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Control of visceral leishmaniasis (VL) caused by Leishmania donovani requires interferon-γ production by CD4+ T cells. In VL 
patients, antiparasitic CD4+ T-cell responses are ineffective for unknown reasons. In this study, we measured the expression of genes 
associated with various immune functions in these cells from VL patients and compared them to CD4+ T cells from the same patients 
after drug treatment and from endemic controls. We found reduced GATA3, RORC, and FOXP3 gene expression in CD4+ T cells of 
VL patients, associated with reduced Th2, Th17, and FOXP3+CD4+ T regulatory cell frequencies in VL patient blood. Interleukin 2 
(IL-2) was an important upstream regulator of CD4+ T cells from VL patients, and functional studies demonstrated the therapeutic 
potential of IL-2 for improving antiparasitic immunity. Together, these results provide new insights into the characteristics of CD4+ 
T cells from VL patients that can be used to improve antiparasitic immune responses.
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CD4+ T cells play key roles in immunity against many dif-
ferent pathogens [1]. Intracellular protozoan parasites such as 
Leishmania donovani are controlled by interferon (IFN)–γ+T-
BET+CD4+ T cells (T-helper [Th] 1 cells) [2]. The proinflam-
matory cytokines produced by Th1 cells help phagocytes kill 
captured or resident parasites by directly stimulating antimicro-
bial pathways [3, 4]. However, if infection persists, a juxtaposing 
pattern of inflammation and immune regulation can be estab-
lished, resulting in CD4+ T-cell dysfunction and associated di-
sease [5, 6].

Interleukin 2 (IL-2) is an important cytokine that influences 
T-cell behavior [7]. It is required for the survival, proliferation, 
and differentiation of CD4+ T cells, CD8+ T cells, and nat-
ural killer (NK) cells [8], by binding to either the high-affin-
ity trimeric IL-2 receptor (IL-2R), made up of IL-2Rα (CD25), 
IL-2Rβ (CD122), and IL-2Rγ (CD132), or the dimeric IL-2R 
(comprising β and γ chains) [9]. The trimeric IL-2R receptor 

is highly expressed on activated CD4+ T cells and Foxp3+CD4+ 
T regulatory (Treg) cells, while memory CD8+ T cells and NK 
cells express high levels of the dimeric IL-2R [7].

Leishmania donovani–infected mice receiving IL-2-blocking 
monoclonal antibodies (mAbs) failed to control hepatic para-
site growth, associated with impaired granuloma development, 
whereas infected mice treated with exogenous IL-2 had reduced 
liver parasite burdens and increased granuloma development, 
relative to controls [10]. Similarly, intranodular injection of 
recombinant IL-2 in patients with disseminated cutaneous 
leishmaniasis reduced parasite numbers, associated with CD4+ 
T-cell infiltration [11]. However, the therapeutic application of 
IL-2 has had limitations because of its short half-life [12] and 
adverse side effects [13].

Combining recombinant IL-2 with certain IL-2–reactive 
mAbs can preserve IL-2 signaling capacity and enhance cy-
tokine half-life in vivo [14]. In addition, different IL-2 mAbs 
expose different IL-2R binding sites when bound to recombi-
nant IL-2 [15]. For example, injecting IL-2 conjugated to the 
JES6.1A12 anti–IL-2 mAb (IL-2Jc) into mice led to selective 
stimulation and expansion of CD25+ T cells, but not CD25– T 
cells [15].

In this study, we measured the expression of a defined set of 
genes in peripheral blood CD4+ T cells from patients with visceral 
leishmaniasis (VL) infected with L. donovani on presentation to 
clinic and 30 days after drug treatment, as well as in the same 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

1



164 • jid 2019:220 (1 july) • Chauhan et al

cells from endemic controls (ECs). We identified IL-2 as a major 
upstream signaling molecule in CD4+ T cells from VL patients 
with active disease, and examined whether this cytokine signal-
ing pathway could be manipulated for therapeutic advantage.

MATERIALS AND METHODS

Sample Collection

All patients presented with symptoms of VL at the Kala-Azar 
Medical Research Centre, Muzaffarpur, Bihar, India, for diag-
nosis and treatment. Diagnosis was performed by detection of 
anti-rK39 antibodies in the serum and/or amastigotes in splenic 
biopsies. Patients were treated with a single dose of AmBisome 
(10  mg/kg) administered intravenously. Blood was collected 
on admission to hospital and 30  days after drug treatment. 
The study was approved by the Institute of Medical Sciences, 
Banaras Hindu University Ethics Committee, and all subjects 
provided written informed consent. Clinical data for all subjects 
enrolled in the study are presented in Supplementary Table 1. 
Heparinized venous blood was collected from patients (n = 82) 
and endemic healthy subjects (n = 68). All patients were human 
immunodeficiency virus negative and >12 years of age.

Isolation of CD4+ T-Cell RNA, Quality Control, and Gene Expression 

Analysis

CD4+ T cells were isolated from peripheral blood mononuclear 
cells (PBMCs), RNA isolated, quality controlled, and subjected to 
gene expression analysis on the NanoString gene expression plat-
form (NanoString Technologies) using a code set consisting of a 
gene panel related to T-cell biology, activation, differentiation, and 
regulation, as previously described [16] (Supplementary Table 2). 
Gene expression data were normalized for each sample prior to 
differential gene expression analysis [16]. In brief, after quality 
control assessment and background subtraction, count values 
were normalized using the geometric mean of housekeeping 
genes (ACTB, B2M, GAPDH, HPRT1, and RPLP0). Comparisons 
between 2 groups were made using a paired t test for day 0 and 
day 30 comparisons, or an unpaired t test for day 0 or day 30 com-
parisons to ECs. P values were adjusted for multiple testing using 
the Benjamini–Hochberg method where the false discovery rate 
(FDR) (Q value; P value FDR) considered significant was Q ≤ .05.

Real-Time Polymerase Chain Reaction

Real-time quantitative polymerase chain reaction was per-
formed using TaqMan-based chemistries with 6-carboxyfluo-
rescein (FAM) XXX (MGB)–labeled primer/probes to measure 
messenger RNA expression, while VIC-MGB–labeled 18S ribo-
somal RNA was used as an endogenous control, as previously 
described [17].

Antibodies

Fluorescently conjugated antibodies against CD4 (RPA-T4), 
CD3ε (UCHT1), FOXP3 (236A/E7), GATA3 (L50-823), RORγt 
(Q21-559), TBET (4B10), CTLA4 (BNI3), CD96 (6F9), CCR6 

(11A9), CCR4 (1G1), CD38 (HIT2), CD40L (89-76), and 
IFN-γR1 (GIR-208) (BD Biosciences), as well as Aqua Zombie 
viable dye (Biolegend), were used for flow cytometry studies on 
human samples.

Fluorescence-Activated Cell Sorting Analysis of CD4+ T Cells

PBMCs were stained for cell surface and intracellular markers 
as previously described. Cells were analyzed using CellQuest 
Pro (BD Biosciences) and FlowJo software (Tree Star). Gates 
were set using fluorescence minus one controls. Analysis was 
performed by gating on CD3ε+CD4+ T cells and then meas-
uring the molecule of interest.

Ex Vivo Whole Blood Assay

Recombinant human IL-2 (1 μg/mL) (R&D Systems) or vehicle 
(phosphate-buffered saline) was added to whole blood assays 
[17], as indicated in the figure legends. IFN-γ and interleukin 
10 (IL-10) levels in cell culture supernatants were measured by 
enzyme-linked immunosorbent assay [18].

L. donovani Infections of C57BL/6 Mice

Leishmania donovani (LV9; MHOM/ET/67/HU3) [19] amasti-
gotes (2 × 107) were injected intravenously into experimental 
mice. Hepatic parasite burdens were expressed in Leishman–
Donovan units, as previously described [20]. Splenic parasite 
burden was determined by limiting dilution assay [18].

Mice

Female C57BL/6 mice were purchased from the Animal 
Resource Centre (Canning Vale, Australia). B6.Foxp3.DTR 
mice [21] were bred and at QIMR Berghofer. Mice were age- and 
sex-matched and maintained under pathogen-free conditions. 
All procedures were conducted with approval of the QIMR 
Animal Ethics Committee (A02-634M), and in accordance with 
the Australian Code of Practice for the Care and Use of Animals 
for Scientific Purposes (National Health and Medical Research 
Council, Canberra, Australia).

Administration of IL-2/Anti–IL-2 Complexes to Mice

Antimouse IL-2 (JES6-1A12) was purified from cell culture su-
pernatant by protein G column chromatography (Amersham), 
followed by endotoxin removal (Mustang Membranes, Pall Life 
Sciences). Recombinant murine IL-2, 1.5 µg (eBioscience), was 
incubated with 50 µg of JES6-1A12 mAb in saline for 30 min-
utes at 37°C, as previously reported [15], prior to intraperito-
neal administration in a volume of 200 µL on days 14 and 21 
postinfection (p.i.).

CD4+ T-Cell Depletion in Mice

CD4+ T cells were depleted as described previously [22]. Foxp3+ 
Treg cells in B6.Foxp3.DTR animals were depleted via intraper-
itoneal administration of diphtheria toxin [23]. Efficiency of 
cell depletion was >95% for CD4+ T cells and Treg cells, as pre-
viously reported [22, 23].
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Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6 
(GraphPad Software). Analysis of human cellular assays was 
performed using Wilcoxon matched-pairs signed-rank test or 
nonparametric Mann–Whitney tests, as appropriate. Analysis 
of mouse data used Mann–Whitney tests for comparisons be-
tween 2 groups, and a 1-way analysis of variance to assess >2 
groups within an experiment. P < .05 was considered significant.

RESULTS

A CD4+ T-Cell Gene Signature From VL Patients

Peripheral blood CD4+ T cells were isolated from VL patients 
prior to antiparasitic drug treatment (day 0), from the same 
patients 30  days after commencement of drug treatment at 
hospital discharge (day 30), and from healthy ECs. RNA was 
isolated, and targeted transcriptional profiling of 130 genes asso-
ciated with T-cell activation, differentiation, effector functions, 
and immune regulation was performed as previously described 
[16]. Interestingly, we found more transcriptionally down-regu-
lated than up-regulated genes when we compared CD4+ T cells 
from VL patients before drug treatment with time of discharge 
(Figure 1A), similar numbers of down- and up-regulated genes 
when compared with CD4+ T cells from ECs (Figure 1B), and 
more transcriptionally up-regulated than down-regulated genes 
when we compared CD4+ T cells from VL patients at time of 
discharge with ECs (Figure 1C; Supplementary Figure 1).

Genes encoding several important CD4+ T-cell lineage–de-
fining transcription factors had decreased expression in CD4+ 
T cells from VL patients, compared with cells from the same 
patients after drug treatment and from ECs. These differentially 
expressed genes (DEGs) included GATA3, RORC, and FOXP3, 
associated with Th2, Th17, and Treg cells, respectively. Consistent 
with transcription data, we found reduced frequencies of 
GATA3+, RORCγ+ (encoded by RORC), and FOXP3+CD4+ T 
cells in the peripheral blood of VL patients, compared with 
CD4+ T cells from the same patients after drug treatment and 
from ECs, although the decrease in FOXP3+CD4+ T cells did 
not always reach statistical significance (Figure 2A and 2B). 
Interestingly, despite no significant differences in CD4+ T-cell 
TBX21 gene (encoding TBET) expression between groups, 
we found significantly higher frequencies of TBET+CD4+ T 
cells in the peripheral blood of VL patients, compared to the 
same patients after drug treatment, but no difference compared 
to ECs (Figure 2A and 2B). These data show that Indian VL 
patients have reduced peripheral blood Th2, Th17, and Treg cell 
frequencies, and a decreased Th1 cell frequency in VL patients 
following drug treatment.

Consistent with DEG data, we found an increased frequency 
of CD4+ T cells from VL patients expressing the immunoregu-
latory molecules CD38 and CTLA4, compared to CD4+ T cells 
from the same patients 30 days after drug treatment and ECs 
(Figure 3A and 3B). In contrast, but again consistent with DEG 

data, we found a decreased frequency of CD4+ T cells from VL 
patients expressing the chemokine receptors CCR4 and CCR6, 
as well as the important cell signaling molecules CD40LG, 
IFNGR1, and CD96, compared to control groups (Figure 3A 
and 3B). Thus, CD4+ T cells from VL patients had DEGs encod-
ing a broad range of immunoregulatory and inflammatory 
molecules.

IL-2 Is a Major Upstream Regulator of CD4+ T Cells From VL Patients

We next compared DEGs in CD4+ T cells from VL patients be-
fore drug treatment and from ECs using ingenuity pathways 
analysis. The top upstream regulator of genes in VL patients’ 
CD4+ T cells, based on statistical significance, was IL-2 (Figure 
4A). IL-2 was predicted to regulate genes with various immune 
functions located in the plasma membrane, cytoplasm, and 
nucleus, as well as secreted CD4+ T-cell products (Figure 4B). 
Therefore, we next investigated the therapeutic potential of IL-2 
for treating VL.

Targeting the High-Affinity IL-2R to Enhance Antiparasitic Immunity During 

Established Experimental VL

First, we used a preclinical model of VL caused by infection 
of C57BL/6 with L.  donovani. Previous work identified com-
binations of recombinant IL-2 and anti–IL-2 mAbs that could 
selectively target high- or low-affinity IL-2 receptors [15]. We 
chose to target the high-affinity IL-2R during established in-
fection using recombinant IL-2 complexed with the JES6.1A12 
anti–IL-2 mAb (IL-2Jc) because activated CD4+ T cells express 
the high affinity IL-2R [7] and play a critical role in the con-
trol of parasite growth in this model [22, 24]. Infected mice 
were treated on days 14 and 21 p.i., and the impact on parasite 
burden was assessed at day 28 p.i. Animals treated with IL-2Jc 
had significantly lower liver and spleen parasite burdens, com-
pared with control mice treated with vehicle (saline), JES6.1A12 
anti–IL-2 mAb alone, or recombinant IL-2 alone (Figure 5A). 
However, no changes in NK, CD4+ T-cell or CD8+ T-cell num-
bers, or their ability to produce IFN-γ, in the liver and spleen 
at the time of parasite burden measurement (day 28 p.i.) was 
found (data not shown), suggesting a potent but transient effect 
of IL-2Jc administration.

To establish whether CD4+ T cells were needed for the thera-
peutic effects of IL-2Jc, we depleted this cell population during 
IL-2Jc treatment, and found that the positive therapeutic re-
sponse was lost (Figure 5B). Although this result does not show 
that CD4+ T cells were a direct target for IL-2Jc treatment, it 
indicates that CD4+ T cells were critical for the antiparasitic ef-
fect of IL-2Jc in this preclinical model of VL (Figure 5B). Treg 
cells also express high levels of the high-affinity IL-2R and can 
be an important cell target for IL-2/antibody complexes [7, 15]. 
Therefore, we next treated L. donovani–infected B6.Foxp3.DTR 
mice with diphtheria toxin to deplete Treg cells during IL-2Jc 
treatment to test whether they influenced treatment outcome. 
However, we found no significant impact of Treg cell depletion 
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Figure 1. Nanostring analysis of immune-related genes in CD4+ T cells reveals more up- than down-regulated genes. The volcano plots show the distribution of immune-re-
lated genes in comparisons between visceral leishmaniasis (VL; n = 27) patients during infection (D0) and VL patients after treatment (DIS) (A), D0 and endemic controls (ECs; 
n = 15) (B), and DIS and ECs (C). Genes were determined to be up-regulated or down-regulated in the condition listed first in the title above each panel. Vertical lines in panels 
indicate absolute log2 fold-change (FC) = 0.5, and the horizontal lines indicate -log10 (P value false discovery rate [FDR]) = 1.3 (ie, FDR < 0.05). Genes of interest that were found 
to be differentially expressed (-log10 [FDR > 1.3], ie, FDR < 0.05) are indicated.
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on the antiparasitic effects of IL-2Jc treatment, compared with 
controls (Figure 5C). Together, these data establish the thera-
peutic potential of targeting the high-affinity IL-2R in experi-
mental VL, and identify conventional CD4+ T cells as critical for 
the antiparasitic effects of this treatment.

IL-2 Improves Antiparasitic Proinflammatory, but Not Regulatory 

Responses, in VL Patient Blood Cells.

We next tested used recombinant human IL-2 in an ex vivo anti-
gen-stimulated whole blood assay [17], rationalizing that the rel-
atively short-term nature of these assays (<24 hours) would not 
require the extended half-life of cytokine activity provided by the 
cytokine complexed with mAb. When blood from VL patients 
was stimulated with parasite antigen, we found a significant 

increase in IFN-γ and IL-10 production, compared with blood 
cultured without antigen (Figure 6A), as previously reported 
[18]. The addition of IL-2 to blood cultures resulted in a signifi-
cant increase in antigen-specific IFN-γ, but not IL-10 production 
(Figure 6A), indicating a selective effect on IFN-γ production. 
In contrast, addition of IL-2 alone to EC blood cells increased 
IFN-γ and IL-10 production, independent of antigen stimulation 
(Figure 6B), possibly reflecting the autocrine growth promoting 
properties of IL-2 and the effect of the cytokine on circulating 
effector CD4+ T cells. Thus, these data show that IL-2 can be 
used to selectively promote antigen-specific IFN-γ production 
by blood cells from VL patients, thereby providing support for 
targeting the IL-2 signaling pathway for therapeutic advantage in 
this disease.
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Figure 2. Changes in peripheral blood CD4+ T-cell subsets. The fluorescence-activated cell sorting plots show the gating strategy used to identify TBET+, GATA3+, RORCγ+, 
and FOXP3+ CD4+ T cells (A), and the frequency of these subsets among CD4+ T cells between visceral leishmaniasis (VL) patients during infection (D0; n = 7), VL patients 
after treatment (n = 7), and endemic controls (n = 6), median + minimum and maximum (B). *P < .05, **P < .01, Wilcoxon matched-pairs signed-rank test. Abbreviations: DIS, 
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Figure 3. Changes in immune molecule expression by CD4+ T cells. The fluorescence-activated cell sorting plots show the gating strategy used to identify CD38+, CTLA4+, 
CCR6+, CCR4+, CD40L+, IFN-γR1+

, and CD96+ CD4+ T cells (A), and the frequency of these subsets among CD4+ T cells between visceral leishmaniasis (VL) patients during 
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DISCUSSION

We identified a molecular signature associated with periph-
eral blood CD4+ T cells from VL patients, including reduced 

transcription of GATA3, RORC, and FOXP3 genes, associated 
with reduced frequencies of blood Th2, Th17, and Treg cells, 
respectively. We also found that blood TBET+CD4+ (Th1) cell 
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frequency was reduced in VL patients 30 days after they com-
menced antiparasitic drug treatment, despite no differences in 
CD4+ T-cell TBX21 gene expression. Elevated levels of cyto-
kines associated with Th1 and Th2 cell responses have been re-
ported in VL patients [25–28], as well as in splenic transcripts 

encoding these cytokines in a hamster model of VL [29]. 
However, the human studies measured either plasma cytokine 
levels or focused on IL-10 as the main Th2 cytokine, which we 
now know is produced by Th1 cells in both humans and mice 
[28, 30, 31]. Thus, Th2 cell frequency in VL patient blood may 
have been overestimated, although we cannot exclude the pos-
sibility they accumulate in infected tissues. Consistent with our 
finding of reduced frequencies of Th17 cells in VL patients, a 
report from Sudan found that Th17 cell induction was strongly 
associated with protection against VL [32]. Hence, reduced 
Th17 cell frequencies in Indian VL patients may contribute to 
disease development. Studies on Treg cells in VL patients have 
been inconsistent [33–35], and this is in part attributed to dif-
ferent markers used to define these cells. Here, we relied only 
on FOXP3 expression to identify Treg cells, and further studies 
using a more definitive range of human Treg cell markers are 
needed to establish their role in VL patients.

We also found increased expression of immune checkpoint 
molecule genes in VL patients’ CD4+ T cells, including LAG3, 
CD38, and CTLA4, all of which can influence CD4+ T-cell 
behavior [36]. In addition, we found decreased expression of 
CCR4 and CCR6, which promote migration of CD4+ T cells to 
the skin and liver, respectively [37, 38]. Given that parasites re-
side in both tissues, impaired CD4+ T-cell migration caused by 
their down-regulation may contribute to establishment and/or 
persistence of infection in these sites. Furthermore, decreased 
expression of CD40L by VL patients’ CD4+ T cells is likely to 
impact their ability to help dendritic cells, B cells, and other 
CD40-expressing immune cells perform their functions [39]. 
Similarly, decreased expression of IFN-γR1 by VL patients’ 
CD4+ T cells may impact the maintenance of Th1 cells during 
infection, and contribute to the altered composition of CD4+ 
T-cell subsets, as well as expression of IFN-regulated genes and 
associated immune functions [40]. However, increased expres-
sion of proinflammatory molecules such as IFN-γ was found, 
suggesting that VL patients’ blood comprises a heterogeneous 
population of CD4+ T cells with different functions, possibly re-
flecting genetic diversity among patients and ECs, and different 
histories of pathogen exposure.

IL-2 was identified as a major regulator of VL patients’ CD4+ 
T-cell genes, and given our desire to target CD4+ T cells, we 
decided to target the trimeric, high-affinity IL-2R expressed by 
activated CD4+ T cells in mice. In C57BL/6 mice, the liver is 
a site of acute, resolving infection where highly effective anti-
parasitic CD4+ T cells develop, whereas the spleen is a site of 
chronic infection characterized by dysfunctional CD4+ T-cell 
responses [41]. Previous studies demonstrated the utility of 
IL-2Jc in treating inflammation and autoimmune disease in 
mice [42, 43]. Our results showed that IL-2Jc can also be used 
for therapeutic advantage in an experimental model of VL with 
antiparasitic effects in both liver and spleen. As expected, the 
antiparasitic effect of IL-2Jc was dependent on CD4+ T cells. 

Sali
ne

JE
S6.1

A12

rm
IL

-2

IL
-2J

c

Sali
ne

JE
S6.1

A12

rm
IL

-2

IL
-2J

c
0

500

1000

1500 8 × 105

6 × 105

4 × 105

2 × 105

0

M
AC5 +

 Sali
ne

αCD4 +
 Sali

ne

M
AC5 +

 IL
-2J

c

αCD4 +
 IL

-2J
c

Sali
ne +

 Sali
ne

IL
2-J

c +
 Sali

ne

IL
2-J

c +
 D

T

Sali
ne

 +
 D

T

Sali
ne +

 Sali
ne

IL
2-J

c +
 Sali

ne

IL
2-J

c +
 D

T

Sali
ne

 +
 D

T

M
AC5 +

 Sali
ne

αCD4 +
 Sali

ne

M
AC5 +

 IL
-2J

c

αCD4 +
 IL

-2J
c

0

1000

2000

0

500

1000

1500

2000

3000

4000

A

C

B

**

*
***

***

**

*

***
***

***
Pa

ra
si

te
 B

ur
de

n 
(L

D
U

)
Pa

ra
si

te
 B

ur
de

n 
(L

D
U

)
Pa

ra
si

te
 B

ur
de

n 
(L

D
U

)

Pa
ra

si
te

s 
B

ur
de

n 
(#

)

8 × 105

6 × 105

4 × 105

2 × 105

0

Pa
ra

si
te

 B
ur

de
n 

(#
)

6 × 105

4 × 105

2 × 105

0

Pa
ra

si
te

 B
ur

de
n 

(#
)

Liver Spleen

Figure 5. Mouse interleukin 2 (IL-2)/antibody complexes stimulate CD4+ T-cell–
dependent antiparasitic immunity in mice infected with Leishmania donovani. 
C57BL/6 mice were infected with parasites for 14 days and then administered sa-
line, anti–IL-2 monoclonal antibody (mAb) (JES6.1A12), recombinant mouse IL-2 
(rmIL-2), or anti–IL-2 mAb complexed with rmIL-2 (IL-2Jc) on days 14 and 21 postin-
fection (p.i.), as indicated, and parasite burdens in the liver and spleen were meas-
ured 14 days later (day 28 p.i.) (A). Leishmania donovani–infected mice receiving 
saline or IL-2Jc were treated with control mAb (MAC5) or anti-CD4 mAb every 
3 days, as indicated, over the same time period, and parasite burdens (expressed 
in Leishman–Donovan units [LDU]) in the liver and spleen were measured at day 
28 p.i. (B). Leishmania donovani–infected B6.Foxp3.DTR mice receiving saline or 
IL-2Jc were treated with saline or diphtheria toxin (DT) every 3 days, as indicated, 
over the same time period, and parasite burdens in the liver and spleen were meas-
ured at day 28 p.i. (C). All values are mean ± standard error of the mean of at least 
2 independent experiments, n = 5 mice per group. *P < .05, **P < .01, ***P < .001; 
significance assessed by 1-way analysis of variance.
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Despite the potential for IL-2Jc to expand Treg cells [15], we 
found no impact of this regulatory T-cell subset in IL-2Jc–
treated animals, suggesting that conventional, activated CD4+ 
T cells were the main target of this treatment. It will be useful 
in future to investigate the potential for adjunctive therapy with 
conventional antiparasitic drugs, as this is the likely way such a 
treatment would be used for patients with VL.

Previous studies using whole blood transcriptional pro-
filing found that IL-2 activation and signaling pathways were 
down-regulated in VL patients infected with Leishmania infan-
tum [44], suggesting that these pathways may be differentially 
regulated in different lymphocyte subsets. An earlier study also 
showed that the addition of recombinant human IL-2 to Indian 
VL patients’ PBMCs stimulated with parasite antigen did not 
rescue proliferative responses [45]. Although cell proliferation 
was not measured in our studies, we showed that exogenous IL-2 
enhanced parasite-specific IFN-γ production by VL patients’ 
blood cells. Remarkably, there was limited antigen-specific effect 
on IL-10 production, possibly reflecting differential expression of 
the trimeric IL-2R on IFN-γ– and IL-10–producing CD4+ T-cell 
populations. The impact of IL-2 on the expression of immuno-
regulatory/exhaustion markers should be investigated in future 
studies. Nevertheless, these results indicate that selective im-
provement of IFN-γ production by CD4+ T cells can be achieved 

in VL patients without accompanying IL-10 production and as-
sociated suppressive effects on antiparasitic immunity [18, 30]. 
There have been significant advancements in engineering IL-2 for 
extended half-life and targeting IL-2R expressed by specific im-
mune cell subsets [46]. Future studies should test the therapeutic 
potential of these next-generation IL-2 molecules in VL.

In summary, we identified a distinct pattern of gene expres-
sion in CD4+ T cells from patients with VL. No clear association 
with any specific CD4+ T-cell subset was recognized, although 
we found a transcriptional signature consistent with our finding 
of reduced Th2, Th17, and Treg cell frequencies in the blood of 
VL patients after drug treatment. IL-2 was identified as a major 
upstream regulator of CD4+ T cells from VL patients and the 
therapeutic potential of this cytokine was shown. Future studies 
should test recently developed IL-2 molecules with favorable 
therapeutic properties that allow safe targeting of specific CD4+ 
T-cell subsets with antiparasitic activity.
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