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Abstract
Improving the survey of mosquito

populations is of the utmost impor-

tance to further enhance mitigation

techniques that protect human

populations from mosquito-borne dis-

eases. While mosquito populations are

generally studied using physical traps,

stand-off optical sensors allow to study

insect ecosystems with potentially bet-

ter spatial and temporal resolution. This can be greatly beneficial to eco-

epidemiological models and various mosquito control programs. In this contribu-

tion, we demonstrate that the gravidity of female mosquitoes can be identified from

changes in their spectral and polarimetric backscatter cross sections. Among other

predictive variables, the wing beat frequency and the depolarization ratio of the

mosquito body allows for the identification of gravid females with a precision and

recall of 86% and 87%, respectively. Since female mosquitoes need a blood meal

to become gravid, statistics on gravidity is of prime importance as only females that

have been gravid might carry infectious diseases. In addition, it allows to detect

possible breeding habitat, predict a potential increase in the mosquito population

and provide a better overall understanding of the ecosystem dynamics. As a result,

targeted and localized mitigation techniques can be used, reducing the cost and

improving the efficiency of mosquito population control.
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1 | INTRODUCTION

Reducing blood sucking mosquito populations is one of the
key methods for preventing the spread of mosquito-borne
diseases such as malaria, yellow fever, dengue, West Nile
and Zika virus to name a few. According to the Centers for

Diseases Control and Prevention (CDC, USA), “improved
surveillance system”, “monitoring and mitigation of threats”
along with the use of “targeted strategies” are needed in
order to prevent the spread of mosquito borne disease such
as malaria [1]. Still according to the CDC, this disease alone
is responsible for 445 000 deaths in 2016. It is therefore
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paramount to further improve fine-scale detection of mos-
quito populations, and in particular, breeding habitat or
high-activity areas for targeted mitigation techniques.

New and innovative optical methods have known recent
improvements in the field of entomology [2], aiming at better
understanding insect population dynamics without the need to
capture or disturb the natural behavior of the studied speci-
mens. Physical traps allow for a very extensive study of the
captured specimens with almost 100% identification accuracy
and have been successfully used in a great number of studies.
However, entomological lidars and optical systems have great
potential for the study of insect populations remotely and in
real-time. They can monitor thousands of insects in the span
of a few hours [3] without the need for expensive and labori-
ous taxonomic analysis in a laboratory. Furthermore, such
systems can record the flight trajectory or position of the
insects in real time [4–10], enabling the identification of high-
risk areas for targeted mitigation techniques, and the study of
predator-prey dynamics or mating behavior if coupled with
species and sex identification. Such identifications are possi-
ble due to predictor variables retrieved from interactions of
the insect with light. For instance, the wing beat frequency
and harmonics content of flying insects retrieved from ento-
mological lidar signals have been used to differentiate
between species [5, 6, 9–17]. The wing beat frequency has
also been used to discriminate sex and identify mosquito spe-
cies in particular [7, 16–22]. In addition, insects from different
families or species present different optical properties. Insect
bodies may present various degrees of melanization and water
content, while wings have different pigments, impacting the
diffuse reflectance, and thin film layered structures, making
wings iridescent [5, 6, 10–12, 23]. The spectral and polarimet-
ric features derived from a mosquito's interaction with light
have been studied [7, 17, 24] in an effort to improve the spec-
ificity of entomological lidar. For mosquitoes in particular,
the differentiation between species and sex is of the utmost
importance since some species are known disease vectors to
human populations, such as Aedes albopictus (Skuse) for the
dengue fever or Culex pippins and Aedes vexans (Meigen) for
the West Nile virus, while other species rarely consider
humans as possible hosts [25]. Furthermore, the identification
of sex differentiates females from males which is crucial for
sterile insect mitigation techniques [26] but also because only
the female displays a biting behavior for reproductive pur-
poses. Over the course of their life, females present an entirely
different behavior than males, mainly while they search for a
blood meal, digest it, during the embryogenesis and when
looking for oviposition sites [27–29]. Also, as males tend to
emerge earlier than females, sex ratios can be used as a rela-
tive measure of adult mosquito emergence. Evaluating insect
populations and understanding their circadian rhythms is criti-
cal to reduce human exposure to peak activity of mosquitoes,

as it can be used to encourage caution or implement mitiga-
tion techniques in a specific area at specific time.

In this contribution, we investigate the differentiation of
gravid female (carrying eggs) from non-gravid female (not car-
rying eggs) mosquitoes. This information can be used to iden-
tify females potentially carrying infectious diseases, possible
breeding habitat, predict an increase in the mosquito population
and provide a better overall understanding of the ecosystem
dynamics. Detecting freshly blood-fed females could provide
similar information on the ecosystem, however, females tend to
rest while digesting, and it is therefore very unlikely to have
them transiting through the laser beam. With the exception of a
very few autogenous species, in order to become gravid, a
female mosquito must have had a blood meal in the previous
days as the complete digestion of the blood meal and the devel-
opment of the ovaries takes between 69 and 97 hours [30].
Adult females lay their eggs in various ways depending on the
species. For most species, females will lay around 100 to
300 eggs, in stagnant water. The eggs will then hatch as soon as
the conditions, water and temperature are favorable. Therefore,
monitoring the gravid female population together with atmo-
spheric conditions may provide information on when newly
emerged mosquitoes are likely to become active, which can be
used to anticipate the risk of exposure to infectious diseases.

This experiment is done in laboratory conditions with a pro-
totype operating at short range (≈4 m). As such, the current pro-
totype is not built for field experiments but solely for laboratory
measurements in a control environment. The system is built to
mimic a larger portable system, adapted for field measurement,
which would be capable of reaching greater range (≈100 m) uti-
lizing a telescope with larger collecting optics than the current
prototype. The optical layout of the emitting and receiving parts
would be identical to this prototype. The size for each part is
less than 25 × 25 × 25 cm3 with a weight below 2 kg, which
makes the system suitable to be mounted on the portable tele-
scope. An estimate of the minimum cost for a portable long-
range system would vary between 5000 and 10 000 USD,
mostly depending on the quality of the laser sources and tele-
scope primary mirror. The identification, also referred to as clas-
sification, is conducted using predictor variables such as the
wing beat frequency, depolarization ratios and optical cross
section ratios, extracted from the measurements of the dual-
wavelength polarization-sensitive optical system. The classifier
itself is based on supervised machine learning and relies on a
linear discriminant analysis (LDA) technique [31, 32].

2 | METHODOLOGY

2.1 | Experimental methodology

Figure 1 illustrates the layout of the optical system. This sys-
tem, described in more detail in a previous article [11],
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simultaneously records three different channels from two
continuous wave (CW) laser diodes in the short-wave infra-
red (SWIR) and near-infrared (NIR). The scattering effi-
ciency in the SWIR spectral range is rather unaffected by
water and melanin, which is the most common chromophore
in insect wings and body, while NIR scattering will vary
with the degree of melanization. Thus, the two wavelengths
were chosen in the NIR and SWIR spectral ranges in order
to maximize the contrast between their respective optical
cross sections. The first channel records the light wave back-
scattered by insects from a 924-nm CW laser diode
(L4-9891510-100M; Lumentum, Milpitas, California), den-
oted I924. The second and third channels collect the back-
scattered light from a 1320-nm CW laser diode linearly
polarized (4PN-116; SemiNex, Peabody, Massachusetts). A
polarizing beam-splitter cube separates parallel (//) and
cross-polarized (┴) backscattered signals with respect to the
laser polarization plane, resulting in channels I1320,// and
I1320,┴. As such, the system is rather similar to dual-
wavelength polarization sensitive lidars commonly used to
monitor and study atmospheric aerosols [33, 34]. For both
laser diodes, laser beams are superimposed, using a dichroic
mirror, to follow the same optical path and expended to
reach 2.54 cm full-width half-maximum diameter to increase
the likeliness of a mosquito transiting through the beams
while decreasing the beam divergence. The backscattered
intensity on all three channels is measured by Indium Gal-
lium Arsenide (InGaAs PDA20CS; Thorlabs, Newton, New
Jersey) amplified photodetectors with a 67 kHz bandwidth

and recorded with a 16 bit 250 MS/s 125 MHz bandwidth
digitizer (M4i4420-x8; Spectrum, Stamford, Connecticut).
Data were pre-averaged and acquired at a sampling rate of
30 517 Hz by the acquisition software.

All signals of mosquitoes transiting through the laser
beams, hereafter referred to as “events”, are measured in a
laboratory-controlled environment where the actual species,
sex and gravidity of the specimen is known. Several mosqui-
toes of the same species, sex and gravidity are introduced
into the enclosure chamber simultaneously. They are then
free to fly within the closed plexiglass tube and to cross the
laser beams.

In this study, three mosquito species of both sex were
studied:

• A albopictus (number of males: 23, number of females:
28, total: 51), commonly called the Asian tiger mosquito,
is present in Western countries such as the United States
and originates from Southeast Asia and its tropical and
subtropical areas. This species can be a vector of serious
diseases such as yellow fever and dengue to name a few
and is therefore of particular interest in respect to health
agencies.

• A vexans (number of males: 18, number of females:
20, total: 38), widely present in Europe and with a foot-
hold in most continents, including North America. These
mosquitoes can spread the deadly West Nile, Rift valley
fever or St. Louis encephalitis viruses. They also display
an aggressive biting behavior towards humans and are a

FIGURE 1 Optical layout of the dual-wavelength polarization-sensitive infrared optical system

GENOUD ET AL. 3 of 9



potential contributor to the recent North America Zika
outbreak.

• Culex Genus (mixed species) (number of males: 36, num-
ber of females: 30, number of gravid females: 63, total:
129), this Genus includes several species that are vectors
of disease. Culex is spread all across the globe and is the
most predominant Genus in the North America mosquito
population. Our samples primarily contained mixed
groups of morphologically similar C pipiens Linnaeus
and Culex restuans Theobald.

Mosquitoes came from the Hudson Regional Health
Commission, Mosquito and Vector Control. They were field
collected as larvae from various locations around Hudson
County, NJ, and reared in plastic trays (ca. 200 larvae/tray)
in 1 L of deionized water with 0.3 g of brewer's yeast pro-
vided on alternate days. After eclosion, adults were housed
in 30 x 30 x 30 cm3 aluminum screen cages at 26�C, 75%
relative humidity, with a 16:8 hour L:D photoperiod and
provided a 10% sucrose solution. During measurements, the
mosquitoes were at a temperature of 22 ± 1�C and between
30% and 80% relative humidity. All species were studied
from after they hatched until they died generally 12 to
18 days later. Gravid Culex mosquitoes were collected from
Secaucus, NJ, with a Center's for Disease Control gravid trap
[35] (John W. Hock Co., Gainesville, Florida) baited with a
hay infusion [36]. Collected Culex mosquitoes were visually
identified only to genus to avoid damage to the specimens
but were most likely C pipiens Linnaeus and C restuans
Theobald. Gravidity was visually confirmed by viewing egg
masses through the cuticle of the mosquitoes.

2.2 | Predictor variable and machine learning
classification

The optical layout allows to record the backscattered signals
on the three channels for which the contributions of the
wings (index w) and body (index b) can be differentiated [6,
17, 37], resulting in six measured backscattered signals
each proportional to the optical cross section σ924,w, σ924,b,
σ1320,//,b, σ1320,//,w, σ1320,⊥,b or σ1320,⊥,w. The backscattered
signals are calibrated using Lambertian white targets of
known size to retrieve the optical cross section in mm2. Sig-
nal intensities also vary with the position of the insect with
respect to the Gaussian spatial profile of the beam, namely
the position coefficient ρ which is equal to the ratio between
the power density at the insect position and the maximum
power density in the beam. The backscattered intensity will
be maximum when the insect is at the center of the Gaussian
beam (i.e. maximum power density, ρ = 1) and minimum
when the insect is outside the beam (i.e. ρ = 0). For every
event, the wing beat frequency and its harmonics can be

retrieved through a fast Fourier transform or the Welch
method on the wing backscattered signals. The wing beat
frequency has been shown to differentiate males from
females and to a lesser extent differentiate species of mos-
quito [7, 16–22]. Linear depolarization ratios δ are retrieved
from the parallel and cross-polarized backscattered signals,
as defined by Equation 1.

δ=G � I1320,⊥
I1320,==

=
σ1320,⊥
σ1320,==

ð1Þ

Where G is our calibration constant between our parallel
and perpendicular channel obtained using the calibration
method described in Alvarez et al [38].

In addition to the wing beat frequency, other predictor
variables can be extracted from the backscattered signals.
Once calibrated, the ratio between wings or body signals
from the three channels is equivalent to the ratios of their
optical cross sections. The predicator variables used in this
classification are based on every possible combination of the
ratio between the six optical cross sections. As one can
expect, some are more efficient that others, in the case of the
discrimination of gravid females, the most efficient predictor
variables are the body depolarization ratio, and the wing beat
frequency. On the other hand, predictor variables related to
wings, such as wing depolarization ratios or wing spectral
ratios, display little to no variation between gravid and non-
gravid females, making them inefficient predictor variables.
Predictor variables are described in detail in previous
work [11].

The value distribution of the predictor variables is used
to construct a classifier that uses the in-between class differ-
ences to differentiate predefined classes (understood as spe-
cies and/or sex and/or gravidity). In this contribution, the
classifier is built using supervised machine learning based
on LDA method. Un-supervised machine learning may be as
well suitable for such application; however the number of
recorded signals in this experiment, 1375, is currently too
low to properly train an un-supervised model. The LDA
method was chosen for different reasons: first, for its relative
simplicity of implementation, quick training time and natural
support of more than two simultaneous classes. Second,
LDA involves a dimensional reduction and reducing the
number of predictor variables can improve the prediction
accuracy [11]. This dimension reduction process involves
both the optimization of the separation between classes and
the minimization of the within-class variance. This reduction
is therefore effectively screening out the predictor variables
that are less suitable, or even possibly unsuitable, for the
specific classification task without requiring any prior
knowledge about the predictor variables meaning or relative
importance.
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In order to characterize the efficiency of the classifier, a
leave one out cross-validation is applied [39]. To this effect, the
data are divided in training and testing sets. Events from each
class are randomly separated into different subset of equivalent
sizes. All but one subset are used for training and the remaining
subset is used for testing. The process is repeated until every
subset has been used as a testing set exactly once.

Supervised machine learning classifiers are most efficient
when the training events are numerous. Yet, it is important
to ensure a relative balance between the number of events in
each class as imbalanced classes can lead to a decrease in a
classifier performance [40]. Since different classes can have
a different total number of events, a random under-sampling
method was used [41, 42]. Briefly, it consists of randomly
eliminating events from classes with most events until the
desired class distribution is achieved, which here, is the
same number of events in all classes. The downside of this
method is the potential loss of information from the removed
events. Yet random under-sampling, despite its relative sim-
plicity, has been shown to be an effective resampling
method and can be equally effective as more elaborate
resampling techniques [40, 42].

After applying the random under-sampling and leave one
out cross-validation, the results of the prediction are evalu-
ated. As the experiment is conducted in a laboratory-
controlled environment the correct class of every event is
known a priori and can be compared to the predicted class by
the LDA classifier. In this contribution, four different metrics
were chosen to evaluate the classifier. The overall accuracy of
the classification which is the percentage of correctly
predicted events throughout all classes (Equation 2), the recall
which is the percentage of events from a given class to be
predicted as such (Equation 3), the precision which is the per-
centage of events predicted as a given class that actually are
of this class (Equation 4 and the F1 score (Equation 5) that is
a common evaluation metric for multi-class classifiers.

OAC=

P

i
Nii

P

i
Nii +

P

i
Ni6¼j

, ð2Þ

Recall ið Þ= NiiP

j
Nij

, ð3Þ

Precision ið Þ= NiiP

j
Nji

, ð4Þ

F1 score ið Þ=2 � Recall ið Þ �Precision ið Þ
Recall ið Þ+Precission ið Þ , ð5Þ

where Nii is the number of all the correct predictions for the
class i, Nij the events of the class i predicted as class j, Nji

the events of the class j predicted as class i and Ni 6¼ j the
number of all the wrong predictions for the class i (either a
class i predicted as j or a class j predicted as i).

Those metrics can be applied and calculated for any
given LDA classifier. Yet, because of the random under-
sampling method and the limited number of accessible train-
ing data sets, the randomly selected pools of events can lead
to different results. This variability is limited to a few per-
cent difference between the best and worst results. To this
effect, 1000 LDA classifiers were created using random
under-sampling and evaluated using leave one out cross-val-
idation. The final characterization of each metric, presented
in section 3.2, is the average value calculated from the leave
one out cross-validation results of the 1000 LDA classifier.
Repeating the evaluation process induces a better characteri-
zation of the classifier and allows for an evaluation of the
variability of the average on each metric with a 95% confi-
dence interval using standard error extracted from the stan-
dard deviation.

3 | RESULTS AND DISCUSSION

3.1 | Data analysis

In this section, an example of a recorded event by the three
detection channels is presented in Figure 2. From the record-
ing on all three channels, the predictor variables are
extracted following the methodology described in
Section 2.2. This is applied to all of the 1375 recorded
events and then used to train and test the LDA classifier for
different class separation. First, the aim is to separate gravid
females of the Culex genus from non-gravid females of the
same genus, demonstrating the ability of the system to iden-
tify the gravidity of a specimen. Second, we extend the clas-
sification to include both male and female of the Ae.
albopictus and Ae. vexans species and the Culex genus in
order to show that even among a wider pool of species the
gravidity of the female Culex can still be retrieved
efficiently.

In Figure 2, one example of a mosquito event is pres-
ented. All three channels are simultaneously recorded, and
the predictor variables extracted from their analysis. The
more intuitive feature, presented in Figure 2A-C, is the peri-
odicity in the signal that is due to the wing orientation rap-
idly changing during the mosquito transit. This feature can
be observed by the periodic succession of sharp intensity
peaks. This allows for the retrieval of the wing beat fre-
quency and harmonics (Figure 2E) and the discrimination
between the wing and body contributions. Figure 2D
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presents the body contributions, the ratio between the
924 and 1320 nm body cross section slightly changes over
the course of the transit, potentially caused by the insect ori-
entation changing over time and, therefore, showing parts of
its body with different degrees of melanization. Both body
and wings optical cross sections appear to be higher in the

SWIR spectral range than in the NIR. The maximum optical
cross section of wings is on average 1.6 higher while the
body cross section is 2.5 higher.

As previously studied [7, 17, 24], dual-wavelength and
polarization-sensitive measurements can be useful, in addi-
tion to the wing beat frequency, for the species and sex

FIGURE 2 Signals of one mosquito transiting through the laser beams as recorded by the three channels. A, B and C present the weighted
optical cross section (*ρ, expressed in mm2) for, respectively, the 924, 1320 parallel and 1320 nm perpendicular channels. D presents the body
contribution for each signal. E presents the power spectrum of the signal and body signal at 924 nm, showing the wing beat frequency at 348 Hz and
its harmonics

FIGURE 3 Normalized histogram for the depolarization ratio of the body (A) and the wing beat frequency (B) for the gravid and non-gravid
female of the Culex Genus. Scatter plot for both aforementioned predictor variables and the same classes (C)
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identification of mosquitoes. The work presented here also
demonstrates that they can contribute to the identification of
the gravidity of female mosquito from the Culex Genus. As
displayed in Figure 3, the depolarization ratio measured from
the body of gravid females is higher on average than for non-
gravid females, respectively, 0.62 and 0.45 which represent
an increase of 38%. In addition, an increase of 5.2% can also
be observed in the average wing beat frequency, from 347 Hz
for non-gravid females to 365 Hz for gravid females due to
the insect compensating for the increase of its weight [43,
44]. Using the formulae provided by M. Deakin [45] relating
the wing beat frequency and the mass m of the insect, the
wing beat frequency increases with m0.3 leading to an increase
of mass between gravid and non-gravid of approximately
0.91 mg. A similar estimation of the change in mass, using
the depolarization ratio to infer the increase in optical path-
length in the scattering medium [46] and therefore the
increase in volume and mass, leads to an increase in mass of
0.47 mg. The Culex female lays between 100 and 300 eggs,
each fully grown egg weighting between 10 and 15 μg [47].
The retrieved increase in mass seems consistent considering
that measurements were made on gravid females at various
stages of the embryo development for which a lower egg
mass is expected. Furthermore, the number of eggs is corre-
lated with the volume of the blood meal, [48]; therefore, a
smaller blood meal could result in a reduced among of eggs.
This difference on both predictor variables is then used, along
with other predictor variables, to train the LDA classifier all-
owing the differentiation of gravid from non-gravid mosqui-
toes, as described in Section 2.2.

3.2 | Female gravid identification

The first part of the classification scheme is directed towards
the differentiation between gravid and non-gravid Culex
mosquitoes. To characterize the effectiveness of the LDA
classifier for this two-class system, the calculated evaluation

metrics are recall, precision, F1 score and overall accuracy,
as described in Section 2.2, and are displayed in Table 1.

These results show that predictor variables extracted from
dual-wavelength polarization-sensitive measurements can be
reliably used to train an LDA classifier for the purpose of
differentiating gravid mosquito from non-gravid mosquito.
When only the wing beat frequency is considered the recall
and precision are lower, by 26.9% and 21.3%, respectively,
meaning that the polarization-sensitive measurements greatly
improve the identification of gravidity. In addition to the
class-specific metrics presented in Table 1, the overall classi-
fication accuracy can be calculated (Eq. 2). For this classifi-
cation, the average overall accuracy is 86.6% ± 0.13%
which is 22.1% better than the classification that only
includes the wing beat frequency as a predictor variable.

The second scheme is also directed towards identifying
gravid Culex mosquitoes among a broader pool of possible
classes (Table 2), as expected in field measurements. This is
done by including male and female (all non-gravid) Ae.
albopictus, Ae. vexans and Culex mosquitoes to the previ-
ously described two class classification.

These results demonstrate that even when the gravid
females are identified within a larger pool of possible clas-
ses, namely other mosquito species and sex, they can still be
separated accurately. Moreover, the classifier still performs
efficiently for classes other than the gravid one with an over-
all accuracy of 75.7 ± 0.13%.

4 | CONCLUSION

In this contribution, a dual-wavelength polarization-sensitive
optical system is used in laboratory conditions to identify
the species, sex and gravidity of the free flying mosquitoes

TABLE 1 Results of the two class LDA classification

Average
precision

Average
recall

Average F1
score

Culex female
non-gravid

87.1 ± 0. 16% 85.9 ± 0.14% 86.5 ± 0.13%

Culex female
gravid

86.1 ± 0.13% 87.3 ± 0.17% 86.7 ± 0.13%

Note: Recall is the percentage of events from a given class to be predicted as
such (Equation 3). Precision is the percentage of event predicted as a given class
that are actually of this class (Equation 4). F1 score evaluates the efficiency of
multi-class classifiers (Equation 5). All results are given within the 95%
confidence interval.
Abbreviation: LDA, linear discriminant analysis.

TABLE 2 Results of the 7-class LDA classification

Average
precision

Average
recall

Average F1
score

Albopictus
male

84.6 ± 0.22% 75.2 ± 0.30% 79.6 ± 0.22%

Albopictus
female

77.1 ± 0.37% 70.0 ± 0.38% 73.2 ± 0.31%

Culex male 76.3 ± 0.37% 64.6 ± 0.29% 69.8 ± 0.25%

Culex female 79.3 ± 0.31% 79.4 ± 0.36% 79.2 ± 0.26%

Vexans male 72.4 ± 0.24% 77.2 ± 0.25% 74.7 ± 0.20%

Vexans
female

65.9 ± 0.30% 79.6 ± 0.35% 72.0 ± 0.26%

Culex female
gravid

78.9 ± 0.31% 83.7 ± 0.33% 81.1 ± 0.25%

Note: All classes are to be considered non-gravid unless otherwise specified.
Results are given within the 95% confidence interval.
Abbreviation: LDA, linear discriminant analysis.
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in its field of view at a distance between 3 and 4.25 m. From
the backscattered signals, 18 predictive variables, such as
wing beat frequency, depolarization ratios and backscatter-
ing coefficient ratios, are extracted and used to train a classi-
fier using supervised machine learning based on LDA. The
trained classifier is then able to identify the species and sex
of the free flying specimen and also if a female is
carrying eggs.

When the specimen is known to be a female of the Culex
genus the classifier is able to infer the gravidity with a preci-
sion of 86.1% meaning that 86.1% of the females predicted
as carrying eggs actually were, and a recall of 87.3% mean-
ing that 87.3% of all the female carrying eggs were identified
as such.

In the second part, a broader approach, closer to what can
be expected in an actual field measurement situation, was
tested. In this case, different species and sex are included in
the classification to evaluate if the gravidity of the female
could still be retrieved in a more complex situation. The
measurements were performed in a laboratory-controlled
environment where both sexes of the Ae. albopictus and Ae.
vexans species and of the Culex genus were introduced in
the classification to mimic a natural on-field situation where
more than one species and sex of mosquitoes can be
expected to be present at the same time. With this case, the
recall and precision for the gravid females of the Culex
genus reaches 83.7 and 78.9% respectively.

The main focus of this contribution is to identify the gra-
vidity of female mosquitoes, yet identifying the species and
sex is still important for entomological sensors. The species
and sex identification were also performed, in addition to the
gravidity, and results show the overall identification accu-
racy to be 75.7% demonstrating that retrieving the gravidity
along with species and sex is a possibility. Therefore, both
species/sex and gravidity identification can be conducted
simultaneously improving the value of entomological lidar
and optical system even further.

While a higher accuracy can be achieved using physical
traps, entomological lidars and optical systems can process a
much higher number of insects, remotely and in real-time.
As such, we believe that optical systems may be a viable
alternative or complementary methodology to study insect
ecosystems and/or monitor the population and behavior of
mosquito species related to infectious diseases.
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