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Abstract

Purpose: Metabolomics is a discovery tool for novel associations of metabolites with disease. 

Here, we interrogated the metabolome of human breast tumors to describe metabolites whose 

accumulation affects tumor biology.

Experimental Design: We applied large-scale metabolomics followed by absolute 

quantification and machine learning-based feature selection using LASSO to identify metabolites 

that show a robust association with tumor biology and disease outcome. Key observations were 

validated with the analysis of an independent dataset and cell culture experiments.

Results: LASSO-based feature selection revealed an association of tumor 

glycochenodeoxycholate levels with improved breast cancer survival, which was confirmed using 

a Cox proportional hazards model. Absolute quantification of four bile acids, including 

glycochenodeoxycholate and microbiome-derived deoxycholate, corroborated the accumulation of 

bile acids in breast tumors. Levels of glycochenodeoxycholate and other bile acids showed an 

inverse association with the proliferation score in tumors and the expression of cell cycle and 

G2/M checkpoint genes, which was corroborated with cell culture experiments. Moreover, tumor 

levels of these bile acids markedly correlated with metabolites in the steroid metabolism pathway 

and increased expression of key genes in this pathway, suggesting that bile acids may interfere 

with hormonal pathways in the breast. Lastly, a proteome analysis identified the Complement & 

Coagulation Cascade as being up-regulated in glycochenodeoxycholate-high tumors.

Conclusions: We describe the unexpected accumulation of liver- and microbiome-derived bile 

acids in breast tumors. Tumors with increased bile acids show decreased proliferation, thus fall 

into a good prognosis category, and exhibit significant changes in steroid metabolism.
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INTRODUCTION

Breast cancer is a heterogeneous disease and its biology is closely related to the expression 

of hormone receptors. Studies of the transcriptome discovered that breast tumors can be 

classified into subtypes with distinct biology (1,2). Of all subtypes, basal-like and HER2-

positive tumors tend to produce the most aggressive disease (3,4). Estrogen receptor-positive 

tumors mainly fall into the luminal A subtype category while tumors lacking the expression 

of the estrogen, progesterone, and HER2 receptors have been described as triple-negative 

tumors and largely overlap with the basal-like subtype. Factors besides molecular subtypes 

that associate with the prognosis of breast cancer patients include disease stage, the tumor 

proliferation index, the differentiation status and vascularization of a tumor, and a patient’s 

body mass (5-8).

The relationship of tumor metabolism with breast cancer subtypes and disease prognosis 

remains incompletely understood (9). Large differences in metabolite abundance have been 

observed between tumor and adjacent non-cancerous tissues and by estrogen receptor status 

(10,11). It has also been shown that TP53 and Myc signaling influence breast cancer 

metabolism (9,11,12). Preclinical and clinical studies have linked tumor metabolism to 

therapeutic response and patient survival (9,13). Thus, current research suggests that 

metabolic profiling of tumors may provide new opportunities to improve outcomes in breast 

cancer. Here, we interrogated the metabolome of human breast tumors to describe 

metabolites whose accumulation affects tumor biology and disease prognosis. We applied 

large-scale metabolomics and machine learning-based feature selection to identify 

metabolites that show a robust association with tumor biology and disease outcome. Key 

observations were corroborated using absolute quantification of selected metabolites and 

analysis of an independent dataset, and cell culture experiments. Our approach led to the 

identification of bile acids as metabolites that accumulate in breast tumors. Bile acids are 

important signaling molecules (14). Accordingly, tumors with increased bile acid content 

exhibited a distinct disease biology and an association with patient survival.

MATERIALS AND METHODS

Tissue collection.

Breast cancer patients were recruited between 1993 and 2003, as described previously 

(11,15,16). Patients completed a questionnaire and provided biospecimens. Samples of 

fresh-frozen tumor tissue and adjacent non-cancerous tissue were processed by a pathologist 

immediately after surgery at the Department of Pathology, University of Maryland. Clinical 

and pathological information was obtained from medical records and pathology reports. The 

collection of biospecimens and the clinical and pathological information was approved by 

the University of Maryland Institutional Review Board for the participating institutions 

(UMD protocol #0298229). IRB approval of this protocol was then obtained at all 
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institutions (Veterans Affairs Medical Center, Union Memorial Hospital, Mercy Medical 

Center, and Sinai Hospital, Baltimore, MD). The research was also reviewed and approved 

by the NIH Office of Human Subjects Research Protections (OHSRP #2248). Informed 

written consent was obtained from all patients and the research followed the ethical 

guidelines set by the Declaration of Helsinki.

Cell lines and bile acids.

Human breast cancer cell lines (MCF7, MDA-MB-175-VII, T47D, ZR-75–30) were 

acquired from the American Tissue Culture Collection (ATCC, Manassas, VA) and were 

cultured in RPMI (Life Technologies, Carlsbad, CA) with 10% FBS (Life Technologies). 

Cells were regularly authenticated using either a short tandem repeat analysis with 

GenePrint10 or STR profile creation (17 loci plus Amelogenin) from ATCC and tested for 

mycoplasma contamination. Four bile acids, deoxycholate (≥ 99%), chenodeoxycholate (≥ 

97%), glycodeoxycholate (≥ 97%) and glycochenodeoxycholate (≥ 97%), were purchased 

from Sigma-Aldrich (St. Louis, MO) and resolved in DMSO to a stock concentration of 100 

mM and then added to culture medium at indicated concentrations. The TGR5 and 

OATP1B1/3 antagonists, NF449 and rifampicin, were also obtained from Sigma-Aldrich.

Bromodeoxyuridine (BrdU)-based proliferation assay.

Cells were pre-seeded in 96-well cell culture plates (Corning Life Sciences, Tewksbury, 

MA) overnight and then cultured with added bile acids. Untreated and bile acid-treated cells 

were cultured for 24 hours and then assessed for cell proliferation using the BrdU 

colorimetric ELISA assay (Roche Applied Science, Indianapolis, IN) according to the 

provided protocol. Six to 12 biological replicates were analyzed per treatment condition and 

reported as mean ± standard error of the mean (S.E.M.). To study the ability of TGR5 and 

OATP1B1/3 antagonists to inhibit the anti-proliferative effects of deoxycholate, T47D were 

pretreated with 10 μM of antagonist for 24 hours before 20 μM deoxycholate was added for 

an additional 48 hours.

Metabolome analysis.

Metabolomic profiling of human breast tissues was performed using both an untargeted 

discovery approach and a targeted approach for validation and absolute quantification. 

Untargeted metabolic profiling of known and unknown metabolites in the discovery set 

included 67 human breast tumors and 65 tumor-adjacent noncancerous tissues and was 

performed by Metabolon Inc, as described previously (11,17). Additional metabolic 

profiling with absolute quantification of the four bile acids, deoxycholate, 

chenodeoxycholate, glycodeoxycholate, and glycochenodeoxycholate was performed at the 

Alkek Center for Molecular Discovery of Baylor College of Medicine using selective 

reaction monitoring and the Agilent 6490 Triple Quadrupole Mass Spectrometer system. For 

absolute quantification of bile acids in tissue extracts from 20 tumor-adjacent noncancerous 

tissue pairs, a random subset of the 67 tumors described above, we prepared serial dilutions 

of bile acid standards (all Sigma-Aldrich) to generate the calibration curve.
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Gene expression analysis.

Gene expression data existed for 61 breast tumors with metabolome data in the discovery 

set, as described (11). We performed RNA sequencing to obtain additional gene expression 

data for bile acid-treated cell lines (T47D, MDA-MB-175-VII). Here, cells were treated with 

deoxycholate for 24 hours prior to RNA isolation. RNA sequencing was performed using 3–

4 biological replicates. The data were deposited in the NCBI database (http://

www.ncbi.nlm.nih.gov). The NCBI BioProject ID is PRJNA544091. See Supplementary 

Methods for more details about the gene expression analysis.

Pathway analysis.

For pathway enrichment analysis, genes were ranked by t‐statistic and imported into the 

Gene Set Enrichment Analysis Preranked module (https://software.broadinstitute.org/gsea/

index.jsp) (18). Hallmark and KEGG gene sets were selected within MSigDB as references 

for pathway analysis. Visualization of particular pathways was performed using pathview, a 

tool set for pathway-based data integration and visualization in Bioconductor.

Proteomics data.

Large-scale proteome and metabolome data existed for 58 breast tumors. The mass 

spectrometry (MS)-based analysis of the proteome was performed as previously described 

(19). More details are provided in Supplementary Methods.

Tissue proliferation score.

We selected the array-based gene expression profiles of 11 cell cycle genes (BIRC5, 

CCNB1, CDC20, CEP55, MKI67, NDC80, NUF2, PTTG1, RRM2, TYMS, UBE2C) and 

summed them into a meta-gene score as a marker for tissue proliferation, as described 

previously (19-21). This proliferation signature also contains MKI67, the transcript which 

encodes Ki67, a commonly used proliferation marker using immunohistochemistry.

LASSO feature selection and concordance index.

We built predictive models for patient survival from a training set using Cox Proportional-

Hazards Regression modeling with L1 penalized log partial likelihood estimation (22). The 

predictive power of metabolomics data - when integrated with clinical variables - was then 

assessed by the concordance index (C-index) (23). The C-index is a nonparametric value to 

quantify the power of a predictive model, wherein a C-index of 1 indicates perfect prediction 

accuracy while a C-index of 0.5 is indicates a model not better than random chance. More 

details are provided in Supplementary Methods.

Statistical analysis.

Analyses were conducted using R version 3.5 (R Foundation for Statistical Computing; 

http://www.r-project.org/). Within R, the following packages were used: the following 

packages were used: pheatmap_1.0.12, pathview_1.24.0, org.Hs.eg.db_3.8.2, 

beeswarm_0.2.3, survival_2.44–1.1, ggplot2_3.1.1, DESeq2_1.24.0, Biobase_2.44.0, 

GenomicRanges_1.36.0, S4Vectors_0.22.0. All statistical tests were two-sided. P < 0.05 was 

considered statistically significant. The non-parametric Wilcoxon rank test was used for 
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group comparisons with continuous data. Box and whisker plots were used to display data in 

graphs. We used the Spearman rank correlation test and calculated rho to assess correlations 

between tumor markers. Survival analysis was performed for the 67 breast cancer patients in 

the discovery set with existing metabolome data. These patients had long-term follow up for 

breast cancer-specific survival. The Cox Proportional-Hazards Regression model was 

applied to estimate hazard ratios and a Wald test was used to evaluate the significance of 

outcome differences between risk groups. In the analysis, tumor metabolite levels were 

generally median-dichotomized to define high-abundance and low-abundance groups, except 

for glycochenodeoxycholate abundance measurements in the Metabolon dataset where the 

cutoff was set at the detection limit (above vs. at/below) because this metabolite was at/

below the detection limit in more than 50% of the tumors in this dataset. Ptrend for the Cox 

regression analysis was calculated using continuous data for tumor metabolite levels.

RESULTS

Glycochenodeoxycholate, a primary bile acid, is increased in a subset of human breast 
tumors and improves survival prediction in breast cancer.

In a previous study of 67 human breast tumors and 65 tumor-adjacent noncancerous tissues, 

our group described relative abundance levels of 536 metabolites in these tissues (11). Here, 

we further investigated the association of metabolites with patient survival and disease 

biology using this cohort. The characteristics of the 67 breast cancer patients are described 

in Supplementary Table 1. We restricted our analysis to those metabolites that were 

measurable in at least 25% of the tumors (n = 398) and explored their association with breast 

cancer survival in the context of other patient data using a cross-validation approach and 

LASSO-based feature selection for Cox regression modeling (Figure 1A). The predictive 

power of metabolomics data - when integrated with clinical variables – was assessed by the 

C-index, as described under Methods. Using only metabolomics data, top models achieved 

substantial predictive power with C-indexes being significantly higher than 0.5 (mean C-

index = 0.71) (Figure 1B), indicating the usefulness of metabolome data for survival 

prediction. When we applied an integrated model of metabolomics and clinical variables, we 

significantly improved the predictive power (mean C-index = 0.80, Wilcoxon signed rank 

test P < 0.001 comparing top metabolomics-based models vs. integrated models of 

metabolomics and clinical variables). The features that were most commonly selected by 

LASSO for survival prediction in the integrated models included the variables patient’s age, 

body mass index (BMI), menopausal and node status, and receipt of chemotherapy, as well 

as the five metabolites, deoxycarnitine, butyrylcarnitine, 3-dehydrocarnitine, 

glycochenodeoxycholate (GCDC) and 2-hydroxypalmitate (Figure 1C). Among these 

metabolites, GCDC is a liver metabolism-derived primary bile acid with an unexpected 

accumulation in a subset of breast tumors and adjacent non-cancerous tissue (Supplementary 

Figure 1). The other four metabolites are surrogates for changes in fatty acid metabolism in 

mitochondria and peroxisomes. The inclusion of these 5 metabolites into the integrated 

model for breast cancer survival prediction was substantiated with Kaplan-Meier plots and 

Cox proportional hazards analyses for GCDC (Figure 1D), deoxycarnitine, butyrylcarnitine, 

3-dehydrocarnitine, and 2-hydroxypalmitate (Supplementary Figure 2). Of these 

metabolites, only the increase in tumor GCDC levels associated with improved patient 
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survival (HR = 0.29, 95% CI: 0.1 to 0.83; Ptrend = 0.032 when continuous data were used in 

the Cox regression model). GCDC was associated with survival independent of patient’s 

age, BMI, menopausal and node status, and receipt of chemotherapy, or when the 

multivariable Cox regression analysis was additionally adjusted for tumor subtypes (HR = 

0.08, 95% CI: 0.02 to 0.65). Noteworthy, GCDC levels in breast tumors did not associate 

with patients’ BMI, arguing against an obesity effect that led to GCDC accumulation.

Absolute quantification of primary and secondary bile acids in human breast tissues 
shows their presence in tumor and adjacent non-cancerous tissues.

To further examine the occurrence of GCDC and other bile acids in breast tumors, we 

selected four bile acids, deoxycholate (DC), chenodeoxycholate (CDC), glycodeoxycholate 

(GDC) and GCDC, for the analysis. DC is a gut microbiome-derived bile acid, while the 

other three originate from liver metabolism. Forty breast tissues (20 tumor-adjacent normal 

pairs) were analyzed using selective reaction monitoring and the Agilent 6490 Triple 

Quadrupole Mass Spectrometer system for absolute measurements. With this approach, we 

could detect these bile acids in all 40 tissues at mean concentrations of 5.7 μM for DC, 19.3 

μM for CDC, 1.3 μM for GDC and 1.8 μM for GCDC (Figure 2A). A robust correlation (r = 

0.83) was observed when we compared between GCDC measurements using the Metabolon 

platform and our absolute quantification method (Figure 2B). GDC, GCDC and DC levels 

showed high correlations with each other (r > 0.5) in the breast tissues, whereas CDC 

followed a dissimilar accumulation pattern. The bile acids tended to be slightly elevated in 

tumor tissue when compared to adjacent non-cancerous tissues (Figure 2C), but no clear 

difference emerged between estrogen receptor (ER)-positive and ER-negative tumors 

(Figure 2D). GCDC levels were higher in luminal A tumors than other tumors (Figure 2E), 

which we confirmed with the analysis of the only publicly available dataset (“Duke cohort”) 

(Supplementary Figure 3A & B) that contains bile acid measurements for 25 breast tumors 

(12). Lastly, in an exploratory survival analysis using the absolute measurements of GCDC 

in the 20 breast tumors, we could corroborate our previous finding that increased GCDC in 

breast tumors is associated with improved patient survival (Figure 2F).

Transcriptome and proteome profiles of breast tumors indicate that increased bile acid 
levels inhibit tumor cell proliferation.

To further characterize the tumor biology associated with increased GCDC, we examined 

relationships of GCDC with the transcriptome and proteome. Having existing gene 

expression and proteome data from 61 and 58 breast tumors, respectively, in our NCI-

Maryland breast cancer cohort (11,19), we initially analyzed the transcriptome differences 

between the 15 GCDC-high versus the 46 GCDC-low tumors. The investigation identified 

73 transcripts that were significantly differentially expressed using a false discovery rate 

(FDR) < 5% and fold-difference > 2 as stringent cutoffs (Supplementary Table 2). A list of 

15 genes including BUB1, NUF2, AURKA, CDC20, CENPE/F/I, CCNB2, CDK1, FOXM1, 

PLK1 and TOP2A, all key regulators of the cell cycle and cell proliferation, showed 

significantly decreased expression in GCDC-high tumors (all were decreased between 2.1 to 

2.5-fold), while genes such as PROL1, PIP, WIF1, HBA1/2, IGF2 and COL14A1 that have a 

relationship with extracellular matrix and exosome secretion were up-regulated in these 

tumors (Figure 3A). A gene set enrichment analysis (GSEA) including all differently 
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expressed genes further corroborated these findings. The Cell Cycle KEGG pathway was the 

top down-regulated pathway (Enrichment score 0.65, FDR = 0) in GCDC-high tumors, with 

the down-regulation of G2/M checkpoint genes being the most significant change (Figure 

3B-C). We also assessed the proliferation score of each tumor, as described under Methods, 

and then correlated this score with GCDC levels in tumors. This analysis showed that 

GCDC-high tumors tend to have a low proliferation score, while the score is prominently 

higher in the GCDC-low tumors (Figure 3D). Our finding was validated with an analysis of 

the “Duke cohort” (12), the independent dataset with both metabolome and TCGA 

transcriptome data, showing that increased GCDC levels are associated with a significantly 

decreased proliferation rate in breast tumors (Supplementary Figure 3C). Similar inverse 

associations between tumor bile acid levels and the proliferation score were observed for 

GCDC, DC and GDC based on the analysis of their absolute measurements in 20 breast 

tumors (Supplementary Figure 4). However, we did not find that GCDC levels affected the 

tissue proliferation score in tumor-adjacent non-cancerous tissues (Supplementary Figure 5), 

indicating a distinct effect of GCDC on tumor biology.

As proteome data existed for 58 breast tumors in our study, we analyzed the relationship of 

tumor GCDC levels with proteome-defined tumor characteristics by applying GSEA with 

proteome-annotated genes. We made two key observations. GSEA identified the 

Complement & Coagulation Cascade gene set as one of the top up-regulated proteome-

defined gene sets in GCDC-high tumors and corroborated the down-regulation of G2/M 

checkpoint genes in these tumors (Supplementary Figures 6A-C & 7). The proteome data 

also suggested a down-regulation of fatty acid metabolism genes in GCDC-high tumors.

To gain an understanding of how bile acids are taken up into breast tumors, we examined the 

relationship of tumor bile acid content with the following known bile acid transporters: 

ASBT (SLC10A2), NTCP (SLC10A1), and OATP1B1 & B3 (SLCO1B1 and SLCO1B3). 

We used the tumor content data for GCDC and DC from the absolute measurements in 20 

tumors (Figure 2A) for this analysis. We found that GCDC tumor content significantly 

correlated with the transcript expression of SLCO1B1 (rho = 0.56, P = 0.02) whereas DC 

correlated with the expression of both SLCO1B1 (rho = 0.37, P = 0.03) and SLCO1B3 (rho 
= 0.34, P = 0.04). To further assess the contribution of the organic anion transporter 

OATP1B1 to bile acid uptake into breast cancer cells, we pre-treated T47D cells, which 

express SLCO1B1 but not SLCO1B3, with an antagonist of the OATP1B1/3 transport 

system, rifampicin (24), and then challenged the cells with DC (Supplementary Figure 8). 

This experiment showed rifampicin attenuates the growth inhibitory effect of DC, indicating 

the importance of OATP1B1 for bile acid uptake into T47D cells.

Association of GCDC with metabolome profiles of breast tumors denotes activation of the 
sterol/steroid metabolism in GCDC-high tumors.

To further gain an understanding of metabolites that are correlated with GCDC tissue levels, 

we conducted a correlation analysis between GCDC and the other 397 metabolites across all 

132 tissue samples in the study. The analysis identified 51 metabolites that significantly 

correlated with GCDC (Figure 4). Of those, 21 were positively and 30 were negatively 

correlated with GCDC (all P < 0.05). Further analysis showed that these metabolites were 
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enriched for members in the Sterol/Steroid Metabolism sub-pathway. Enrichment in this 

pathway positively correlated with GCDC levels (hypergeometric test P =2.1×10−4). 

Androsterone sulfate and dehydroepiandrosterone sulfate (DHEA-S) were among these 

metabolites and had the highest correlation of all metabolites with GCDC (r = 0.72 and r = 

0.69, respectively; adj. P < 0.001 each, adjusted for multiple comparison analysis). When we 

restricted the analysis to tumor samples only, this positive correlation with metabolites in the 

sterol/steroid pathway remained (r = 0.63 each; adj. P < 0.001). We then validated this 

finding with the analysis of our independent dataset (“Duke cohort”), verifying the positive 

correlation between tumor GCDC levels and various sterol/steroid pathway metabolites, 

including androsterone sulfate, DHEA-S, epiandrosterone sulfate, and 4-androsten-3beta,

17beta-diol disulfate 1 (r = 0.38 to 0.61, all P < 0.05).

Bile acids inhibit proliferation of human breast cancer cells.

Multiple studies previously examined effects of bile acids on cancer cell growth and 

reported both pro- and anti-proliferative effects of these bile acids in different cancer cell 

models including breast cancer (25-29). To re-visit this question and to obtain further 

clarification whether bile acids are growth-inhibitory in breast cancer cells, four luminal A 

breast cancer cell lines, MCF7, MDA-MB-175-VII, T47D, and ZR-75–30 (30), were treated 

with either 10 to 100 μM of DC or CDC, or with 10 to 500 μM of GDC or GCDC, and 

proliferation was assessed with a BrdU incorporation assay (Figure 5). Although all bile 

acids had a growth inhibitory effect in the luminal A breast cancer cells, both DC and CDC 

were more potent in inhibiting cell growth than their glycine conjugates, GDC and GCDC, 

which is likely explained by the limited uptake of GDC and GCDC into cultured cells. DC 

showed significant growth inhibitory effects in cell culture for three cell lines, T47D, MDA-

MB-175-VII and ZR-75–30, at concentrations that are found in breast tumors (see Figure 

2A) while GCDC did not.

RNA sequencing shows that DC inhibits cell cycle progression and increases steroid 
biosynthesis in breast cancer cells.

To further characterize the changes that are induced by bile acids in breast cancer cells, 

T47D and MDA-MB-175-VII cells were treated with 20 and 50 μM DC, which are 

physiologically relevant concentrations and induce growth arrest in these cells according to 

our BrdU assay. Following treatment for 24 hours, we performed RNA sequencing to 

examine the gene expression changes induced by DC. A principle component analysis 

pointed to significant differences in gene expression between treated and untreated cells 

(Figure 6A,E), accompanied by significantly decreased cell proliferation scores in treated 

cells (Figure 6B,F), consistent with our data from human breast tumors. The DC-induced 

expression changes were dose-dependent (Figure 6C,G) and affected a core set of pathways, 

as shown by GSEA (Figure 6D,H). Notable, cell cycle- and DNA replication-related genes 

were down-regulated, and so were many DNA repair-related genes. In contrast, DC 

treatment led to the induction of steroid biosynthesis genes (Supplementary Figure 9 and 

Supplementary Table 3), consistent with human breast tumor data that pointed to an increase 

in sterol/steroid metabolism-related metabolites in GCDC- and DC-high breast tumors. DC 

also altered expression of genes in the Steroid Hormone Biosynthesis pathway 

(Supplementary Figure 10 and Supplementary Table 4). We followed up on this observation 
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and examined the expression of key enzymes in the estrogen metabolism pathway and their 

correlation with tumor GCDC content. Within the group of luminal A tumors that tend to 

have the highest GCDC content and express estrogen receptor α, we found a positive 

correlation with GCDC for catechol-O-methyltransferase (COMT; rho = 0.45, P = 0.03), 

17β-hydroxysteroid dehydrogenase 2 (HSD17B2; rho = 0.49, P = 0.02), and sulfotransferase 

1E1 (SULT1E1; rho = 0.37, P = 0.08), with an average increase in expression of these genes 

in GCDC-high tumors by 15–30%, based on transcript levels. Notable, all three enzyme 

activities are predicted to decrease estradiol availability in the tumor.

DISCUSSION

Here, we report a distinctive tumor biology and less aggressive disease in breast cancer 

patients that accumulate bile acids in their tumors. Most notable, these tumors exhibit a low 

proliferation index based on gene expression data, which is consistent with our cell culture 

data showing that bile acids tend to inhibit cell cycle progression. Increased tumor 

proliferation is one of the most important adverse markers for clinical outcome in breast 

cancer (7), specifically in luminal A tumors (8). Since luminal A tumors may contain the 

highest bile acid concentrations, as our data for GCDC indicate, GCDC and other bile acids 

may determine the tumor biology of this subtype more so than of other breast cancer 

subtypes. The reason of why bile acids may accumulate in these tumors remains to be 

determined, but our data imply that the process is not related to body mass or obesity.

Bile acids are produced by the liver and are commonly modified by the gut microbiome after 

their secretion into the bile and the lumen of the small intestine (31). It remains unclear 

whether they are modified by the microbiome of organs other than the gut. Recent 

publications indicate the presence of bacteria in breast tumors (32,33). Similarly, bacteria 

can be found in normal human breast tissue and breast milk (34-36). Thus, it is possible that 

this microflora has an influence on the composition of bile acids in human breast tissue. Few 

previous studies investigated the relationships of bile acids with breast disease. It was shown 

that DC, CDC, lithocholate, and cholate can be detected in breast cyst fluid from women 

with fibrocystic disease (37). In a follow up study, the same authors showed that deuterated 

CDC quickly appears in cyst fluid after being ingested by volunteers (38). Thus, there is 

uptake of bile acids into breast tissue. Others reported slightly elevated plasma bile acid 

concentrations in postmenopausal women with breast cancer comparing 20 patients with 

matched controls (39). We observed that the bile acid contents of tumor and adjacent non-

cancerous tissues are not significantly different, indicating that bile acids are not selectively 

taken up into tumors. However, we observed an inverse relationship between GCDC tissue 

level and the proliferation score only in tumor tissue. The data argue for a distinct effect of 

bile acids on tumor biology.

Several studies have investigated the effects of bile acids in breast cancer cell lines. The 

findings are rather heterogenous suggesting pro- and anti-tumor effects. Two studies 

reported growth stimulatory effects of bile acids at up to 100 μM concentrations in MCF-7 

cells (25,40). Others reported that DC promotes survival of MDA-MB-231 and 4T1 breast 

cancer cells (41,42). In contrast, anti-tumor effects, including inhibition of growth, were 

observed by different investigators (27-29). One of these studies reported decreased long-
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term survival of CDC- and DC-treated MCF-7 cells and destabilization of HIF1α (28). In 

our investigations, DC but not GCDC led to an inhibition of proliferation in human luminal 

A breast cancer cell lines at concentrations that we observed in breast tumors. Bile acids 

may directly interfere with the cell cycle and synergize in their effects on tumor biology 

because GCDC, GDC and DC levels show high correlations with each other in breast 

tissues, as shown by data in this study. Yet, the inverse relationship between their tumor 

levels and the tissue proliferation rate may involve other mechanisms, such as the 

interference of bile acids with the hypoxia response, as postulated by Phelan et al. (28). 

Additional mechanisms may include an increase to drug sensitivity in presence of bile acids, 

as was reported recently (43), or an effect on steroid hormone biosynthesis towards a 

decreased estrogen availability in tumors, as suggested from our gene expression data in 

GCDC-high luminal A breast tumors. Additionally, bile acids may also accumulate in 

tumor-associated fibroblasts and adipocytes and interfere with estrogen metabolism in these 

cells.

Bile acids signal through the farnesoid X receptor (FXR) and G-protein-coupled bile acid 

receptor 1 (TGR5) (14). Our assessment of available gene expression data for these two 

receptors in breast tumors and breast cancer cell lines indicated a rather low expression. 

Nevertheless, treatment of T47D cells with NF449, a TRG5 antagonist, attenuated the 

antiproliferative effects of DC (Supplementary Figure 8). Other studies have shown FXR 

protein expression in these cell lines and tumors using Western blot analysis and 

immunohistochemistry (27,44-46). As a general finding, FXR signaling in these cell lines 

led to oncosuppressive effects (27,44,45). Consistent with these observations, high FXR 

expression in human breast tumors was associated with favorable patient survival in one 

analysis (46). These data further substantiate our findings that the tumor bile acid content 

associates with a less aggressive disease and improved patient survival in breast cancer. 

Moreover, the upregulation of genes in the sterol/steroid metabolism in GCDC-high breast 

tumors is consistent with FXR and TGR5 activation and signaling, although most of our 

understanding about these receptors comes from studies of the liver and gut (47,48). Lastly, 

our observation that the Complement & Coagulation Cascade is upregulated in GCDC-high 

tumors based on proteome data for these tumors could be related to the presence of FXR and 

TGR5 in immune cells and adipose tissue, or an activation of FXR signaling in the liver 

(49).

Bile acids interfere with glucose, fatty acid and lipid metabolism through FXR signaling 

(14). Our proteome data suggest a down-regulation of fatty acid metabolism genes in 

GCDC-high tumors. In addition, bile acids can inhibit carnitine acetyltransferase activity, as 

shown previously (50). Carnitines facilitate the transport of long-chain fatty acids into 

mitochondria for β-oxidation. Interestingly, the three carnitines that were found to be 

associated with reduced breast cancer survival in our study, butyrylcarnitine, 3-

dehydrocarnitine, and deoxycarnitine, all show an inverse association in tissue levels with 

GCDC (rho = −0.39, P < 0.001; rho = −0.35, P = 0.003; rho = −0.43, P < 0.001, 

respectively). Thus, the accumulation of bile acids in breast tumors may also lead to a 

disturbance in carnitine metabolism and inhibition of fatty acid metabolism, which should be 

investigated in future studies.
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In summary, we report the first evidence that liver- and microbiome-derived bile acids 

accumulate in a subset of human breast tumors and inhibit their growth and improve patient 

survival. Future research is needed to gain more insight into the bile acid-induced signaling 

cascade in breast tumors and the involvement of cancer-associated fibroblasts and adipocytes 

in this biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

The intrinsic potential for a breast tumor to progress is often difficult to evaluate. Here, 

we analyzed large-scale metabolome data and their relationship to the transcriptome and 

proteome in human breast tumors and found that liver- and microbiome-derived bile acids 

accumulate in a subset of the tumors. These tumors have distinct disease characteristics 

including a low proliferation score and alterations in the steroid metabolism pathway. Our 

findings were corroborated in in vitro experiments with bile acid-treated human breast 

cancer cells. Together, our findings suggest that bile acids may cause a reprogramming in 

breast cancer biology towards a less aggressive disease and thereby improve breast cancer 

outcomes.
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Figure 1. Metabolomics improves survival prediction for breast cancer.
A. Computational approach to build a survival prediction model using LASSO feature 

selection for Cox proportional hazards modeling. B. Concordance indexes for two models, 

either including only metabolomics data (398 metabolites) or a combination of clinical and 

metabolomics data (clinical + metabolomics). The dashed red line (C-index = 0.5) would 

represent models with no prognostic power whereas a C-index of 1 indicates a perfect 

prediction accuracy. Shown are the medians and confidence intervals not crossing the red 

line. C. Top ten features selected from the training set using LASSO feature selection for 

survival prediction in the validation set. PCT, percentage. D. Association of tumor 

glycochenodeoxycholate content with breast cancer-specific survival. Kaplan-Meier plot and 

hazard ratio (HR) estimates in the unadjusted and adjusted Cox regression analysis. High: 

elevated glycochenodeoxycholate levels (n=18). Low: detection limit or below (n=49). 

Adjusted analysis with patient’s age, BMI, menopausal and node status, and receipt of 

chemotherapy as covariables.
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Figure 2. Absolute quantification of bile acids in 20 breast tumor-adjacent non-cancerous tissue 
pairs.
A. Shown is the concentration of four bile acids across the 20 tissue pairs (n = 40) measured 

by mass spectrometry. Average concentration of the bile acids is 5.7 μM for deoxycholate 

(DC), 19.3 μM for chenodeoxycholate (CDC), 1.3 μM for glycodeoxycholate (GDC), and 

1.8 μM for glycochenodeoxycholate (GCDC). Box plots with median values (horizontal 

line). B. Pearson’s correlation coefficients matrix that includes measurements for the four 

bile acids and the relative abundance measurement of GCDC by Metabolon in these 40 

tissues. In-house absolute measurements of GCDC and the relative abundance measurements 

by Metabolon show a high correlation (r = 0.83). Shades of red indicate a high correlation 

while shades of green indicate a low correlation. C-E. Bile acid concentrations after 

stratification into normal vs. tumor with fold difference (FD) (C), ER-negative (ER−) versus 

ER-positive (ER+) tumors (D), and luminal A tumors vs. other tumor subtypes (E). Fold 

difference was calculated from the mean value for each group and the Wilcoxon rank test 

was used for significance analysis. F. Kaplan-Meier survival plot after stratifying tumors into 

low and high GCDC with the median as cutoff.
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Figure 3. Transcriptome profile of GCDC-high tumors indicates that GCDC may target cell 
cycle pathways and inhibit tumor cell proliferation.
A. Hierarchical clustering based on differentially expressed genes between tumors with high 

(n=15) or low (n=46) abundance of GCDC. Heatmap represents the most differentially 

expressed transcripts associated with GCDC abundance with ∣fold change∣ > 2 and FDR < 

0.05 (n = 73). Low GCDC: GCDC is at the detection limit in these tumors. Red indicates up-

regulated genes and green indicates down-regulated genes. Cluster 1 is enriched for GCDC-

high tumors. B. Gene set enrichment analysis identifies the KEGG Cell Cycle pathway as 

the top down-regulated pathway in GCDC-high breast tumors (Enrichment score = −0.65 

and FDR < 0.05). C. Genes were mapped to the KEGG Cell Cycle pathway and labeled as 

red and green when up- or down-regulated in GCDC-high tumors, respectively, indicating 

common down-regulation of G1, S, and G2/M phase genes. Dark green indicates down-

regulation of many G2/M phase genes. D. Tumor proliferation score is higher in GCDC-low 

than GCDC-high tumors. A Wilcoxon rank test was applied for significance testing to 

compare proliferation scores between GCDC-high (n = 15) and low tumors (n = 46).
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Figure 4. GCDC abundance correlates with metabolites in the Sterol/Steroid pathway.
Shown is the correlation between abundance of GCDC and other metabolites across 132 

breast tissues (67 breast tumors and 65 adjacent noncancerous tissues). Fifty-one metabolites 

were identified as significantly correlated with GCDC using Pearson’s correlation. The 

Sterol/Steroid pathway is the most significantly enriched metabolic pathway and positively 

correlated with GCDC levels (hypergeometric test: P =2.1×10−4). Androsterone sulfate and 

DHEA-S are among the most significantly correlated metabolites, having correlation 

coefficients of r = 0.72 and 0.69, respectively, with GCDC tissue content.
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Figure 5. Bile acids inhibit proliferation of breast cancer cells.
Proliferation was measured by BrdU incorporation and normalized to untreated cells. Shown 

are relative ratios (BrdU incorporation of untreated = 1) with mean ± S.E.M. Cells were 

seeded into 96 well plates and incubated with 10, 50, 100, or 500 μM of bile acid (DC, CDC, 

GDC and GCDC) for 24 hours. * P < 0.05, ** < 0.01, *** < 0.001, for significantly altered 

BrdU incorporation. Significance testing was performed with ANOVA and a posthoc t-test.
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Figure 6. Pathway alterations in human breast cancer cells treated with deoxycholic acid (DC).
Analysis of RNA sequencing data from T47D (A-D) and MDA-MB-175-VII (E-H) cells. 

A,E. Principle component analysis of gene expression data from untreated cells (mock), or 

cells treated with either 20 μM (DC20) or 50 μM DC (DC50). Untreated and treated groups 

are clearly separated. B,F. DC treatment decreases the cell proliferation score. Regression 

analysis with P value calculated using the Wald test. C,G. Changes in gene expression are 

related to the dose of DC. Heatmaps represent the most differentially expressed genes (FDR 

< 0.05). D,H. Gene set enrichment analysis. A bar plot shows the top-ranked pathways with 

the directional enrichment score (FDR < 0.05 for inclusion). Blue bars represent an 
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inhibition and red bars an activation with treatment. Color scale corresponds with statistical 

significance while the dots represent the enrichment scores.
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