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Understanding when, where and which mutations are mostly
likely to occur impacts many areas of evolutionary biology,
from genetic diseases to phylogenetic reconstruction. Africans
and non-African humans differ in the mutability of different
triplet base combinations. Africans and non-Africans also differ
in mutation rate, possibly because heterozygosity is mutagenic,
such that diversity lost when humans expanded out of Africa
also lowered the mutation rate. I show that these phenomena
are linked: as flanking heterozygosity increases, some triplets
become progressively more mutable while others become less
so. Africans and non-African show near-identical patterns of
dependence on heterozygosity. Thus, the striking differences in
triplet mutation frequency between Africans and non-Africans,
at least in part, seem to be an emergent property, driven
by the way changes in heterozygosity ‘out of Africa’ have
differentially impacted the mutability of different triplets.
As heterozygosity decreased, the mutation spectrum outside
Africa became enriched for triplet mutations that are favoured
by low heterozygosity while those favoured by high
heterozygosity became relatively rarer.
1. Introduction
Mutations are classically viewed as occurringmore or less randomly,
to the extent that they form a molecular clock. However, a
burgeoning wealth of sequence data has allowed ever-more
detailed analyses of factors that impact when, where and what
mutations are most likely. As a result, many deviations from the
random model have been uncovered [1,2], including variation in
rate between related lineages [3], mutation clustering [4,5], higher
mutation rates in late-replicating DNA [4] and co-occurrence of
mutations on the same strand [4,6]. There is also evidence tying
some variation in mutation rate to variation in DNA mismatch
repair genes [7]. Despite this, many aspects remain obscure [8].
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Two particularly interesting observations show that the mutation process differs between human

populations. First, Africans and non-Africans differ in the mutability of different base triplets [9–11]. For
example, TCC→ TTC mutations are significantly commoner outside Africa compared with inside and,
overall, a principal components analysis performed on all 192 possible changes clearly splits Africans
from non-Africans and even major geographical regions within Eurasia [10]. More recent analyses have
extended these observations to wider genomic contexts and other population groups [9]. Second,
Africans and non-Africans appear to differ in their mutation rate, though different datasets yield patterns
that run in opposing directions. Over all variants, mutation rate appears slightly higher outside Africa
[12], but when based only on variants that probably arose after the ‘out of Africa’ event, the meaningful
part of their history when they became separate populations, the rate is considerably higher in Africa.
Across the genome, the difference in mutation rate between Africans and non-Africans is strongly
predicted by the amount of variability lost during the ‘out of Africa’ bottleneck: regions where most
variability was lost show the biggest excess mutation rate in Africa [13].

One possible explanation for the link between heterozygosity andmutation rate is that heterozygosity is
mutagenic (the heterozygote instability hypothesis, HI) [14–16]. This hypothesis is rooted in observations of
meiosis where, in the synaptanemal complex, extensive regions of heteroduplex DNA are formed in which
heterozygous sites become mismatches [17,18]. Such mismatches are recognized and ‘repaired’ by gene
conversion-like events [19,20], a process that has been documented in great detail in yeast and probably
operates across all diploid eukaryotes. Consequently, DNA surrounding heterozygous sites will tend to
experience an extra round of DNA replication in which additional mutations can occur [16], just as it
does for DNA replication associated with recombination [21] and as is suggested by the way mutation
rate increases near micro-deletions [22]. Taken together, this evidence lends credibility to the idea that
heterozygosity and mutation rate could be positively correlated.

The presence of two unexpected patterns, a difference in rate and a difference in type, both seen most
strikingly when modern African and non-African humans are compared, begs the question whether the
two might be linked. Specifically, since mutation rate appears to correlate with heterozygosity [13,23],
could it be that local heterozygosity also impacts the types of mutation that are most likely? Here I test this
possibility and show that heterozygosity indeedhas a significant impact on themutabilityofdifferent triplets.
2. Results and discussion
There are two possible approaches for exploring a link between flanking heterozygosity and tripletmutation
probability. Most direct would be to analyse large numbers of deeply sequenced mother–father–offspring
trios. Unfortunately, the amount of data required still exceeds that which is readily available in the public
domain: even the approximately 17 000 mutations identified in the huge Icelandic dataset [4] is modest in
the context of identifying subtle trends across 192 possible triplet mutation types and of course does not
include African data. The alternative is to use population samples and exploit the fact that the
overwhelming majority of rare variants reflect recent mutations. Variants found only in one population
are likely to have originated in that population in a context that can be approximated by modern
heterozygosity. Although indirect, this approach benefits from the vastly greater number of variants that
can be brought into the analysis. I therefore chose to analyse the 1000 genomes Phase 3 data [24].

To obtain the best match between current heterozygosity and heterozygosity when a variant arose, it
is vital to focus on the youngest possible variants. It has been estimated that most variants present in just
two copies in the 1000 g data are less than 500 generations old [25]. Singletons will be younger still but
are more likely to include some unknown proportion of sequencing errors. By contrast, tripletons will be
both rarer and, on average, older. In view of this, I decided to focus mainly on singletons and doubletons,
but also extracted data for variants present in up to five copies. To reduce further the chance of including
older variants, I also required that all copies of a given variant were found in the same major
geographical region (Africa, Europe, South Central Asia, East Asia, America).

For each variant, themajoralleles and immediate flanking reference sequence baseswere used todefine a
mutating triplet. Each triplet on one strand is equivalent to a complementary triplet on the other strand
meaning that the 64 possible triplets can be collapsed to 32 triplets with either A or C as the central
mutating base, giving 96 possible mutations (32 triplets times three possible changes for each).
Heterozygosity was quantified for a 2 kb window centred on the mutating base, a value chosen to reflect
the likely size of gene conversion events [19]. For comparison, I repeated all analyses for a 10-fold larger,
20 kb window. Perhaps not surprisingly given the high levels of linkage disequilibrium at this genomic
resolution, the results were essentially identical, so only the 2 kb window results are presented. The
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Figure 1. (a,b) Relationship between heterozygosity and mutating triplet frequency for all 96 possible triplet mutations partitioned
by population. Heterozygosity (horizontal axis) is calculated for a 2 kb window centred on each singleton variant in the 1000
genomes data and is allocated to 30 equal bins. Bin 30 contains all sites with scores greater than 30. Vertical axis is
proportion of all mutating triplets × 1000. Each panel depicts the data for one type of mutation, given above the panel.
ACA(A) signifies mutations of type ACA→ AAA. Data for each major geographical region are coded: Africa (black), Europe (red),
Southern Asia (blue), East Asia (yellow), America (green). Panels of particular interest are indicated with stars: geographical
regions differ (red star); an example of an increasing trend (blue star); an example of a decreasing trend (black star).
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1000 g data are low coverage and include much imputation, making individual heterozygosity somewhat
unreliable. However, population base frequencies are determined with reasonable accuracy. I therefore
calculated expected heterozygosity assuming Hardy–Weinberg proportions and unlinked loci. In reality,
variable bases will be in strong linkage disequilibrium, but this should act only to increase the error
variance, making any trends found conservative.

General linear models were fitted for each triplet–major geographical region (Africa, Europe, Central
South Asia, East Asia, America) combination, with the proportion of all mutating triplets fitted as the
binomial response and heterozygosity in 30 discrete bins as the predictor. The data are summarized in 96
individual plots of triplet proportion as predicted by heterozygosity bin (figure 1a,b). Many triplets reveal
rather weak trends but some either become much more likely (e.g. CAC→C, blue star figure 1a) or much
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Figure 2. (a,b) Relationship between heterozygosity and mutating triplet frequency for all 96 possible triplet mutations partitioned by
variant frequency. In these plots, region is held constant (=Africa) and the number of each variant is varied between one and five, with one
(singletons) being the darkest blue and five being the lightest. The red star draws attention to the triplet mutation type, CAC(G), where
singletons differ most from commoner variants. Other details are given in the legend to figure 1a,b.
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less likely (e.g. ACA→ T, black star figure 1b) as heterozygosity increases. Effect sizes are modest: in these
two examples, the proportions of all mutations that are CAC→C and ACA→ T rise and fall, respectively,
by 30% and 23% between genomic regions with the lowest and highest heterozygosity. In most cases, all
five geographical regions exhibit very similar trends but in a few cases one or more regions differ
noticeably in intercept, two examples being indicated with red stars in figure 1a. Interestingly, TCC-T, the
triplet showing the biggest African–non-African difference in prevalence [9,11], shows little difference
between regions. Harris and Pritchard speculate that the difference between Africa and Europe might be
due to a genetic modifier of mutation rate [10,11], and this explanation remains plausible given that the
dependency on heterozygosity of this triplet is no stronger than is seen for a number of other triplets.

I also set region to Africa and plotted data for variants present in one (darkest blue) to five (lightest blue)
copies (figure 2a,b). Africawas chosen because, with generallymore rare variants, there is less scatter. Other
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royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191018
5

regions give essentially identical results butwithmore scatter. Formost triplets, variants present in different
numbersyield very similar trends.However, there is a notable exception, CAC→G, indicated bya red star in
figure 2b, where the singletons tend to be consistently relatively rarer than commoner variants. Similar but
slightly weaker trends are also observed for other triplets of the form XA[C/G](G), suggesting a role for a
CpG effect [2], linked either to sequencing errors or back-mutations.

The various possible triplet changes reveal several higher-order patterns. First, while most C→ T
transitions increase in relative frequency with increasing heterozygosity, most A→G transitions show a
significant decrease. Second, the two possible types of transition mutation generally reveal opposing
slopes with heterozygosity. Thus, C→ T transitions have mostly negative slopes while A→G transitions
are mostly positive. These patterns are illustrated in terms of the actual regression coefficients in figure 3
(transitions) and figure 4 (transversions). Crucially, for any give triplet, all five geographical regions yield
extremely similar slopes, particularly for transitions, where sample sizes are larger. Such consistency
across independent samples from different geographical regions lends strong support to the idea that,
although the effect sizes are small, the trends are highly significant.

In her work on the overall relative frequencies of different mutations, Kelley Harris found a large
difference between African and non-African populations [11]. However, when analysed by heterozygosity,
the African data points (black) do not stand out as different from any of the other four data series.
Consequently, it seems that all populations show extremely similar if not identical dependencies on
heterozygosity. The level of similarity is particularly striking given that each variant number equates to a
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different mean age in each of the different populations [25] and that the heterozygosity surrounding a site
where and when a mutation occurred in an individual is only crudely approximated by population level
heterozygosity measured in current samples. With such similar dependencies of triplet mutability on
heterozygosity, the large loss of heterozygosity ‘out of Africa’ must have impacted the mutation spectrum
and may well go a long way towards explaining the shifts in mutation probability reported by Harris.

To askwhether there are any sub-trends associatedwith the flanking bases, I next plotted the slope of the
relationship with heterozygosity against GC content for each of the six possible mutation types (figure 5).
Excepting C→G transversions, all other mutations reveal significant (r > 0.72, p < 0.001) positive
correlations. This means that the mutability of a triplet in higher heterozygosity regions increases with
triplet GC content. Moreover, the slopes of the relationships are all very similar, even though the
intercepts differ. Together, these trends suggest that recent mutations in Africa, being on average in
regions with relatively higher heterozygosity, should be skewed towards the types that become more
likely in higher heterozygosity regions. Transitions and transversions show opposing trends but
transitions are generally commoner. Assuming the overall trend is dominated by transitions, the higher
heterozygosity of Africans should favour C/G mutations, while non-Africans should carry relatively
more A/T mutations. Such a pattern agrees well with the patterns reported by Harris and Pritchard,
suggesting that these are, at least in part, an emergent property generated by a demographically induced
change in genome-wide heterozygosity.

The most obvious alternative model to one based on heterozygosity is the one where mutation rate
and mutation type are generally correlated, such that mutation hotspots, which will tend to have elevated
heterozygosity, also exhibit a different mutation spectrum compared with cold spots. However, this
model fails in the case of non-African humans where the massive loss of heterozygosity that occurred
‘out of Africa’ should have scrambled or even removed any relationship with heterozygosity. The fact
that Africans and non-Africans show almost identical dependencies on heterozygosity therefore
argues strongly that heterozygosity is causative rather than reflective.

In terms of possiblemechanisms, recent studies of de novomutations in humans reveal differences in the
mutation process between early- and late-replicating DNA [4,26,27]. Specifically, late-replicatingDNAhas a
higher mutation rate and is enriched for clustered mutations. In turn, clustered mutations are generally
enriched for transversions [28] and show a different palette of mutations, for example, including more
C→G and A→ T mutations and fewer CAT→CGG, ACG→ATT and GCG→GTG mutations [4,27].
Together, these patterns show how mutation rate, mutation type and mutation non-independence tend to
be linked, plausibly through different polymerases, though cis-acting factors are also involved [26].

Replication timing does not directly explain the African–non-African difference. For example,
clustered de novo mutations show a large excess of most of the possible C→G transversions (fig. 4 in
[4]) but Africans and non-Africans differ little. However, the basic concept remains. The HI hypothesis
is based on the idea that heterozygous sites become mismatches in heteroduplex DNA formed during
synapsis which are then ‘repaired’ by gene conversion events [29]. Like early- and late-replicating
DNA, these gene conversions involve different enzymes [30] so will probably exhibit different
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mutation spectra, mutation rates and levels of mutation clustering, variables that are then tied to local

heterozygosity and thence to the ‘out of Africa’ bottleneck. Interestingly, it has recently been shown
that mutation spectra do differ with ploidy in yeast [31].

Ideally, one would like to model these processes. Unfortunately, the system still appears too
complicated to do this convincingly. As well as the suggested dependence on heterozygosity,
mutation rate also varies with many other factors including recombination rate [21], GC content [32],
replication timing [4], methylation [33] and other factors [2], some of which may interact with/be
related to heterozygosity [20] and others will simply act to add noise. Putting these complexities
aside, if heterozygosity does modulate both mutation rate and mutation type, even the simplest
scenario where both processes are independent, additive and linear, at the very least requires detailed
knowledge of how heterozygosity has changed over time, including the length, depth and timing of
the bottleneck, the rate and timing of subsequent expansion and the extent of more recent population
mixing and movement. In practice, mutation rate, clustering and type are all likely to be linked in
ways that have yet to be resolved. Moreover, local haplotype structure is strongly dependent on the
local recombination rate which is itself closely tied to the mismatch repair process [30] and mutation
rate [21,34,35]. Add to this the possibility that up to eight mutations can occurring in a single event,
with neighbouring mutations often occurring on the same strand [4], and it becomes clear that simple
models are unlikely to be meaningful.

An interaction between heterozygosity and both the type and the rate of mutations suggests that
DNA sequence evolution is, at the same time, both more complicated than is often assumed yet also,
in some sense, more predictable. If local heterozygosity is measured, the resulting value has
implications for both the rate and the type of likely mutations. The challenge for future research is to
discover the rules, and thereby to generate predictive models for how real sequences change over time.
3. Methods
3.1. Data
All analyses of modern human sequences were performed on data from Phase 3 of the 1000 genomes
project [24], downloaded as composite vcf files (available from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/). These comprise low coverage genome sequences for 2504 individuals drawn
from 26 modern human populations spread across five main geographical regions: Africa (seven
populations), Europe (five populations), Central Southern Asia (five populations), East Asia (five
populations) and the Americas (four populations).

3.2. Analyses
All analyses were conducted using custom scripts written in C++, illustrated in electronic supplementary
material, S1. All statistical analyses were conducted in R v. 3.3.0 (https://cran.r-project.org/). The 1000 g
vcf files were searched for variants present in one to five copies where all copies occur in the same major
geographical region. At each site, the human reference sequence (hs37d5) was used to infer the mutating
ancestral triplet. Flanking heterozygosity was estimated based on all SNPs within 1 kb either side of the
mutating triplet, based on all samples from that region (approx. 100 individuals per population =
approx. 500 individuals per region, more from Africa, fewer from America). The 2 kb window was
chosen based on the estimated size of the gene conversion events documented in yeast, on which HI
probably depends [19]. Since the 1000 g data are low coverage, heterozygosity was estimated as expected
heterozygosity assuming unlinked loci in Hardy–Weinberg equilibrium. The resulting estimates are
conservative in the sense that, despite having the same expected mean, they will have a higher associated
variance. Since heterozygosity is only being estimated as a relative value for the last 100 generations or
so, this method should be adequate and preferred over the individual-based estimates. Raw count data
are available in electronic supplementary material, table S2.

3.3. Filtering
While it might be desirable to impose some level of filtering, for example, removing SNPs adjacent to
indels because these might be subject to misalignment, I decided not to. My rationale is based on
three reasons. First, use of the unfiltered data makes the analysis maximally transparent and avoids

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://cran.r-project.org/
https://cran.r-project.org/
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biases that might be introduced by the filtering itself. Second, misalignments are expected to be rare. To

test this, I counted how many SNPs were located within five bases of an indel, finding just 0.65%. Third,
misalignments will tend to add modest amounts of statistical noise to the analysis, making it
conservative, but seem highly unlikely to generate trends of the kind I report.

Data accessibility. I have provided an annotated script of the C++ code I used to extract mutating triplet counts from the
1000 genome data and the raw counts I obtained, both as electronic supplementary material.
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