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A Fast Parameter Identification 
Framework for Personalized 
Pharmacokinetics
Chenxi Yang1, Negar Tavassolian   1, Wassim M. Haddad2, James M. Bailey3 & 
Behnood Gholami   4

This paper introduces a novel framework for fast parameter identification of personalized 
pharmacokinetic problems. Given one sample observation of a new subject, the framework predicts the 
parameters of the subject based on prior knowledge from a pharmacokinetic database. The feasibility 
of this framework was demonstrated by developing a new algorithm based on the Cluster Newton 
method, namely the constrained Cluster Newton method, where the initial points of the parameters 
are constrained by the database. The algorithm was tested with the compartmental model of propofol 
on a database of 59 subjects. The average overall absolute percentage error based on constrained 
Cluster Newton method is 12.10% with the threshold approach, and 13.42% with the nearest-neighbor 
approach. The average computation time of one estimation is 13.10 seconds. Using parallel computing, 
the average computation time is reduced to 1.54 seconds, achieved with 12 parallel workers. The 
results suggest that the proposed framework can effectively improve the prediction accuracy of the 
pharmacokinetic parameters with limited observations in comparison to the conventional methods. 
Computation cost analyses indicate that the proposed framework can take advantage of parallel 
computing and provide solutions within practical response times, leading to fast and accurate 
parameter identification of pharmacokinetic problems.

Pharmacokinetics is defined as the study of the bodily absorption, distribution, excretion, and metabolism of a 
drug. Pharmacokinetics is mainly concerned with the effect of the body on the drug, in contrast to pharmacody-
namics, which is mainly concerned with the effect of the drug on the body. These two disciplines comprise the 
field of clinical pharmacology1. The rational use of a drug requires an understanding of how the drug is absorbed 
and what the onset of action is, as well as an understanding of how long the drug will have an effect. The duration 
of the effect of a drug is determined by its distribution in various body tissue, its metabolism, and its elimination 
from the body. No drug can be approved by the United States Food and Drug Administration without the com-
pletion of a detailed pharmacokinetic analysis.

Most tissues (such as muscle or fat) are simply inert storage depots for the drug and do not chemically alter it; 
they rather serve to remove the drug from the circulation but do not eliminate it from the body. This process is 
called distribution. However, other tissues, most notably the liver and the kidneys, can chemically alter the drug, 
either to metabolites that still have some effect on the body, or to inactive metabolites. In addition, the kidneys 
can serve to eliminate the drug via urine. This process continues as blood cycles through the vascular bed. As the 
drug is eliminated by metabolic processes in the liver and kidneys, the drug that was stored in inert tissues by the 
distribution process leaves those storage depots and is recirculated undergoing metabolism and elimination from 
the body. Eventually, all drug stored in the body reaches the sites of metabolism and elimination.

From this abbreviated description, one can appreciate the potential complexity of the physiological processes 
that determine drug disposition. This complexity is in marked contrast to the simplicity of the data from a typical 
pharmacokinetic study. In a typical pharmacokinetic study, the investigator administers a fixed dose of the drug 
to a human volunteer or a patient with the disease the drug is expected to treat. Blood samples are then drawn at 
fixed intervals after the administration of the drug and the investigator determines the concentration of the drug 
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in these samples. It is seldom possible to determine the drug concentration in the various tissues of the body. 
Thus, the investigator is left with essentially a table of drug concentrations in the blood as a function of time.

The ultimate goal of the investigator is to predict the drug concentration that would exist at times differ-
ent from the sampling times of the study and for different doses, as well as to understand the variability that 
might exist between different subjects. Given the complexity of drug absorption, distribution, and elimination/
metabolism and the sparseness of the data, it is inevitable that mathematical modeling plays a prominent role 
in pharmacokinetic analysis, bridging the gap between physiology and the available data. A major challenge in 
using pharmacokinetic models to predict patient response to a specific drug is the lack of knowledge regard-
ing patient-specific parameters of the pharmacokinetic model2,3. One framework that is widely used in clinical 
practice to assist in the titration of different drugs is population pharmacokinetics, a statistical method to predict 
pharmacokinetic response based on a series of demographic and pathophysiological features of the patient.

Population pharmacokinetics has been covered under various topics, such as therapeutic drug monitoring, 
target concentration intervention, and Bayesian forecasting4. The Bayesian forecasting has been described exten-
sively in the literature and has been implemented in practice for many drugs, especially antibiotics5–8. A number 
of softwares are also available for dose individualization8,9. The general frameworks behind these softwares are 
based on maximum likelihood estimation and mixed-effect modeling technique.

There are multiple factors contributing to the widespread adoption of the population pharmacokinetic frame-
work. First, population pharmacokinetics provides an easy to use framework which does not involve complicated 
computations. In addition, calculating the appropriate drug dose involves the utilization of a statistical model and 
the corresponding statistical parameters. Once the raw pharmacokinetic data, generally collected during clinical 
studies, has been analyzed and statistical parameters of the population pharmacokinetic model are identified, 
access to raw data collected from previous patients is no longer needed10.

Although population pharmacokinetics has been used for decades, there are severe limitations associated 
with this approach. Specifically, population pharmacokinetics does not provide sufficient information to predict 
patient-specific pharmacokinetic response to drugs and only provides general pharmacokinetic behavior for a 
target patient population with limited prediction accuracy11,12. Additionally, certain assumptions regarding the 
statistical distribution of parameters (e.g., Gaussian), may not hold, which can affect the predictive performance 
of the model. Furthermore, the population pharmacokinetic approach is generally concerned with parameter 
identification of statistical models and fails to include validated mechanistic models which are based on the laws 
of physics (e.g., conservation of mass). Inclusion of mechanistic models for pharmacokinetics, which use ordinary 
differential equations (ODEs) that characterize drug distribution in the body, can provide a framework based on 
basic principles to characterize pharmacokinetic response and can increase prediction accuracy13. As the number 
of parameters to reproduce physiological functions tend to be large in pharmacokinetic models, efficient param-
eter estimation methods are essential.

Modern medicine is moving towards personalized medicine, where genetic analysis can guide personalized 
treatment14. Genetic analysis can also provide further insight on drug effect (i.e., pharmacodynamics) on individ-
ual patients. However, currently no framework exists for personalized pharmacokinetics to guide drug dosing. 
To ensure an effective personalized pharmacological treatment, we need to address interpatient and intrapatient 
variabilities in both pharmacokinetics and pharmacodynamics.

In this paper, we provide an approach to address the current gap in the continuum of pharmacological treat-
ment by presenting a framework that can accurately predict pharmacokinetic response for a specific patient, 
which in turn can assist in personalized drug dosing. Specifically, a framework is presented that can use prior data 
as well as a limited number of measurements from the subject to accurately identify the parameters of a dynamical 
system model of drug pharmacokinetics for that subject. Such a dynamical system model with accurate parameter 
values can in turn be used to predict drug concentration over time, and hence, provide a framework to guide drug 
dosing. As discussed below, this problem involves complex computations, and hence, a numerical framework will 
be presented to solve the parameter identification problem in a reasonable time frame. The efficacy of the pre-
sented framework is established through analysis of pharmacokinetic data for the sedative drug propofol obtained 
from a dataset of 59 patients previously reported in the literature15,16.

Compartmental Dynamical Systems
In this section, we provide a brief overview of the compartmental dynamical systems framework to model phar-
macokinetics (see17 for a detailed discussion). Pharmacokinetic compartmental models make the assumption that 
the body consists of multiple compartments. Furthermore, the drug concentration is assumed to be uniform due 
to ideal mixing under each compartment. There are two major types of activities, i.e., the transportation to other 
compartments, and elimination from the body. These two activities are controlled by the metabolic processes of 
the human body. In the approximation of the real activities, the transport rate is usually assumed to be propor-
tional to drug concentration. In addition, anotherapproximation is made that the mixing of the drug is instanta-
neous. This has marginal effect on the accuracy of the model as long as the estimation of drug concentration is not 
conducted right after the administration of the drug.

To formalize the parameter identification problem, we propose to model pharmacokinetics (PK) with com-
partmental dynamical systems. Specifically, drug concentration dynamics for a n-compartment system are given 
by the state space equation

= + = ≥x t f x t w t x x t( ) ( ( )) ( ), (0) , 0, (1)0

where the drug concentration in each compartment is denoted by x = [x1, …, xn]T, the drug infusion from an 
external source is denoted by w = [w1, …, wn]T, and the mass exchange between different compartments are char-
acterized by f(x) = [f1(x), …, fn(x)]T, where for i = 1, …, n,
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with âij reflecting drug exchange coefficients between compartments.
The above model is general and can be used to model any pharmacokinetic system. For instance, a special case 

of the above nonlinear model is the compartmental mammillary dynamical system, which is often used to model 
the pharmacokinetics of certain drugs (e.g., the sedative propofol). Usually, a central compartment will be defined 
in the nonlinear mammillary model as the site for drug administration. The drug elimination through metab-
olism or other means occur from this central compartment. This compartment also connects to one or several 
peripheral compartments for the exchange of drug. The central compartment is considered to be a combination 
of blood within arteries and veins and the organs that have high blood flow to weight ratios. On the other side, the 
peripheral compartments are assumed to be metabolically inert as far as drug is concerned.

The Parameter Identification Problem
In order to use a compartmental dynamical system to predict pharmacokinetic response, exact values of the 
parameters of the compartmental dynamical model (i.e., exchange coefficients between compartments, drug 
metabolism rate, etc.) are required. These values are unique to each individual patient and vary from patient to 
patient. An accurate knowledge of the compartmental model parameters can result in a more accurate prediction 
of the pharmacokinetic response of the patient for a given drug.

The parameter identification problem involves solving an inverse problem, where a set of measurements 
of drug concentration in the blood at multiple time points is given and the parameters of the compartmental 
dynamical system need to be identified18. This inverse problem is also referred to as system identification in the 
dynamical systems and controls literature. The inverse problem can be cast as an optimization problem, where a 
set of parameters need to be identified that minimize the error of model fit given the available data. The optimi-
zation problem associated with pharmacokinetics is generally under-determined (i.e., there are more unknowns 
than measurements), and hence, ill-posed (i.e., there are infinitely many solutions to the problem given the avail-
able information)19.

We denote unknown pharmacokinetic model parameters by θ ∈ n, where we assume that there are n 
unknown parameters. Furthermore, we assume that m noisy measurements y1, …, ym at time instants t1, …, tm are 
given, where m < n. The parameter identification problem involves solving the optimization problem

θθJ ymin ( , ), (3)y ,

where J(y, θ) is a cost function quantifying model fit. Here, we define the cost function as

θ θ= − …J y y F t t( , ) ( , , , ) , (4)m1 2
2

where F(θ, t1, …, tm) = [F1(θ, t1), …, Fm(θ, tm)]T denotes a mapping from model parameters θ to drug concentra-
tion at time instants t1, …, tm.

Limitations of Using Current Optimization Methods for Solving the Pharmacokinetics 
Parameter Identification Problem
There are certain drawbacks associated with using existing optimization frameworks such as 
Levenberg-Marquardt (LM) for solving the parameter identification problem discussed in this paper as explained 
below.

Long computation time.  Each function evaluation in the optimization problem (3) (i.e., computing mod-
eling error given a set of parameters) involves the solving a set of forward ordinary differential equations (ODEs) 
characterizing the compartmental pharmacokinetic model, which is computationally expensive. The optimiza-
tion framework has to repeatedly solve the forward ODEs and update the set of parameters until the model error 
is minimized. The convergence of this process can be extremely slow. In addition, optimization methods such as 
the LM method are not appropriate for parallelization to reduce the computation time.

Lack of an effective mechanism to use prior knowledge.  As discussed above, current optimization 
frameworks allow one to choose an initial set of parameters θ0 for which the desired optimum needs to be suf-
ficiently close. Current practice involves selecting an “average” set of values for this initial parameter set (which 
serves as our best estimate of parameter values). This is a drawback of current frameworks, as there is no “average 
patient” and “average values.” For personalized pharmacokinetics, we require an effective method for selecting the 
initial set of parameters such that they are as close as possible to the actual pharmacokinetic parameters.

A Framework for Parameter Identification with Application to Personalized 
Pharmacokinetics
To address the limitations of current optimization methods, we present a framework known as the Constrained 
Cluster Newton (CCN) method to solve the parameter identification problem. This method has two main advan-
tages as compared to more traditional methods for solving the inverse problem. First, it provides a mechanism 
to include pharmacokinetic data collected from previous patients to guide the optimization process. Second, it 
involves dividing the problem into a series of independent sub-problems that will allow parallel computing to 
reduce computation time.
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The proposed Constrained Cluster Newton method is an extension to the Cluster Newton method3. The 
Cluster Newton method is used to find a family of solutions for an under-determined inverse problem in a way 
that is significantly more efficient than solving a series of independent optimization problems with different 
initialization values (see3). The Cluster Newton method starts with a cluster of initial points, which are generally 
sampled from a region defined by average pharmacokinetic values and ranges reported in the literature. It then 
forward-solves the ODEs for each point in the cluster. Next, it fits a hyperplane to the solutions using a least 
squares framework to obtain a linear approximation of the function characterizing the forward problem (which 
is usually nonlinear). All the initial points are collectively moved closer to the solution via an update step. By 
repeating the above steps, the cluster of points will move close to the solution(s) of the inverse problem. The accu-
racy of the estimated solutions can then be further improved using Broyden’s method until the desired accuracy 
is achieved3,20.

In an extension to the Cluster Newton method (CN), which we call the Constrained Cluster Newton method, 
we can use data from prior patients to guide the optimization process by imposing constraints on the initial 
cluster of points. Specifically, we assume that a dataset including blood concentrations overtime is available for a 
specific drug. Next, instead of randomly sampling points uniformly from a relatively large region defined by the 
range of values determined through population pharmacokinetics, we identify a set of patients in the archived 
dataset that have the most similar pharmacokinetic response to the patient under consideration to generate a 
more targeted cluster of points, used for initialization of the optimization framework.

The overall architecture of the fast personalized pharmacokinetics framework is shown in Fig. 1. Initially, the 
parameter identification component is performed offline (and once) to compute the pharmacokinetic parameters 
for previously collected data from a set of patients (i.e., drug concentration over time). Next, when the pharma-
cokinetic response of a new patient is needed, the framework identifies the most similar patients in the archived 
dataset to complement the drug concentration measurement obtained from the new patient. Finally, once the 
pharmacokinetic parameters for the new patient are identified, they are used in conjunction with a forward-solver 
to compute the pharmacokinetic response of the patient to the drug (e.g., the area under the drug concentration 
over time curve, maximum concentration, half life, etc.). Details of these processes are discussed below.

Identifying the parameters of patients in the archived dataset.  First, an inverse problem for each 
patient in the archived dataset is solved such that one set of pharmacokinetic parameters is obtained for each 
patient. This process is performed once and offline. Specifically, if there are q patients in the archived dataset, then 
we identify pharmacokinetic parameters θj, j = 1, …, q, for the jth patient by minimizing J(yj, θ), where ⋅ ⋅J( , ) is 
defined by (4) and yj = [yj,1, …, yj,mq]T is the set of measurements available for the jth patient in the archived data-
set. Here, we use the LM method; however, other frameworks may be used.

Initial estimate of the parameters for the new patient.  Next, we solve the inverse problem (3) for the 
new patient under consideration to identify an initial estimate of the parameters θ. This is performed by solving 
a standard parameter identification problem by initializing the optimization parameters using average pharma-
cokinetic parameter values determined from the archived dataset or published in the literature. While the identi-
fied parameter θ using this step is not accurate, it serves as our best estimate of the approximate region in the 
parameter space where the actual parameters reside.

Using prior data from the archived dataset to predict pharmacokinetic response.  Finally, we 
select a set of patients from the archived dataset with a pharmacokinetic response that is closest to the new patient 
under consideration. Patients with the most similar pharmacokinetics can be selected either by selecting any 
patient from the archived dataset with his/her pharmacokinetic parameters being within a specific distance from 
the new patient (threshold-based), or by selecting the n patients from the archived dataset who are closest to the 
new patient (n-nearest neighbor). In the threshold-based approach, a patient from the archived dataset is consid-
ered similar to the current patient if θ θ α− ≤ , where θ is the pharmacokinetic parameters of the patient 
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Figure 1.  The overall architecture of the fast personalized pharmacokinetics framework.

https://doi.org/10.1038/s41598-019-50810-z


5Scientific Reports |         (2019) 9:14143  | https://doi.org/10.1038/s41598-019-50810-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

selected from the archived dataset, θ is the initial estimate for the new patient, and α > 0 is a specified threshold. 
Alternatively, if the n-nearest neighbor is used, then n patients with the smallest distance θ θ−   are selected.

Once the set of patients from the archived dataset is selected, their identified pharmacokinetic parameters 
are used to define a targeted region and generate a cluster of points to use with the Cluster Newton method. Note 
that the choice of the cluster used for initializing the optimization process has a significant impact on the results. 
Hence, selecting similar patients from the archived dataset can improve the results by defining a more targeted 
region to use for generating the initial cluster. Here, we choose a minimum bounding box to define the region 
from which the cluster is randomly sampled. Once the pharmacokinetic parameters of the new patient are identi-
fied, the pharmacokinetic response of the patient to a dose of drug can be computed by forward solving the ODEs 
using the identified parameters. A schematic of the proposed approach outlined in Sections 2 to 2 is shown in 
Fig. 2.

Application to Personalized Pharmacokinetics for the Sedative Drug Propofol
In this section, we model the pharmacokinetics of the sedative agent propofol21 as an example for the proposed 
framework. Propofol is a fast-acting intravenous hypnotic agent. It can produce anxiolysis when being used in 
low doses. In higher doses, it causes hypnosis. Propofol may be administered as a bolus or continuously. Propofol 
depresses the myocardial contractility, which leads to decreased cardiac output. Furthermore, the decrease in 
cardiac output affects the redistribution kinetics, which is related to the blood transportation from the central 
compartment to the peripheral compartments. As a consequence, the drug concentration in the central compart-
ment may be increased, leading to more depression in myocardial contractility, and oversedation.

The pharmacokinetics of propofol are described by the three-compartment model17,22 shown in Fig. 3. As 
shown in Fig. 3, x1 represents the mass of drug in the central compartment. The remaining portion of the drug in 
the body is assumed to reside in two peripheral compartments. The masses are shown as x2 and x3, respectively. 
Specifically, x2 is associated with muscle and the x3 is related with fat.

A three-compartments dynamical model is defined as below

Figure 2.  A schematic of the proposed Constrained Cluster Newton method.

Figure 3.  The three-compartment model of propofol.
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1 , Vc is the volume of the central compartment (about 15  for a 70-kg patient), aij(c), i ≠ j, is the 
rate of transfer of drug from the jth to the ith compartment, a11(c) is the rate of drug metabolism and elimination 
(metabolism typically occurs in the liver), and u(t), t > 0, is the infusion rate of the sedative drug propofol into the 
central compartment. The transfer coefficients are assumed to be functions of the drug concentration c since it is 
well known that the pharmacokinetics of propofol are influenced by cardiac output23 and, in turn, cardiac output 
is influenced by propofol plasma concentrations, both due to venodilation24 and myocardial depression25.

Experimental data indicate that the transfer coefficients aij(⋅) are nonincreasing functions of the propofol 
concentration24,25.

The most widely used empirical models for pharmacodynamic concentration-effect relationships are mod-
ifications of the Hill equation26. Applying this almost ubiquitous empirical model to the relationship between 
transfer coefficients implies that

= =
+

α

α α





a c A Q c Q c
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C c
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(6)
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0 50,
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where, for i, j ∈ {1, 2, 3}, i ≠ j, C ij50,  is the drug concentration associated with a 50% decrease in the transfer coeffi-
cient, αij is a parameter that determines the steepness of the concentration-effect relationship, and Aij are positive 
constants. It is to be noted that both pharmacokinetic parameters are functions of i and j, that is, there are distinct 
Hill equations for each transfer coefficient. Furthermore, since for many drugs the rate of metabolism a11(c) is 
proportional to the rate of transport of drug to the liver, we assume that a11(c) is also proportional to the cardiac 
output so that a11(c) = A11Q11(c).

Evaluating the Performance of the Personalized Pharmacokinetic Framework for 
Dosing of Propofol
In this section, we apply the presented framework to predict the pharmacokinetic response of a patient to 
propofol.

Identifying the parameters of patients in the archived dataset.  First, we use data reported in15 
and16, where plasma concentrations from arterial samples were collected from 59 adult volunteers (age 23–82 
and weight 57–114 kg). Subjects received a propofol infusion of 0.5 mcg/kg/min for an average time of 8 minutes. 
Times at which blood sampling was performed varied across subjects. However, approximately 17 samples were 
collected from t = 0 to t = 100 min from all subjects. In addition, depending on the subject’s condition, between 0 
to 10 extra samples were collected from subjects after t = 100 min.

As a first step, pharmacokinetic parameters for subjects in the archived dataset were identified using the 
Levenberg-Marquardt method. Furthermore, since there were variations in total infused propofol among dif-
ferent subjects in the archived dataset, the pharmacokinetic response of each subject in the archived dataset was 
updated using the drug dose of the new patient.

Using Prior data from the archived dataset to predict pharmacokinetic response.  We compare 
the prediction accuracy of three frameworks: i) the Levenberg-Marquardt (LM) method, where no prior data 
is available and only typical ranges of pharmacokinetic parameter values are provided; ii) the Cluster Newton 
(CN) method, where no prior data is available and only typical ranges of pharmacokinetic parameter values are 
provided; and iii) the Constrained Cluster Newton (CCN) method, where data from prior patients are available.

In order to initialize the LM and CN methods, a cluster of 500 points is generated to be used by the optimi-
zation algorithms, where the cluster is chosen from the range given by typical values of the pharmacokinetic 
parameters reported in the literature22,27. The parameters are assumed to be distributed in a normal distribution 
with the mean values centered as A11Q0 = 0.119, A21Q0 = 0.112, A12Q0 = 0.055, A31Q0 = 0.0419, A13Q0 = 0.0033, 
and Vc = 15.96. The standard deviation of these values are std(A11Q0) = 0.0351, std(A21Q0) = 0.1051, 
std(A12Q0) = 0.0458, std(A31Q0) = 0.0155, std(A13Q0) = 0.0013, and std(Vc) = 12.7. In contrast, in the CCN 
method, the archived dataset is used to generate the cluster of 500 points to initiate the optimization process as 
discussed in Section 1. In addition, we use both the threshold-based approach (with the threshold set to α = 5) 
and the nearest neighbor-based approach (with n set to 20) to solve the parameter identification problem, namely 
CCN(th) and CCN(nn), respectively.

Evaluation of the proposed method.  We use a leave-one-subject-out method, where data from 58 patients 
are assigned to the archived dataset and the remaining one patient is considered as a new patient. This process 
was repeated 59 times so that each subject in the dataset was considered as the new patient and all the others were 
assigned to the archived dataset. In the end, all results were aggregated. To solve the personalized pharmacoki-
netic problem, we assumed that drug concentration in plasma for the new patient is only available at one time 
instant (at approximately t = 3 min depending on the availability of data in the dataset). Our goal was to compare 
the prediction accuracy of the personalized pharmacokinetic approach with the ground truth established by the 
available data for each subject not included in the analysis.
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In both CN and CCN methods, the optimization was performed for 10 iterations. However, Broyden’s method 
was not used at the end of each iteration. We used the LM implementation in the MATLAB optimization toolbox 
(version 2018)28. In the LM method, the optimization was terminated when the last step was smaller than the 
function tolerance of 10−6 or when the number of iterations was larger than 40029. To compare the pharmacoki-
netic prediction accuracy of each method, the following performance metrics were used: (i) peak concentration of 
the drug in the first 100 minutes denoted by Cmax, (ii) time to maximum concentration Cmax denoted by tmax, (iii) 
half-life defined as time to half Cmax denoted by thalf, and (iv) area under the curve (AUC) obtained by integration 
of the concentration-time curve. Here, we consider the area of a single-dose curve from time 0 to 100 minutes 
given by

∫=−AUC y t t( )d , (7)0 100
0

100

where y(t) represents the concentration-time relationship.
All metrics are reported as absolute percentage errors (APE) by comparing the estimated values to the avail-

able ground truth. The performance metrics for LM and CN methods were compared to the proposed CCN 
methods (both the threshold-based and the nearest neighbor approaches).

Figure 4 illustrates the error values of the results from all methods. The values in Fig. 4(a–d) are presented in 
the average APE ± standard deviation. It can be seen that the errors from the CCN method are smaller than the 
values from the CN and LM methods for most of the metrics regardless of the specific subject selection method 
used in CCN (nearest neighbor or threshold-based). In addition, the conventional CN method shows better 
results in average APE in Cmax, thalf, and AUC0−100 compared to the conventional LM method. This result matches 
the observation in3 and can be explained by the fact that the CN method uses multiple sets of initial points, 
whereas the LM method solves the inverse problem with only one set of initial points. This improves the accuracy 
of the estimation from CN method.

Detailed results are given in Table 1. The threshold-based CCN, that is, CCN(th), gives a better performance 
in comparison to nearest-neighbor-based CCN method, that is, CCN(nn), regarding Cmax (7.03% in comparison 
to 7.71%) and thalf (7.69% compared to 16.89%). However, CCN(nn) shows better performances compared to 
CCN(th) in tmax and AUC0–100, reporting 8.67% versus 11.06% and 20.39% versus 22.62%, respectively. Taking the 

Figure 4.  Comparison of the leave-out validation results in (a) absolute percentage error (APE) of the 
maximum concentration Cmax; (b) APE of the time to the maximum concentration tmax; (c) APE of the half-life 
thalf; (d) APE of the area under the curve AUC0−100. (Bar: average, Error Bar: standard deviation).

Method

Cmax tmax thalf AUC0−100

Mean SD Mean SD Mean SD Mean SD

LM 16.62% 13.22% 14.20% 9.36% 22.91% 5.00% 56.54% 17.51%

CN 14.23% 7.68% 15.53% 3.54% 11.88% 5.62% 32.31% 16.21%

CCN(th) 7.03% 5.03% 11.06% 3.20% 7.69% 6.10% 22.62% 12.81%

CCN(nn) 7.71% 4.04% 8.67% 4.84% 16.89% 10.53% 20.39% 11.48%

Table 1.  Performance Metrics for Different Pharmacokinetic Parameter Identification Frameworks.
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average of the four APEs, CCN(th) shows a better value of 12.10% ± 6.79% compared to 13.42% ± 7.72% from 
CCN(nn).

In summary, the proposed CCN method for personalized pharmacokinetics provides a more accurate pre-
diction of pharmacokinetic response based on the performance metrics defined above. Although CCN(th) 
shows better overall performance in terms of the average APE of the four metrics in Table 1, it is superior to 
CCN(nn) only in two out of the four metrics. Therefore, we can deduce that the performances of both CCN(th) 
and CCN(nn) are comparable.

Reducing Computation Time through Parallel Computing
In order to utilize a personalized pharmacokinetic framework in a clinical setting, minimal computation time 
is critical. One limitation of using traditional methods such as Levenberg-Marquardt (LM) is that the computa-
tional structure is not well-suited for a parallel computing framework, leading to long computation times of hours 
and days. One attractive property of the newly-developed Constrained Cluster Newton method compared to LM 
is that it possesses the appropriate architecture for running the algorithm on multiple processors. Specifically, the 
process involves solving a number of independent forward solutions to ODEs, and then, updating the parame-
ters. Each independent forward solution corresponds to a point randomly sampled from the initialization region. 
Running the program on multiple CPUs significantly reduces the computation time as discussed below.

To address the computational inefficiency of the numerical method, the computational bottleneck needs to 
be identified. Our analysis showed that more than 90% of the total computation time is dedicated to solve the 
ODEs. However, the CCN method involves independent solution to multiple ODEs, and hence, they can be 
solved in parallel. We used a workstation with 2 Intel Xeon CPU E5-2650 at 2.00 GHz (8 core 16 threads) running 
MATLAB to solve the parameter identification method using CCN. The workstation allows MATLAB to use a 
maximum of 12 workers in a parallel pool. A worker, defined under the MATLAB environment, is a processing 
thread that can be used for parallel calculation tasks. The MATLAB program manages workers by aggregating 
them into a pool. The workers in the pool can be used interactively and communicate with each other during the 
parameter identification task. The major parallel computation load is the ‘parfor’ function of the code, which is 
used to forward-solve the ODEs in the pharmacokinetic model.

During the test, both the CCN(nn) and the CCN(th) methods are executed with 59 subjects and 10 itera-
tions for each observation (590 iterations in total). The same test is evaluated with 1, 2, 4, 6, 8, 10, and 12 work-
ers. The results are shown in Fig. 5. The total computation time from the CCN(th) method with one worker is 
773.14 seconds. The average computation time of one subject is 13.10 seconds. The time significantly drops to 
375.84 seconds in total and 6.37 seconds on average when we have two workers working in parallel. The benefit 
from increasing the number of workers decreases slightly as we change from 2 workers to 4, 6, 8, 10, and 12 
workers with reported total times of 185.61, 159.50, 109.04, 98.60, 91.06 seconds, respectively. Furthermore, the 
average computation time of the estimation from one subject with 4, 6, 8, 10, and 12 workers is 3.15, 2.69, 1.85, 
1.67, and 1.54 seconds.

Alternatively, the total computation time from the CCN(nn) method with one worker is 752.26 seconds with 
an average of 12.75 seconds per subject. The computation time decreases to 391.51 seconds and the average com-
putation time is reduced to 6.64 seconds when 2 workers are used. The computation time continues to drop as the 
number of workers increases. As illustrated in Fig. 5, the total computation time is 209.96, 146.74, 104.41, 102.08, 
and 89.32 seconds with 4, 6, 8, 10, and 12 workers, respectively. On average, the computation time for one subject 
is 3.56 seconds with 4 workers, 2.49 seconds with 6 workers, 1.77 seconds with 8 workers, 1.73 seconds with 10 
workers, and 1.51 seconds with 12 workers.

It can be observed that both the CCN(nn) and CCN(th) methods received significant benefits when the 
worker numbers are increased from one to two. Both methods also reveal a similar trend of receiving less sig-
nificant improvements from the increased number of workers when more than two workers are involved. For 

Figure 5.  Comparison of the computation time with different number of workers.
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instance, the average computation time from CCN(nn) with 1 worker is 13.10 seconds. This value is reduced to 
1.54 seconds with 12 workers, with an improvement ratio of 8.50 (13.10/1.54). However, this ratio is lower than 
the worker ratio of 12 (12/1). By segmenting the computation time into detailed algorithm components, we 
observed that the scheduling and distribution of the parallel calculation tasks are the major reason that the benefit 
from parallel computing becomes less significant for a larger number of workers. The ratio of worker management 
time to total computation time is higher for a larger number of workers. Finally, it was also observed that the 
computation time of the LM method is much higher than the CCN method with the same initial points, reporting 
more than 7400 seconds for the LM method versus 13.10 seconds from the CCN(nn) method.

Discussion and Conclusion
In this paper, we presented a framework for fast parameter identification for personalized pharmacokinetic appli-
cations. Our numerical experiments validate the feasibility of this framework to improve the accuracy of phar-
macokinetic parameter estimations with limited observations. The best overall performance is achieved with the 
constrained Cluster Newton method (CCN) employing a threshold strategy. Experimental results also indicate 
that it is beneficial to apply parallel computing to the CCN method.

In future research, we will evaluate the sensitivity of the algorithm to dosage variations and improve the 
robustness of the algorithm. Extensive tests with other pharmacokinetic models will also be conducted to evaluate 
the model-dependency of the algorithm. One limitation of this study is that the database is relatively small. In our 
future studies, we will evaluate the performance of the algorithm with a larger database. Another limitation is that 
our framework requires a high number of samplings in the archived dataset. This will ensure that the dynamics 
of the new patient can be adequately characterized by the proposed least-squares-based approach. In our future 
studies, we will investigate the effects of an increase or a decrease in the sampling density on the performance of 
the framework.

To achieve fast computation, more workers are needed. Implementation of the proposed framework on 
Graphic Processing Units (GPU) could be beneficial in this regard, as ODE implementation is reported to be 65 
times faster on GPU than on CPU30. This will reduce the response time to the level of milli-seconds per estimation 
task, pushing forward this research to practical applications.

Data Availability
The datasets generated during and/or analysed during the current study are available in the OPENTCI repository, 
http://opentci.org/data/propofol.
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