have been implicated in gut inflammation 

and carcinogenesis. Further studies are indicated to identify specific bacteria that may 

promote the development of EAC, and also whether therapies targeting the microbiome can 

be developed to modify the risk of EAC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative abundance of the major phyla comparing subjects with no dysplasia or LGD to 

those with HGD or EAC. Compared to NDBE/LGD subjects, those with HGD or EAC had 

decreased Firmicutes (p=0.04) and increased Proteobacteria (p=0.04).

Snider et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) Cladogram from LEfSe analyses of differentially abundant taxa comparing BE patients 

without dysplasia (NDBE) or LGD vs. HGD or EAC. (B) Subjects with HGD or EAC had 

reduced relative abundance of Veillonalla (left), and had increased proportion of samples 

with presence of the other differentially abundant taxa (right), which were relatively rare. 

(Presence defined as having any reads, except for Enterobacteriaceae, which was defined as 

relative abundance >0.1%.)
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Figure 3. 
Compared to controls not taking PPIs, patients taking PPIs had: (A) reduced relative 

abundance of Gram-negative bacteria (p=0.05), and (B) increased relative abundance of 

Streptococcus (p=0.03).
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Table 1.

Characteristics of patients who underwent upper endoscopy and had microbiome analyses, comparing those 

without to those with Barrett’s esophagus (BE).

Non-BE (n=16) BE (n=29) p

Age, mean (SD) 60.1 (14.9) 63.6 (11.7) 0.39

Sex, male 9 (56%) 25 (86%) 0.04

WHR, mean (SD) 0.95 (0.08) 0.97 (0.05) 0.37

GERD 10 (63%) 27 (93%) 0.02

Ever smoker 7 (44%) 19 (66%) 0.21

PPI use 6 (38%) 29 (100%) <0.001

Aspirin use 3 (19%) 11 (38%) 0.31

Dietary fiber*, grams per day; mean (SD) 15.2 (5.3) 16.5 (4.5) 0.42

Dietary fat*, % daily calories; mean (SD) 33.6 (2.3) 34.3 (3.2) 0.46

SD: standard deviation; WHR: waist-to-hip ratio; GERD: gastro-esophageal reflux disease; PPI: proton pump inhibitor

*
Dietary data missing in 1 subject.
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