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Prognostic Significance of 
Apparent Diffusion Coefficient in 
Hepatocellular Carcinoma Patients 
treated with Stereotactic Ablative 
Radiotherapy
Cheng-Hsiang Lo1, Wen-Yen Huang1,2, Chih-Weim Hsiang3, Meei-Shyuan Lee4, Chun-Shu Lin   1, 
Jen-Fu Yang1, Hsian-He Hsu3 & Wei-Chou Chang3

The role of diffusion-weighted magnetic resonance imaging (DW MRI) in assessing durable tumor 
control for patients with hepatocellular carcinoma (HCC) treated with stereotactic ablative radiotherapy 
(SABR) was not defined. This retrospective study included 34 HCC patients with 45 lesions who had 
DW MRI data at baseline and within 6 months post-SABR. On the first post-SABR MRI, 13 lesions 
(28.9%) had a complete response (CR), 12 (26.7%) had a partial response (PR), 17 (37.8%) had stable 
disease, and 3 (6.7%) had progressive disease by modified Response Evaluation Criteria in Solid Tumors 
(mRECIST). On subsequent imaging, the response rate improved from 55.6% to 75.6%. The apparent 
diffusion coefficients (ADCs) (mean ± standard deviation) pre- and post-SABR were 1.43 ± 0.28 and 
1.72 ± 0.34 (×10−3 mm2/s), respectively (p < 0.001). An ADC change ≥25% (DW[+]) was identified as 
a predictor of favorable in-field control (IFC) (1-year IFC, 93.3% vs. 50.0% for DW[−], p = 0.004), but an 
mRECIST-based positive response (CR and PR) at the first MRI was not (p = 0.130). In conclusion, ADC 
change on early MRI is closely related to IFC in HCCs treated with SABR. Standardization of the DW MRI 
protocol, as well as prospective validation studies, are warranted.

Stereotactic ablative radiotherapy (SABR) is a locoregional treatment for patients with unresectable or medically 
inoperable hepatocellular carcinoma (HCC)1–3, and may be used alone or combined with other therapies. With 
its large ablative radiation dose and precise delivery, the post-SABR response rate can reach 77%; the 1-year local 
control rate is reportedly 75–100%1–3.

Early assessment of treatment response is crucial, and allows for timely salvage or sustained follow-up. 
The criteria used to evaluate SABR responses in HCCs vary1–4; the most preferred systems currently include 
the modified Response Evaluation Criteria in Solid Tumors (mRECIST) and European Association for the 
Study of Liver Diseases (EASL), which consider tumor necrosis or non-enhancing components after locore-
gional therapy5,6. However, such enhancement-based criteria have only been evaluated in HCCs treated with 
non-radiotherapy modalities7; their applicability to HCC treatment response evaluation in the early post-SABR 
phase is unclear.

Diffusion-weighted magnetic resonance imaging (DW MRI) is increasingly used in the detection, diagnosis, 
and characterization of tumors8. Its quantitative parameter, the apparent diffusion coefficient (ADC), reflects 
the mobility of water molecules within tissue. Tissues with high cell densities tend to exhibit lower ADC values 
than those with low cell densities, rendering the ADC a surrogate indicator of cellularity. Cellularity change 
post-treatment can be detected via ADC alteration before tumor size change, and the ADC is a promising 
predictor of early treatment response in brain, head and neck, prostate, and cervical tumors9–12. However, the 
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application of DW MRI in HCC response evaluation after radiotherapy is sparse and undefined, and no studies 
have focused on post-SABR assessment13,14. Hence, we investigated the role of DW MRI in assessing durable 
tumor control for patients with HCC treated with SABR.

Results
Patient characteristics.  Thirty-four patients were included in this study; their median age was 65 years 
(range, 41–85 years), and 29 patients (85.3%) were men. Most patients had underlying viral hepatitis B (55.9%), 
Child-Turcotte-Pugh class A liver function (76.5%), recurrent disease (73.5%) and Barcelona Clinic Liver Cancer 
stage C (64.7%). Twenty-six patients (76.5%) had 1 tumor, 6 (17.6%) had 2 tumors, and 2 (5.9%) had ≥3 tumors 
treated, for a total of 45 tumors. The median tumor size was 3.9 cm (0.8–22 cm); 10 tumors (22.2%) involved por-
tal vein tumor thrombosis. Additional patient and tumor characteristics are summarized in Table 1.

Tumor response and ADC change after SABR.  The median time between baseline MRI and initiation 
of SABR was 1.1 months (range, 0.2–2.9 months). The median time between the completion of SABR and first 
follow-up MRI was 2.3 months (range, 1.0–5.5 months); 28 (82.4%) had MRI conducted within 3 months. On 
the first post-SABR MRI, complete response (CR) was achieved in 13 lesions (28.9%), partial response (PR) in 
12 (26.7%), stable disease (SD) in 17 (37.8%) and PD in 3 (6.7%). The best responses post-SABR were as follows: 
CR in 21 (46.7%), PR in 13 (28.9%), SD in 8 (17.8%), and PD in 3 (6.7%); of these, 4 PR lesions were upgraded to 
CR, and 9 SD were upgraded to CR (4) or PR (5) (Fig. 1). The initial PD lesions had no status change at the most 
recent follow-up.

The intraclass correlation coefficient for ADC values pre- and post-SABR were 0.94 and 0.91 respectively, indi-
cating good interobserver agreement; the average ADC value obtained by the observers was used for subsequent 
analyses. ADC values were measured in all 45 tumors before SABR and in 42 tumors afterwards (the values of 
3 lesions that completely resolved on the first post-SABR DW MRI were not measured). ADC values increased 
significantly after SABR (mean ± standard deviation, pre-SABR: 1.43 ± 0.28 × 10−3 mm2/s vs. post-SABR: 

Variable n. (%) or median (range)

No. of patients 34 (100)

No. of tumors 45 (100)

Gender male/female 29 (85.3)/5 (14.7)

Age, years 65 (41–85)

Viral hepatitis

HBV 17 (50.0)

HCV 6 (17.6)

both 2 (5.9)

none 9 (26.5)

Recurrent HCC yes/no 25 (73.5)/9 (26.5)

Tumor size, cm* 3.9 (0.8–22)

Portal vein tumor thrombosis present/absent
present/absent*

10 (29.4)/24 (70.6)
10 (22.2)/35 (77.8)

Extrahepatic spread present/absent 6 (17.6)/28 (82.4)

ECOG performance status

0 15 (44.1)

1 15 (44.1)

2 4 (11.8)

AFP level, ng/ml <200/≥200 24 (70.6)/10 (29.4)

CTP class A/B 26 (76.5)/8 (23.5)

BCLC stage A/B/C 9 (26.5)/3 (8.8)/22 (64.7)

Previous treatment

Surgery 9 (26.5)

RFA 8 (23.5)

TACE 16 (47.1)

SABR 3 (8.8)

Sorafenib 3 (8.8)

Naïve 9 (26.5)

SABR regimen*

total dose, Gy 45 (30–60)

fraction number 5 (4–6)

EQD2, Gy 71.3 (40–125)

Table 1.  Patient and tumor characteristics Abbreviation: HCC = hepatocellular carcinoma; HBV = hepatitis 
B virus; HCV = hepatitis C virus; ECOG = Eastern Cooperative Oncology Group; AFP = α-fetoprotein; 
CTP = Child-Turcotte-Pugh liver function scale; BCLC = Barcelona Clinic Liver Cancer; RFA = radiofrequency 
ablation; TACE = transarterial chemoembolization; SABR = stereotactic ablative radiotherapy; 
EQD2 = equivalent dose in 2 Gy fractions. *The data is expressed at the lesion level.
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1.72 ± 0.34 × 10−3 mm2/s, p < 0.001). Significant increases in ADC levels were observed in both responding and 
non-responding lesions (p = 0.001 and p = 0.041, respectively) (Fig. 2). No difference existed in pre-SABR ADC 
values between responding and non-responding lesions (1.44 ± 0.31 × 10−3 mm2/s vs. 1.41 ± 0.20 × 10−3 mm2/s, 
p = 0.910). The post-SABR ADC values and mean ADC change percentages for responding and non-responding 
lesions were 1.77 ± 0.35 × 10−3 mm2/s vs. 1.59 ± 0.29 × 10−3 mm2/s (p = 0.138) and 27.6 ± 33.6% vs.13.3 ± 16.7% 
(p = 0.149), respectively.

On ROC analysis, the optimal cut-off value of the ADC increment percentage for predicting freedom from 
in-field failure was 25% (sensitivity = 57.6% and specificity = 88.9%). Accordingly, DW response was defined as 
an ADC change ≥25% post-SABR; the 3 completely resolved lesions were assumed to have DW responses on IFC 
analysis.

In-field control and prognostic factors.  The median time to in-field failure for all lesions was not 
reached; the 1-year IFC rate was 72.9%. Factors associated with improved IFC are shown in Table 2; only tumor 
size and DW response were identified as predictive of IFC on multivariable analysis (p = 0.006 and 0.037, respec-
tively). The median times to in-field failure were not reached for DW responding lesions and 9.6 months for DW 
non-responding lesions (1-year IFC, 93.3% vs. 50.0%) (p = 0.004) (Fig. 3A). The first MRI response did not signif-
icantly correlate with IFC; the 1-year IFCs were 78.0% and 71.4% for mRECIST responding and non-responding 
lesions, respectively (p = 0.130) (Fig. 3B).

On first MRI of SD lesions, 9 had a DW response (DW[+] SD) and 8 did not (DW[−] SD); the respective 
1-year IFCs were 100% and 65.6% (p = 0.127). The IFCs of DW(+) SD lesions were not significantly different 
from those of mRECIST responding lesions on first MRI (p = 0.327), whereas the IFC of DW(−) SD lesions 
tended to be inferior to that of mRECIST responding lesions (p = 0.060).

Explant pathology and ADC correlation.  Five patients with 5 lesions were censored owing to local 
intervention without PD (transarterial chemoembolization [TACE], n = 1; radiofrequency ablation, n = 1; and 
liver transplantation, n = 3). The radiologic, ADC, and pathologic responses of the liver explants are detailed on 
Table 3. In contrast to 1 lesion with no obvious ADC change and poor pathologic response, favorable outcomes 
(near-total necrosis) were achieved in 2 lesions with high ADC changes (35% and 70%) post-SABR.

Figure 1.  Early ADC change before HCC lesion reduction obtained at baseline and at different times post-
SABR. A 71-year-old man with hepatitis B virus-related liver cirrhosis and a 2.8 cm HCC in segment 7. At 
baseline MRI, the lesion shows strong enhancement in the arterial phase (A-phase) and washout in the portal 
venous phase (PV-phase), with moderate hyperintensity on DWI (b = 500) and an ADC of 1.37 × 10−3 mm2/s. 
At the 2-month follow-up, the lesion was stable in size by mRECIST. Lower hyperintensity at DWI was noted 
with a corresponding ADC of 2.00 × 10−3 mm2/s (a 46% increase). Geographic parenchymal hyperenhancement 
was noted in both the A- and PV-phases, consistent with focal liver reaction to SABR. At the 5-month follow-up, 
the lesion had a lower enhancement size (1.9 cm), indicative of partial response, with resolution of geographic 
parenchyma hyperenhancement. At the 8-month follow-up, no enhancement was observed, indicating 
complete response. Continuous volume loss of the overlying liver parenchyma was observed at 5 and 8 months.
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Discussion
Identifying early response to therapy allows for individualized treatment plans and potentially improves overall 
prognosis. Our results suggest that ADC change on early MRI is closely related to durable tumor control in HCCs 
treated with SABR.

Current enhancement-based criteria are highly predictive of HCC patient outcomes after ablation or embo-
lization7. Nevertheless, the predictive values of these criteria have not been validated in the context of radiother-
apy. In fact, the unique post-SABR HCC imaging features may preclude the interpretation of response based on 
current criteria15,16. A recent study by Mendiratta-Lala et al. focusing on MRI followed 67 HCCs following SABR; 
58% had persistent arterial hyperenhancement and 54% had a washout appearance by 3–6 months15. These fea-
tures disappeared over time without detectable tumor progression, resulting in alternating response rates (3–6 
months: 25%; and 12 months: 70%). They concluded persistent arterial hyperenhancement is common and does 
not necessarily indicate viable tumor. Other SABR studies produced similar findings16,17. A retrospective study by 
Mannina et al. demonstrated poor concordance between pathologic response with available radiologic grading 
criteria18. Assessment based on mRECIST had a poor kappa coefficient of 0.224. In our study, the response rate 
on first MRI was 55.6%, which improved to 75.6% at the most recent follow-up. More than half of the lesions 
initially deemed to be SD had absent or declining arterial enhancement over time. Initial treatment response by 
mRECIST was not significantly correlated with long-term tumor control (p = 0.130). Collectively, these findings 

Figure 2.  Box-whisker plot of the mean ADCs for responding and non-responding lesions pre- and post-
SABR. Three lesions that resolved completely on the first post-SABR DW MRI were not included.

Variable

Univariable Multivariable

HR (95% CI) p HR (95% CI) p

Tumor size (1 cm increase) 1.22 (1.07–1.38) 0.002 1.19 (1.05–1.34) 0.006

Portal vein tumor thrombosis 5.79 (1.51–22.3) 0.011

AFP level, ≥200 vs. <200 3.81 (1.02–14.22) 0.047

CTP class, A vs. B 3.06 (0.38–24.70) 0.294

EQD2 (Gy), >71.3 vs. ≤71.3 1.03 (0.28–3.88) 0.963

1st MRI mRECIST response

     responding lesion 0.37 (0.10–1.41) 0.145

Pre-SABR ADC (×10−3 mm2/s)

     >1.45 vs. ≤1.45 1.77 (0.44–7.08) 0.423

Post-SABR ADC change

     any ADC increment 0.75 (0.16–3.63) 0.723

     ≥25% ADC increment 0.09 (0.01–0.72) 0.023 0.11 (0.01–0.88) 0.037

Table 2.  Prognostic factors for in-field control by Cox proportional-hazards model. Abbreviation: 
AFP = α-fetoprotein; CTP = Child-Turcotte-Pugh liver function scale; EQD2 = equivalent dose of 2 Gy per 
fraction; mRECIST = modified Response Evaluation Criteria in Solid Tumors; SABR = stereotactic ablative 
radiotherapy; ADC = apparent diffusion coefficient.
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stressed that traditional response assessment criteria designed for HCC after locoregional therapy may not be 
useful post-SABR, particularly in early phases. The underestimation of the true effect of SABR may result in 
improper salvage treatment in clinical practice

DW MRI is a promising technique for early assessment of treatment response. The vast majority of HCC data 
pertain to TACE19,20 or transarterial radioembolization21–23. While anatomic changes post-locoregional therapies 
are noted within 1–3 months, a significant increase in ADC can be detected within several hours to 2 weeks 
post-therapy19–23. A pilot study by Eccles et al. evaluated ADC values in 4 HCCs, 2 cholangiocarcinomas, and 
5 liver metastases post-SABR14 and found significant changes as early as 1 week into radiotherapy. Early ADC 
response was correlated with a higher dose and sustained tumor response, whereas no significant change in 
tumor size as assessed on T2 MRI at the same ADC time points were observed. Furthermore, Yu et al. demon-
strated the added value of DW MRI for radiotherapy response prediction in 48 HCC patients treated with either 
hypofractionated radiotherapy (the majority) or SABR who had follow-up MRI at 3–5 months13. They found 
that mRECIST was a significantly better predictor of local progression-free survival (LPFS) than RECIST and 
an ADC change ≥20%. The latter 2 parameters combined predicted LPFS with comparable performance to the 
mRECIST. Another recent study that investigated imaging changes observed on MRI before and within 3 months 
of radiotherapy (3.5–5 Gy for 10 fractions) demonstrated that the ADC value increased in both responding and 
non-responding lesions with no significant difference (46.7% vs. 21.9%, p = 0.220)24.

In our study, we found that an ADC change of ≥25% within 6 months post-SABR was an independent predic-
tor of sustained HCC tumor control, while the mRECIST was not. Our findings suggest a promising role for ADC 
in predicting early response in HCC patients treated with SABR. Different evaluation time points and methodol-
ogies may account, at least partly, for the divergence of our results from those of others.

In contrast to other publications on liver cancer radiotherapy response13,14, a relatively low b value of 500 s/
mm2 was adopted in this study. Of note, the diffusion contrast and signal-to-noise ratio (SNR) should be simulta-
neously considered in DW MRI with different b values25,26. The better diffusion contrast in higher b-value images, 
and the more substantially reduced SNR are noted due to the increased MR signal loss. Several studies26–28 have 
reported that high b values (>500 s/mm2) are preferable in order to minimize perfusion effects, and a b value 
ranging between 500 and 800 s/mm2 is recommended for assessment of early response of HCC to nonsurgical 
local treatment. Because of the retrospective nature of the study, we did not have ADC data using a variety of b 
values. It was believed that the different b values may yield different ADC values, but the tendency of an ADC 
change ≥25% to indicate SABR in-field tumor control would not be changed.

Given the lack of universal standards, response assessment based solely on ADC change is evolving and 
requires further validation. DW MRI should be considered a routine adjunct modality to assess HCC after SABR 
with current enhancement-based criteria29. In our study, SD lesions were subdivided into DW(+) SD or DW(−) 
SD groups based on ADC response; with similar IFC rates following SABR, DW(+) SD lesions could receive 

Figure 3.  Kaplan-Meier curves of in-field control according to (A) ADC response and (B) mRECIST response.

Tumor size (cm) dose regimen
SABR-transplant
interval (m) 1st MRI response ADC change Pathology

Lesion 1 1.2 40 Gy/5fx 5.8 SD −3% No obvious 
necrosis

Lesion 2 1.7 50 Gy/5fx 8.5 CR 35% 95% necrosis

Lesion 3 5.7 45 Gy/5fx 7.3 CR 70% 100% necrosis

Table 3.  Radiologic, ADC and pathologic responses of the liver explants. Abbreviation: ADC = apparent 
diffusion coefficient; fx = fraction; SABR = stereotactic ablative radiotherapy; SD = stable disease; 
CR = complete response.
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sustained follow-up in line with mRECIST responding lesions. Early salvage treatment may be considered for 
DW(−) SD lesions because of their inferior IFC, as revealed in our study.

Our study had several limitations. First, the single-center, retrospective design and small sample size may have 
introduced selection bias. Second, the ADC values were not acquired at the same time point post-SABR; it may 
introduce bias in the judgement of ADC changes. Serial changes in ADC pre- and post-SABR should be inves-
tigated to determine the optimal protocol of DW MRI and accurately assess therapy response. Given most ADC 
values were obtained within 1–3 months post-SABR in this study, we believe the impact of different time intervals 
is relatively small. Third, there was no pathologic correlation between all treated lesions and their corresponding 
ADC change, although such validation by biopsy or surgery is not feasible for obvious ethical or technical reasons. 
Fourth, inter-observer difference for ADC measurement is an inevitable issue in clinical practice. Radiologists 
may subjectively choose different levels of slice and delineate diverse areas of ROI, even though the ROI measure-
ment has been defined in this study. In order to minimize the variances, the final ADC value was the average of 3 
ROIs obtained from 3 different slices, making our ADC change threshold more reliable.

In conclusion, we demonstrated that an ADC change ≥25% within 6 months is an independent predictor of 
sustained tumor control in HCC patients treated with SABR. Assessments based on mRECIST should be inter-
preted with caution, especially in the early phase post-SABR. Standardization of the appropriate DW MRI proto-
col and ADC acquisition parameters, as well as validation in prospective, large, multicenter trials, are warranted.

Methods
Data source.  All HCC patients treated with SABR at our hospital between December 2007 and March 2018 
were reviewed. The study eligibility criteria were (1) patients with available DW MRI sequences at baseline, and 
(2) patients with at least 1 DW MRI performed within 6 months post-SABR completion. HCC diagnosis was 
histologic or based on radiologic findings. Our institutional review board approved the study and waived the 
informed consent requirement owing to the investigation’s retrospective nature.

MRI protocols and ADC measurement.  MRI was performed on a 1.5-T MR system (Signa HDx, GE 
Healthcare) with an 8-channel body phased-array coil. The protocol of non-contrast and dynamic MR sequences 
have been detailed previously30. MRI protocol for liver tumors included non-fat suppressed axial and cor-
onal single-shot fast spin-echo T2-weighted imaging (WI), axial fat suppressed fast spin echo T2WI, in- and 
out-of-phase, diffusion-weighted imaging and dynamic contrast enhanced T1WI with fat subtraction. A real time 
bolus-triggered technique using gadopentetate dimeglumine (Magnevist, Bayer HealthCare) was used to acquire 
the arterial (20–35 s), portal venous (70 s), and equilibrium phases (3 min).

DW MRI was performed in the axial plane with simultaneous use of respiratory triggering technique. DW 
images were obtained during dynamic MRI scanning; the TR was matched in each patient to the length of the 
respiratory cycle before gadoxetic acid enhancement. The scanning parameters were b values of 0 and 500 s/mm2; 
matrix size, 128 × 128; acceleration factor of SENSE, 4.0; field of view, 42 × 42 cm; number of excitations, 8; slice 
thickness, 6 mm; slice gap, 2 mm; and axial slices, 25. An ADC map using a monoexponential diffusion model 
was automatically generated.

Two radiologists (Wei-Chou Chang and Chih-Weim Hsiang) who were aware of the treated lesion but blinded 
to outcomes measured the ADC values. The DW MRI data were transferred to a separate computer-based work-
station (GE Healthcare Systems) specifically designed for post-processing work, and the ADC measurement was 
calculated using a dedicated software tool (FuncTool, Advantage Workstation 4.3_07, GE Healthcare Medical 
Systems). Region of interests (ROIs) were delineated over the entire area of the treated lesion on the ADC image 
and positioned at identical or comparable slice positions on a T2-weighted image (the reference sequence). Each 
ADC measurement included 3 ROIs: the slice with the largest tumor diameter (the reference slice) and 2 other 
central slices between both ends and the reference slice. The final ADC value of each treated lesion was the aver-
age of those obtained from the 3 ROIs. If the inter-observer difference was larger than 15%, a third ADC meas-
urement was conducted and the result was determined by consensus.

SABR and follow-up.  Treatment planning, dose prescription and radiation delivery methods have been 
detailed previously31. The SABR protocol is for both recurrent and newly-diagnosed HCC. In brief, patients were 
immobilized with a customized vacuum cushion during simulation and treatment. For most patients, fiducial 
markers in conjunction with a Synchrony respiratory motion-tracking system (Accuray Inc.) were employed to 
manage respiratory motion on a CyberKnife (Accuray Inc.). After June 2017, patients were treated with Versa HD 
(Elekta AB), using a controlled breath-hold technique or 4-dimensional computed tomography (CT) with forced 
abdominal compression to manage respiratory motion. The prescribed dose depended on the dose volume con-
straints of critical organs used in treatment planning31. The median prescribed does was 45 Gy (range, 30–60 Gy) 
in 4–6 fractions in 4–6 consecutive working days. Because of non-uniform fractionation, the dose regimens were 
converted to equivalent doses of 2 Gy per fraction with the assumption that the tumor α/β value was 10 Gy32.

Patients were assessed by clinical examination, blood work, and liver triphasic CT and/or MRI 1–3 months 
post-SABR completion and every 3–4 months thereafter. SABR response was assessed per tumor according to the 
mRECIST5. In-field failure was defined as presence of progressive disease (PD) or new enhancement within the 
planning target volume (PTV) or at its margins, which was defined as 1.5 cm from PTV, an area usually received 
high radiation dose.

Statistical analysis.  All analyses were performed on SPSS version 17 software (SPSS Inc.). Interobserver 
ADC value variability was evaluated using the intraclass correlation coefficient. The difference in ADC values 
pre- and post-SABR was evaluated using the Wilcoxon signed-rank test. The Mann-Whitney U-test was used to 
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compare the differences in ADC values between SABR responding and non-responding lesions. In-field control 
(IFC) was calculated as the duration between initiation of SABR and in-field failure or the last follow-up. Data 
were censored at the time of liver transplantation or other local treatment involving the SABR-treated lesion in 
the absence of in-field failure. The Kaplan-Meier method was used to estimate IFC rates, with differences assessed 
using the log-rank test. Receiver operating characteristic (ROC) curves were used to establish the appropriate 
cut-off for predicting freedom from in-field failure. Variables with p-values < 0.1 on univariable analyses were 
subjected to multivariable analysis using a backward stepwise logistic regression model. A 2-tailed p-value < 0.05 
was considered statistically significant in all analyses.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable  
request.
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