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Abstract

Background: Thyroid cancer incidence is the most rapidly increasing malignancy; rates are 

three times higher in women than men. Thyroid-hormone disrupting flame-retardant chemicals, 

including polybrominated diphenyl ethers (PBDE) and polybrominated biphenyls (PBB), may 

contribute to this trend.

Methods: We investigated the relationship between PBDE/PBB exposure and papillary thyroid 

cancer (PTC) in 250 incident female papillary thyroid cancer cases and 250 female controls 

frequency-matched on age. Interviews and post-diagnostic serum samples were collected from 

2010–2013. Serum samples were analyzed for 11 congeners. We calculated odds ratios (OR) and 

95% confidence intervals (95%CI) using single-pollutant logistic regression models for continuous 

and categorical lipid-adjusted serum concentrations of PBDE/PBB, adjusted for age, alcohol 

consumption, and education. We applied three multi-pollutant approaches (standard multi-

pollutant regression models, hierarchical Bayesian modeling [HBM], principal components 

analysis [PCA]) to investigate associations with PBDE/PBB mixtures.

Results: In single pollutant models, a decreased risk was observed at the highest (>90th 

percentile) versus lowest (<median) category of BDE-209 concentrations (OR: 0.47; 95%CI: 

0.23–0.98); an elevated PTC risk was observed at the highest versus lowest category of BB-153 

concentrations (OR: 1.81; 95%CI: 0.96–3.39). In standard multi-pollutant models, an interquartile 
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range increase in BDE-100 concentrations was associated with increased PTC risk (OR: 1.18; 

95%CI: 1.01–1.38). HBM and PCA yielded no statistically significant results.

Conclusions: Our results using single and multi-pollutant modeling do not generally support a 

positive association with PBDE/PBB and PTC risk.

Impact: Prospective studies with more advanced statistical approaches to analyze mixtures and 

populations with higher exposures could reveal new insights.

Introduction

Thyroid cancer rates have been increasing rapidly worldwide for the past decades; in the 

United States (US), age-adjusted thyroid cancer incidence rates have increased three-fold 

from 4.8 cases/100,000 in 1975 to 15.0/100,000 in 2015 such that approximately 1.2% of 

adults will be diagnosed with thyroid cancer in their lifetime (1, 2). Incidence rates in 

women are three times those in men (3, 4). Papillary thyroid cancer (PTC) is the most 

common subtype, comprising approximately 80% of new cases (5).

The increasing trend can be partially explained by improved diagnostic imaging methods, 

such as ultrasounds, positron emission tomography, and computerized tomography, which 

more accurately detect small thyroid nodules for early medical attention (6). However, this is 

unlikely to be the sole driver, as incidence rates are also increasing for more easily 

detectable larger tumors and among younger individuals less likely to be targeted for 

screening (7, 8). Some risk factors for thyroid cancer have been identified, such as ionizing 

radiation exposure, family history, reduced or excess iodine consumption, and obesity (6, 9); 

however, the etiology generally remains poorly understood. Exposures to thyroid hormone-

disrupting environmental chemicals have been suggested as another potential risk factor (10, 

11).

Polybrominated diphenyl ethers (PBDE) are flame retardants used in commercial and 

household products such as plastics, electronics, foam furniture padding, and upholstery (12, 

13). PBDE are not chemically bound to their products and therefore can leach into the 

environment, partitioning into dust particles and other media, where they can accumulate 

overtime (13–15). Human exposures to these compounds increased 1–2 orders of magnitude 

from the mid-1970s to mid-2000s (14, 16). Studies had initially reported subsequent 

declines in serum concentrations of several PBDE in the US and other nations due to 

manufacturing restrictions resulting from concern about widespread exposure, persistence, 

and potential toxicities (17, 18); however, recent publications indicate that serum 

concentrations of several congeners have plateaued or increased from 2011–2015 (19, 20), 

indicating continued exposure. Further, these compounds remain ubiquitous in currently 

available consumer products, the environment, the food supply, and the human body due to 

their stability and lipophilicity (21–23). Exposures may also remain elevated in certain 

developing countries, where regulations pertaining to production and use are less stringent 

(24). Polybrominated biphenyls (PBB), structurally similar flame retardants, were added to 

plastics used in a variety of household products in the US until 1976 (25). Decades later, 

PBB exposure remains common throughout the United States (26).
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Several mechanisms of thyroid carcinogenicity have been proposed. PBDE have been 

demonstrated to disrupt thyroid hormone homeostasis in animals and humans (27). Because 

they are structurally analogous to thyroid hormones triiodothyronine (T3) and thyroxine 

(T4), PBDE and their hydroxylated metabolites may competitively bind with thyroid 

hormone transport proteins, resulting in reduced circulation of thyroid hormones. This has 

been hypothesized to cause abnormal proliferation in the thyroid, which may result in 

tumorigenesis (10). Other research has shown that PBDE hydroquinone metabolites are 

capable of forming DNA adducts (28, 29), possibly leading to mutations or chromosomal 

aberrations which could result in carcinogenicity. Another possible mechanism is PBDE-

mediated upregulation of cytochrome-P450 enzymes, which generate more reactive oxygen 

species and oxidative stress, which in turn may promote tumor development and progression 

(30). PBBs have been linked to thyroid hormone disruption via similar mechanisms (30–33).

In toxicology studies, increased thyroid follicular adenomas have been observed in rats 

exposed to commercial flame retardant mixtures including deca-BDE (consisting primarily 

of the congener BDE-209) (34) and penta-BDE (consisting primarily of BDE-99, BDE-47, 

BDE-100, BDE-153, and BDE-154) (30). PBB have been linked to carcinogenic effects in 

male and female rats and mice, particularly hepatocellular carcinomas (33, 35).

There is a paucity of epidemiological evidence on the relationship between PBDE exposure 

and risk of thyroid cancer, with only two published studies on this topic, to our knowledge. 

A nested case-control study carried out in multiple locations in the US found no significant 

association between serum levels of four PBDE congeners (BDE-47, BDE-99, BDE-100, 

and BDE-153) and increased risk of PTC (36). As noted by the authors, this analysis had a 

few important limitations, including relatively low case numbers (104 cases, 208 controls), a 

population generally older than peak age of diagnosis (median age of 62 yr), and few 

congeners with sufficient detection frequencies for analysis. A case-control study in North 

Carolina that measured PBDE in both serum and house dust (37) observed statistically 

significant higher odds of PTC among those with house dust BDE-209 concentrations 

greater than the median compared to below, particularly for smaller tumors (<2 cm). No 

associations were observed for serum concentrations of the two congeners with sufficient 

detection frequency for analysis (BDE-47 and BDE-153). This study also had small case 

numbers (70 cases, 70 controls). Though the authors applied a principal components 

analysis to examine effects of joint exposures, this was constrained by the small sample size 

and did not reveal any new information. To our knowledge, no epidemiologic studies of PBB 

exposure and thyroid cancer have been conducted.

The objective of the current case-control study is to examine the association of PBDE/PBB 

serum levels and risk of papillary thyroid cancer in Connecticut women with a larger number 

of cases and numerous congeners using single-pollutant and multi-pollutant approaches. 

This represents the largest study to date and the first study to present results for the 

relationship between individual and joint exposures to several PBDE and thyroid cancer.
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Methods

Study Population

This analysis was conducted within a previously described population-based case-control 

study of thyroid cancer in Connecticut (38, 39). Briefly, eligible cases were those aged 21 to 

84 years at diagnosis with no previous cancer diagnosis except non-melanoma skin cancer. 

Histologically confirmed (papillary, follicular, medullary, and anaplastic) incident thyroid 

cancer cases diagnosed between 2010 and 2011 were identified through the Yale Cancer 

Center’s Rapid Case Ascertainment Shared Resource, part of Connecticut Tumor Registry. 

A total of 462 cases participated (65.9% participation rate). Controls were Connecticut 

residents identified through random digit dialing (61.5% participation rate) and frequency-

matched to cases by age (+/− 5 yr). We necessarily conducted our analysis on a subset of the 

parent study population due to resource constraints. We focused on female Caucasians, as 

they were more likely to be cases compared to individuals of differing demographics. In the 

parent study, cases were 81% female and 90% White (39). Therefore, we conducted the 

current analysis in 250 randomly selected female Caucasian cases of papillary thyroid 

cancer and 250 female Caucasian controls.

Collection of personal data, covariates, and potential confounders

Procedures were performed in accordance with protocols approved by the Human 

Investigation Committees at Yale University and Connecticut Department of Public Health; 

the Centers for Disease Control and Prevention (CDC) determined that the agency was not 

engaged in human subjects’ research. All participants provided informed written consent. In-

person interviews were conducted in participant homes by trained interviewers using a 

standardized, structured questionnaire including questions about demographic 

characteristics, radiation exposure, smoking and alcohol use, medical history, lifetime 

occupational history, and lifetime residential history.

Serum collection and analysis

Blood samples were collected by a trained phlebotomist at the in-person interviews. Most 

cases had their serum sampled within 6 months of diagnosis (median: 174 days, interquartile 

range [IQR]): 121, 238 days). After separation from whole blood, serum samples were 

aliquoted and stored at –20°C until shipment to the CDC (Atlanta, Georgia) for analysis. 

Samples were analyzed for ten PBDE congeners and one PBB congener: BDE-17, BDE-28, 

BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209, BB-153, 

using gas chromatography isotope dilution high resolution mass spectrometry (GC-

IDHRMS) employing a DFS instrument (Thermo DFS, Fremen, Germany); the analytical 

method has been described in detail (40, 41). Total serum lipid concentrations were 

measured to normalize the concentrations of PBDE in serum, quantified using commercially 

available enzymatic methods (Roche Diagnostics Corp; Indianapolis, IN) for total 

triglycerides and total cholesterol on a Hitachi 912 Chemistry Analyzer (Hitachi; Tokyo, 

Japan). All concentration data were reported as ng/g lipid weight and were background-

corrected by subtracting the average concentration in blank samples (42). Three blanks and 

three quality control/quality assurance samples prepared internally by the laboratory were 

included in every set of 30 samples; additionally, 25 laboratory-blind quality control (QC) 
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samples were included across the batches. Laboratory personnel were blinded to case-

control status. The coefficient of variation (CV) from laboratory-blind QCs (n=25) ranged 

from 2.76% (BDE-99) to 7.23% (BDE-85), indicating a high level of reproducibility.

Statistical Methods

Seven congeners (BDE-28, 47, 99, 100, 153, 209, BB-153) were measured in >80% of 

samples; concentrations were right-skewed. For these compounds, we used a single 

imputation method to assign a value to samples below the method detection limit (DL) using 

a maximum likelihood procedure that assumed a lognormal distribution defined by the 

distribution of measurements above the DL (43); no covariates were used in the imputation 

process. The use of a single imputation generally yields unbiased risk estimates and accurate 

measures of variance when the percent missing is ≤30% (43). In our analyses of these highly 

detected compounds, we examined both the continuous PBDE concentrations and categories 

of PBDE concentrations based on distributions among controls. All continuous PBDE 

concentrations were standardized for regression analyses by subtracting the mean and 

dividing by the standard deviation to reduce the influence of outliers and to improve 

computational stability during model fitting. This achieves the same benefits as the more 

commonly used natural log transformation while retaining interpretability on the arithmetic 

scale. To address the low variability in PBDE/PBB serum concentrations across the 

population, we assigned categories corresponding to ≤ median, >median and ≤90th 

percentile, and >90th percentile.

Three congeners (BDE-85, 154, 183) had detection frequencies of approximately 30% and 

were therefore modeled as detected versus non-detect; continuous concentrations were not 

modeled. PBDE-17 was detected in only 3.6% of the samples and therefore was excluded 

from statistical analyses.

In traditional, single-pollutant models, odds ratios (OR) and 95% confidence intervals (95% 

CIs) were calculated using logistic regression in separate models for each congener. We 

considered the following variables as potential confounders of the association of serum 

PBDE levels and risk of PTC based on a review of the literature: frequency of dental x-ray 

exposure (never to more than once/year), diagnostic x-ray exposure (ever have diagnostic x-

rays such as chest x-rays or mammograms), tobacco use (ever smoked ≥100 cigarettes), 

alcohol use (ever consumed ≥12 servings of alcoholic beverages), family history of cancer 

among first-degree relatives, educational attainment, family income per capita, age, and 

body mass index (BMI). All potential confounders were included in the logistic regression 

models for each congener and removed via backward elimination if their removal yielded a 

≥10% change in the OR. Years of education, age, and alcohol consumption met inclusion 

criteria in most models and therefore we included them in all final models. We conducted 

stratified analyses to examine whether there was any difference in relationships between 

PBDE exposure and PTC based on tumor size using two size cut-points: tumors with 

diameter ≤1 cm [microcarcinoma] and >1 cm and tumors ≤2 cm and > 2 cm. Papillary 

microcarcinoma are generally considered of lower clinical significance, because they often 

remain indolent and have a positive prognosis (44). However, some microcarcinoma have 
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been reported to have aggressive and metastatic behavior (45). A cut-point of 2 cm was also 

examined because of its application in the assessment of clinical or pathologic stage.

We applied three multipollutant methods to examine the association between concurrent 

exposures to multiple PBDE/PBB and risk of PTC. First, we used a multiple logistic 

regression to jointly analyze the impact of all 10 congeners within a single model. This is 

preferable to the common practice of summing all congeners, because the sum is often 

correlated with the pollutant present at the highest concentration and signals may be masked 

if effects of individual chemical trend in different directions, as commonly occurs with 

endocrine disrupting chemicals (46). However, a multiple logistic regression model with all 

10 congeners may be unstable due to high correlations between certain congeners (e.g., 

rSpearman=0.95 between PBDE 47 and PBDE 99; Supplemental Table 1), leading to inflated 

standard errors and potentially misleading risk parameter estimates.

Second, we applied a hierarchical Bayesian statistical approach similar to method “P2” 

presented in (47). In this method, the regression parameters corresponding to the different 

congeners are assumed to follow a normal distribution, centered at zero, with a common 

variance parameter (to be estimated). By incorporating this prior distribution structure, we 

carried out data-driven shrinkage of the individual risk parameters towards zero, thereby 

leading to more stable parameter estimates and statistical inference that may be less 

impacted by the high correlations between exposures. Full details are presented in the 

Supplemental Material.

Finally, we applied a principal component analysis (PCA) on the raw PBDE concentrations 

paired with a logistic regression analysis to investigate possible interactive effects between 

multiple chemicals. Using the factor loadings, we created new exposure metrics that 

represent linear combinations of individual congeners. Based on the Kaiser rule (i.e., only 

keeping the principal components (PCs) with eigenvalues of at least one (48), we identified 

the most important PCs and investigated their association with cancer risk using a multiple 

logistic regression analysis.

As a sensitivity analysis, we refit each of these multipollutant methods to the subset of cases 

with and without microcarcinoma separately to determine the impact of tumor size on 

associations with exposure. Single-pollutant modeling was done with SAS (Version 8.4, 

SAS Institute Inc., Cary, NC, US) and multi-pollutant methods were applied within the R 

statistical software package (R Foundation for Statistical Computing, Vienna, Austria. URL 

https://www.R-project.org/). All multipollutant models were adjusted for the same covariates 

as the single-pollutant models.

Results

Compared to controls, cases tended to be younger, less educated, have higher BMI, be less 

likely to consume alcohol, and be more likely to have a family history of thyroid cancer 

(p≤0.1) (Table 1). Cases and controls were similar with respect to income, smoking status, 

receipt of dental x-rays, and diagnostic medical radiation.
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The distributions of the lipid-adjusted concentrations of the different congeners in serum for 

cases and controls are presented in Table 2. BDE-47 was present at the highest 

concentrations, with a median (IQR) lipid-adjusted concentration among controls of 7.33 

ng/g lipid (4.10–15.3), followed by BDE-153 (3.08 ng/g lipid [2.02–5.86]), BDE-209 (1.73 

ng/g lipid [1.28–2.67]), BB-153 1.49 ng/g lipid ([1.01–2.45]), BDE-100 ng/g lipid (1.48 

[0.81–2.94]), and BDE-99 (1.23 ng/g lipid [0.72–2.76]). Median concentrations of BDE-17, 

BDE-28, BDE-85, and BDE-183 were all <1 ng/g lipid. Concentrations in cases were 

similar or lower than in controls. Comparison of the 25th and 75th percentiles indicates that 

the variability in congener exposures was relatively small.

Spearman correlation coefficients (rSpearman) between PBDE concentrations ranged from 

−0.09 to 0.95 with a median of 0.20 (Supplemental Table 1). Stronger correlations were 

observed between congeners with similar degrees of bromination or PBDE present in the 

same commercial products. For example, the following six pairs of congeners had Spearman 

correlation coefficients >0.8: BDE-28 and BDE-47 (rSpearman =0.92), BDE-28 and BDE-99 

(rSpearman =0.83), BDE-28 and BDE-100 (rSpearman =0.85), BDE-47 and BDE-99 (rSpearman 

=0.95), BDE-47 and BDE-100 (rSpearman =0.92), BDE-99 and BDE-100 (rSpearman =0.88). 

The commercial mixture penta-PBDE is comprised primarily of BDE-47 and BDE-99.

In adjusted single-pollutant models, BB-153 had an elevated but non-statistically significant 

association with PTC risk when comparing the highest exposure category (>90th percentile) 

to the reference (≤median) (OR: 1.81, 95%CI: 0.96–3.39) (Table 3). A decreased risk was 

observed at the highest category of BDE-209 exposure (>90th percentile) compared to the 

reference (≤median) (OR: 0.47, 95%CI: 0.23–0.98). No other statistically significant 

associations were observed. Results stratified by tumor sizes demonstrated statistically 

significantly inverse associations with risk of microcarcinomas for six PBDE congeners 

(generally when comparing the highest exposure category to the reference), while effect 

sizes were near one for the larger tumor sizes (Table 4). Results stratified by tumor sizes 

using the 2-cm cut-point were similar to those for the microcarcinoma, yielding no 

statistically significant associations for the larger tumors and some statistically significant 

inverse associations for the smaller tumors (Supplemental Table 2). However, some of the 

effect estimates for tumors >2 cm were elevated compared to those for tumors >1 cm.

Multiple logistic regression analysis risk parameter estimates (OR scale) and confidence/

credible intervals from the standard regression model including all continuously modeled 

PBDE/PBB and the hierarchical Bayesian method are presented in Figure 1. A statistically 

significant positive association was observed between BDE-100 and thyroid cancer risk (OR 

per interquartile range increase in exposure: 1.18; 95% CI: 1.01–1.38; p-value: 0.04). 

However, this finding is inconsistent with the single-pollutant, the hierarchical Bayesian, and 

the PCA modeling results.

No statistically significant associations were observed in the Bayesian modeling. The 

shrinkage that results from the hierarchical Bayesian method can be clearly observed as the 

credible intervals are much narrower than the corresponding CIs from the standard 

multipollutant regression analysis and the point estimates are pulled towards zero (Figure 1).
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Two principal components (PCs) met the criteria of the Kaiser method (48). The results 

indicate an elevated OR with increased exposure as defined by PC 2, though not statistically 

significant (OR: 1.25, 95% CI: 0.94–1.66; p=0.13) (Table 5). The factor loadings in Table 5 

indicate that PC 2 represents a mixture component that is positively weighted on BB-153 

and BDE-153 and negatively weighted on BDE-209, suggesting that exposure to higher 

levels of BB-153 and/or BDE-153 while being less exposed to BDE-209 may have an 

adverse impact on cancer risk. Stratification by tumor size did not yield any statistically 

significant associations for any of the multi-pollutant methods.

Discussion

The results from this case-control study do not provide evidence of an increased risk of 

thyroid cancer in relation to PBDE exposure. Further, some evidence of inverse associations 

is reported. This work, representing the largest epidemiologic study population to date and 

reporting on the greatest number of PBDE congeners, is consistent with the null results from 

the only two published studies on this topic which used serum biomarkers for the exposure 

assessment. However, the inverse findings for BDE-209 contrast with a positive association 

between house dust BDE-209 concentrations and PTC and reported by Hoffmann et al. 

(2017) (37). We do report the first epidemiologic evidence suggesting a positive association 

between BB-153 exposure and PTC risk.

Detection frequencies were higher for many congeners in our study samples compared to 

other studies (Supplemental Table 3), because our relatively large quantity of serum 

available for measurement (median: 2.00 g; 1st −99th percentile: 0.96–2.01 g) resulted in 

lower analytical detection limits. However, the median and 75th percentiles of serum BDE 

exposures in our population tended to be lower compared to these other populations 

(Supplemental Table 3). The relatively low levels and limited contrast of exposures within 

our study population may have impeded our analyses and contributed to the generally null 

results. Further inquiry into explanations for the lower exposures in this population of 

Connecticut women as compared to a nationally representative sample or women living in 

other states could provide some valuable insights into exposure determinants or exposure 

mitigation.

The inconsistent relationships with thyroid cancer risk with respect to BDE-209 in serum in 

our study compared to those in dust reported in Hoffman et al. (2017) could reflect 

differences in geographic region (Connecticut vs. North Carolina), the study population 

(women only with mean age of 51 yr vs. men and women with mean age of 45 yr), sample 

size (250 vs. 70 cases), or the exposure assessment methods (serum biomarker vs. dust) (37). 

The two exposure assessment methods reflect different sources and exposure scenarios. 

PBDE biomarkers are a direct measure of dose which aggregate exposure across all 

pathways and routes PBDE concentrations in indoor dust are a useful surrogate for personal 

exposure within the home, and house dust is considered the major exposure source in US 

populations (13). House dust PBDE concentrations are also correlated with other measures 

of exposure, such as handwipes or biomonitoring (21, 49). However, dust levels do not 

capture exposures in other microenvironments, such as vehicles or workplaces, and they 

omit the dietary exposure pathway. The conflicting results with respect to BDE-209 may 
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also reflect its different behaviors compared to other PBDEs. Most PBDE are readily 

absorbed internally and have long half-lives (on the order of years), and therefore serum 

PBDE concentrations are a reasonable proxy for longer-term exposures (Table 2) (50, 51). In 

contrast, BDE-209, the fully brominated, larger, bulky molecule, has limited absorptive 

capacity and a short half-life. House dust concentrations of PBDE are correlated over time 

(52, 53), indicating that they provide a reasonable representation of past exposures; however, 

BDE-209 has been shown to photodegrade and debrominate into other congeners in house 

dust (54). Therefore, these two exposure assessment methods may be capturing different 

exposure time windows or may be reflecting some differences related to the kinetics and 

chemistry of BDE-209. Additional studies measuring BDE-209 in both serum and dust are 

needed to clarify its relationship with thyroid cancer risk.

We conducted some multi-pollutant modeling to reflect more realistic exposure scenarios, as 

these congeners co-exist in mixtures and may exhibit synergistic, antagonistic, or other 

interactions (55). The multi-pollutant models were generally consistent with the single-

pollutant models. Both the PCA analysis and the single pollutant model provided evidence 

for an inverse association with BDE-209 and a positive association between BB-153 

exposure and PTC risk. An association between BDE-100 and PTC risk was only observed 

in the standard multi-pollutant regression model. Though use of BB-153 was discontinued in 

1976, our finding is relevant, as people continue to be exposed to BB-153, and in 

combination with other thyroid hormone-disrupting chemicals (56, 57). Therefore, these 

results suggest some relationships to explore in future analyses. More advanced approaches 

to mixtures, such as a Bayesian statistical approach using toxicology data or kernel 

regression could reveal some new insights.

Several inverse associations between PBDE congeners and PTC microcarcinoma were 

observed in single-pollutant models but not in the multipollutant models. While chance 

findings cannot be ruled out, equivocal or inverted associations between structurally similar 

endocrine disrupting compounds and hormone-related cancers have been observed before, 

such as with serum concentrations of PCBs and breast cancer (58, 59); effect estimates less 

than 1 are consistent with the thyroid cancer study using pre-diagnosis serum PBDE 

concentrations to assign exposure. Finally, a relatively small proportion of microcarcinoma 

are considered clinically significant, and therefore information on stage could bring more 

precision to this outcome.

These results should be interpreted in the context of some important limitations. A single 

sample was used to represent exposure during the relevant window of susceptibility. One-

time serum measurements of persistent pollutants are generally considered to be a 

reasonable proxies for past exposures due to the long biological half-lives of most of these 

congeners (i.e., 1 to 12 years; Table 2) (51) and the correlation in repeated measures of 

structurally similar compounds measured within the same women over time (60, 61). 

However, there are possible variations over time due to changes in exposures, weight loss, 

and dietary changes (61). The assumption of representativeness of BDE-209 is less robust, 

given the relatively short half-life in the blood. Another limitation is that the blood sample 

was collected post-diagnosis. Though biomarker concentrations in retrospective studies 

could be subject to bias if influenced by the disease state, we consider thyroid cancer 
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unlikely to modify serum PBDE or lipid concentrations if the individual was maintained on 

thyroid hormones, because the treatment is relatively specific to the thyroid gland (i.e., 

surgical removal and radioactive iodine treatment). Additionally, the few positive/elevated 

relationships observed could have been due to chance or multiple comparisons. Another 

limitation is that the results may only be generalizable to Caucasian females. We also did not 

have information on tumor stage, which could indicate the aggressiveness of the tumor, and 

we lacked data on genetics, which could be important in relation to genetic polymorphisms 

that influence activity of enzymes that metabolize endogenous hormones or detoxify PBDEs 

(10)).

In summary, this study overcame some methodological limitations of prior studies by having 

a larger population, higher detection frequencies across a range of congeners including 

BDE-209, and accounting for mixtures. Limitations included a single post-diagnostic serum 

sample to assess exposure and a population with relatively low PBDE exposure. While some 

inverse associations were observed in single pollutant models, a few positive associations 

were also observed in single and multi-pollutant models. Overall, there is limited evidence to 

date in support of a positive relationship between PBDE exposure and thyroid cancer risk. 

However, there is also insufficient evidence to conclude no risk from PBDE, and therefore 

these relationships warrant follow-up, given the biological plausbility derived from their 

chemical structures, toxicological evidence in human hormone studies, in vitro assays, and 

animal experiments, and a previously reported positive association for BDE-209 in dust. A 

prospective study with application of more advanced statistical approaches to analyze 

mixtures, incorporation of genetic polymorphisms, a population with higher exposure levels 

and increased exposure variability, and collection of both dust and serum samples could 

reveal new insights.
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Figure 1. 
Parameter estimates and 95% confidence/credible interval results from the standard multiple 

logistic regression (MLR) analysis and the hierarchical Bayesian multiple logistic regression 

(HBLR) analysis. Posterior means and quantile-based credible intervals are displayed for 

HBLR. The odds ratios represent the increase in odds for an interquartile range increase in 

exposure.
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Table 1.

Distribution of selected characteristics of the papillary thyroid cancer cases and controls.

Cases (n=250) Controls (n=250) p-value
a

Age 0.10

<40 51 34

40–49 69 76

50–59 78 72

60–69 40 45

≥70 12 23

Years of Education 0.02

High school or less 72 41

Technical school 14 14

College 99 123

Graduate/Professional school 54 66

Other 9 5

Poverty Level 0.14

Below Poverty Level 10 2

Above poverty level 173 171

Unknown 69 75

Family Income 0.65

<24,999 17 20

25,000–49,999 29 23

50,000–89,999 45 37

>90,000 90 95

Refused 66 74

Missing 3 1

BMI 0.06

<25 90 111

25–29.99 75 76

≥ 30 85 63

Family History of Cancer 0.05

No 76 77

Thyroid Cancer 42 24

Other Cancer 132 149

Thyroid Disease <0.0001

Yes 38 4

No 212 246

Smoking 0.34

Yes 75 85

No 175 165

Alcohol Consumption 0.001

Yes 95 127
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Cases (n=250) Controls (n=250) p-value
a

No 155 123

Dental X-Rays 0.37

Never 9 5

Less than every few years 90 105

Every few years 35 41

Once a year 97 89

More than once a year 14 8

Unknown 5 2

Prior Diagnostic Medical Radiation Exposure 0.35

Yes 233 233

No 17 15

Unknown 0 2

Tumor Diameter -

≤ 1 cm 140 -

>1cm 110 -

a
P-value corresponds to χ2 test.
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Table 3.

Associations between PBDE serum concentrations and risk of papillary thyroid cancer in 250 cases and 250 

controls.

PBDE Congener (ng/g)
a

Controls Cases Unadjusted OR (95%CI) Adjusted OR
b
 (95%CI)

BDE-28

≤0.51 125 147 1 1

>0.51 to ≤1.65 100 78 0.66 (0.45–0.97) 0.67 (0.45–1.00)

>1.65 25 25 0.85 (0.47–1.56) 0.87 (0.46–1.65)

Continuous 250 250 0.96 (0.81–1.15) 0.94 (0.78–1.13)

BDE-47

≤7.28 125 139 1 1

>7.28 to ≤24.91 100 90 0.81 (0.56–1.18) 0.80 (0.54–1.18)

>24.91 25 21 0.76 (0.40–1.42) 0.66 (0.34–1.28)

Continuous 250 250 0.91 (0.74–1.18) 0.89 (0.72–1.10)

BDE-85

<LOD 161 176 1 1

≥LOD 89 74 0.76 (0.52–1.11) 0.71 (0.48–1.05)

Continuous
c - - - -

BDE-99

≤1.21 125 138 1 1

>1.21 to ≤5.00 100 94 0.85 (0.59–1.23) 0.83 (0.56–1.21)

>5.00 25 18 0.65 (0.34–1.25) 0.57 (0.29–1.12)

Continuous 250 250 0.93 (0.76–1.14) 0.91 (0.74–1.12)

BDE-100

≤1.47 125 138 1 1

>1.47 to ≤5.43 100 91 0.82 (0.57–1.20) 0.78 (0.53–1.15)

>5.43 25 21 0.76 (0.41–1.43) 0.73 (0.38–1.41)

Continuous 250 250 1.07 (0.89–1.29) 1.05 (0.87–1.26)

BDE-153

≤3.08 125 130 1 1

>3.08 to ≤14.02 100 88 0.85 (0.58–1.23) 0.85 (0.58–1.26)

>14.02 25 32 1.23 (0.69–2.19) 1.19 (0.66–2.16)

Continuous 250 250 1.08 (0.90–1.29) 1.08 (0.90–1.30)

BDE-154

<LOD 152 164 1 1

≥LOD 98 86 0.81 (0.57–1.17) 0.78 (0.53–1.13)

Continuous
c - - - -

BDE-183

<LOD 176 185 1 1

≥LOD 74 65 0.84 (0.57–1.24) 0.74 (0.49–1.12)

Continuous
c - - - -
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PBDE Congener (ng/g)
a

Controls Cases Unadjusted OR (95%CI) Adjusted OR
b
 (95%CI)

BDE-209

≤1.55 125 136 1 1

>1.55 to ≤4.08 100 100 0.92 (0.64–1.33) 0.90 (0.61–1.32)

>4.08 25 14 0.52 (0.26–1.03) 0.47 (0.23–0.98)

Continuous 250 250 0.90 (0.75–1.09) 0.87 (0.71–1.06)

BB-153

≤1.45 125 129 1 1

>1.45 to ≤3.51 100 89 0.86 (0.59–1.26) 1.16 (0.76–1.76)

> 3.51 25 32 1.24 (0.70–2.21) 1.81 (0.96–3.39)

Continuous 250 250 1.05 (0.87–1.27) 1.15 (0.88–1.52)

a
Categories established based on distributions among controls and correspond to either (i) ≤median, >median and ≤90th percentile, and >90th 

percentile for congeners with detection frequency ≥80% (ii) undetected versus detected samples for congeners with detection frequency <80%.

b
Adjusted for age, alcohol consumption, and years of education.

c
Continuous models not run when detection frequency was <80%.

LOD, limit of detection
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Table 4.

Associations between PBDE serum concentrations and papillary thyroid cancer risk stratified by tumor size.

Microcarcinomas < 1 cm (n=138 cases) Tumor size ≥ 1 cm (n=110 cases)

PBDE Congener (ng/g)
a

Controls Cases Adjusted OR
b
 (95% CI) Controls Cases Adjusted OR

b
 (95% CI)

BDE-28

≤0.51 125 90 1 125 57 1

>0.51 to ≤1.65 100 33 0.43 (0.26–0.70) 100 43 1.00 (0.61–1.65)

>1.65 25 15 0.74 (0.36–1.55) 25 10 0.94 (0.40–2.19)

Continuous 250 138 0.84 (0.65–1.09) 250 110 1.00 (0.80–1.25)

BDE-47

≤7.28 125 85 1 125 54 1

>7.28 to ≤24.91 100 41 0.57 (0.35–0.91) 100 47 1.09 (0.66–1.78)

>24.91 25 12 0.56 (0.25–1.22) 25 9 0.73 (0.31–1.74)

Continuous 250 138 0.85 (0.64–1.14) 250 110 0.91 (0.68–1.22)

BDE-85

<LOD 161 107 1 161 68 1

≥LOD 89 31 0.46 (0.28–0.76) 89 42 1.08 (0.66–1.75)

Continuous
c

- - - - - -

BDE-99

≤1.21 125 84 1 125 53 1

>1.21 to ≤5.00 100 44 0.59 (0.37–0.95) 100 49 1.09 (0.67–1.78)

>5.00 25 10 0.48 (0.21–1.10) 25 8 0.69 (0.28–1.69)

Continuous 250 138 0.94 (0.75–1.16) 250 110 0.77 (0.41–1.47)

BDE-100

≤1.47 125 86 1 125 52 1

>1.47 to ≤5.43 100 43 0.54 (0.34–0.86) 100 46 1.09 (0.67–1.80)

>5.43 25 9 0.48 (0.21–1.10) 25 12 1.14 (0.52–2.51)

Continuous 250 138 1.04 (0.85–1.27) 250 110 1.06 (0.81–1.39)

BDE-153

≤3.08 125 77 1 125 52 1

>3.08 to ≤14.02 100 45 0.72 (0.45–1.14) 100 42 1.01 (0.61–1.68)

>14.02 25 16 1.06 (0.52–2.16) 25 16 1.31 (0.63–2.74)

Continuous 250 138 1.06 (0.86–1.30) 250 110 1.11 (0.88–1.39)

BDE-154

<LOD 152 98 1 152 65 1

≥LOD 98 40 0.57 (0.36–0.91) 98 45 1.02 (0.63–1.64)

Continuous
c

- - - - - -

BDE-183

<LOD 176 109 1 176 74 1

≥LOD 74 29 0.55 (0.33–0.93) 74 36 1.05 (0.63–1.74)

Continuous
c

- - - - - -
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Microcarcinomas < 1 cm (n=138 cases) Tumor size ≥ 1 cm (n=110 cases)

PBDE Congener (ng/g)
a

Controls Cases Adjusted OR
b
 (95% CI) Controls Cases Adjusted OR

b
 (95% CI)

BDE-209

≤1.55 125 77 1 125 58 1

>1.55 to ≤4.08 100 54 0.85 (0.54–1.33) 100 45 0.94 (0.58–1.54)

>4.08 25 7 0.40 (0.16–0.99) 25 7 0.52 (0.20–1.34)

Continuous 250 138 0.75 (0.55–1.03) 250 110 0.94 (0.75–1.18)

BB-153

≤1.45 125 66 1 125 63 1

>1.45 to ≤3.51 100 53 1.14 (0.70–1.85) 100 35 0.95 (0.55–1.63)

> 3.51 25 19 1.60 (0.79–3.25) 25 12 1.46 (0.65–3.29)

Continuous 250 138 1.00 (0.63–1.58) 250 110 1.19 (0.89–1.59)

a
Categories established based on distributions among controls and correspond to either (i) ≤median, >median and ≤90th percentile, and >90th 

percentile for congeners with detection frequency ≥80% (ii) undetected versus detected samples for congeners with detection frequency <80%.

b
Adjusted for age, alcohol consumption, and years of education.

c
Continuous models not run when detection frequency was <80%.

LOD, limit of detection
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Table 5.

Principal component (PC) analysis factor loadings and regression results. Only factor loadings larger than 0.10 

in absolute value are displayed for ease of interpretability.

Compound PC 1 PC 2

BB-153 0.933

BDE-28 0.432

BDE-47 0.478

BDE-99 0.461

BDE-100 0.471

BDE-153 0.387 0.205

BDE-209 −0.273

OR (95%CI)
a

0.98 (0.09–1.08) 1.25 (0.94–1.66)

P=0.72 P=0.13

PC, principal component

a
Adjusted for age, alcohol consumption, and years of education.
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