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Systematic identification of metabolites controlling
gene expression in E. coli
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Metabolism controls gene expression through allosteric interactions between metabolites

and transcription factors. These interactions are usually measured with in vitro assays, but

there are no methods to identify them at a genome-scale in vivo. Here we show that dynamic

transcriptome and metabolome data identify metabolites that control transcription factors in

E. coli. By switching an E. coli culture between starvation and growth, we induce strong

metabolite concentration changes and gene expression changes. Using Network Component

Analysis we calculate the activities of 209 transcriptional regulators and correlate them with

metabolites. This approach captures, for instance, the in vivo kinetics of CRP regulation by

cyclic-AMP. By testing correlations between all pairs of transcription factors and metabolites,

we predict putative effectors of 71 transcription factors, and validate five interactions in vitro.

These results show that combining transcriptomics and metabolomics generates hypotheses

about metabolism-transcription interactions that drive transitions between physiological

states.
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Transcriptional regulation of metabolism is well character-
ized regarding the canonical flow of genetic information,
which considers how transcription modulates the abun-

dance of enzymes, and thereby metabolic flux and metabolites1–4.
In reverse, metabolites convey information back to the tran-
scription network by directly or indirectly interacting with a
transcription factor (TF)5–9 (Fig. 1a). In Escherichia coli, for
example, the amino acid arginine allosterically regulates the
activity of ArgR, which is a TF that controls genes involved in
arginine biosynthesis, but the total regulon includes more than
400 genes10. Allosteric TF regulation allows a cell to tune gene
expression depending on its metabolic state and theory shows
that this regulation is robust and predictable by models11. An
important consequence of allosteric TF regulation is that meta-
bolites are not just biomass building blocks but they serve as
internal signals with the potential to actively drive transitions
between different physiological states.

It is largely unexplored which of the many intracellular
metabolites interact with TFs12,13, yet many transcriptional reg-
ulators are expected to bind a small molecule5. Currently, a major
limitation to fill this gap of knowledge is the lack of methods to
identify the most functionally relevant metabolite–TF interactions
that control gene expression in vivo. Detection of physical
interactions between metabolites with transcriptional regulators is
mainly based on in vitro assays, which are low-throughput, fea-
sible for only certain compounds and combinatorial effects

cannot be assayed14. An alternative approach is to probe protein
structural changes with proteomics, which can detect binding of a
single metabolite across thousands of proteins in cell extracts, but
this approach cannot decipher unspecific binding from interac-
tions that are functional in vivo15. An in vivo approach has been
proposed, which searches for correlations in metabolomics data
and data from fluorescent transcriptional reporters. This method
could indeed recover few of the known metabolites that are
relevant for gene regulation of central carbon metabolism in E.
coli16.

Here, we measure the E. coli transcriptome and metabolome
changes during a 20 h dynamic transition, and show that inte-
grating these two data-types generates hypotheses about
metabolite–TF interactions that may have functional relevance
in vivo. We also construct a metabolite–TF network for E. coli
from the literature and databases, and show that our approach
recovers more than 50% of the interactions in this network that
were covered by our data. Moreover, we validate five predicted
interactions with in vitro binding assays, i.e. lysine–ArgR,
tyrosine–TrpR, glutamate–SgrR, tryptophan–SoxR, and dihy-
droxyacetone phosphate–DhaR, showing that our methodology
generates physiologically meaningful results.

Results
Switching E. coli between growth and carbon starvation. We
used a 1 L bioreactor to switch the culture conditions of E. coli
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Fig. 1 Dynamic metabolomics and transcriptomics during the growth–starvation switch in E. coli. a Schematic of the mutual feedback between metabolism
and transcription. Transcription regulates enzyme levels, which affect flux and metabolite concentrations. Metabolite concentrations regulate gene
expression by allosteric interactions with transcriptional regulators. b Growth of E. coli during the switch between growth, carbon starvation, and back to
growth. Cells were cultivated in a 1 L bioreactor on glucose minimal medium to an OD of 2 and then the medium was exchanged to minimal medium
without carbon source. After 12 h carbon starvation glucose was added to the culture. μ is the growth rate calculated by linear regression in the first and
second growth phase. c Dynamic transcriptomics and metabolomics data measured at 29 and 35 time points, respectively. The first measurement was
before the switch to starvation, 19 samples were collected during starvation and 9 samples during exit from starvation. Shown are z-score normalized
transcript levels (in TPM) of 4242 genes and the z-score normalized concentration of 123 metabolites. Blue indicates high expression/concentration;
orange indicates low expression/concentration. Data are grouped by hierarchical clustering and the four largest clusters are indicated as clusters A–D
(average cluster dynamics are shown in Supplementary Fig. 2). Source data are provided as a Source Data file
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between 6 h growth, 12 h carbon starvation, and 2 h growth
resumption. First, cells grew on minimal medium with glucose
and when the culture reached an optical density (OD) of 2, we
transferred cells to minimal medium without carbon source. This
rapid medium exchange caused an immediate growth arrest and
cells starved for a period of 12 h (Fig. 1b). After 12 h we added
again glucose to the culture and within 10 min cells resumed
growing exponentially (Fig. 1b). Apart from the fast growth
resumption, also oxygen uptake and CO2-production increased
rapidly upon glucose addition and reached the same rate as before
starvation (Supplementary Fig. 1). Thus, physiological parameters
like growth and respiration change in a fast and reversible fashion
when E. coli cells enter and exit carbon starvation. Next, we
investigated metabolism and transcription during the
growth–starvation–growth switch, and measured the concentra-
tion of 123 metabolites by LC-MS/MS (Supplementary Fig. 2) and
4242 transcripts by RNA-sequencing (Fig. 1c, Supplementary
Data 1 and 2). In total, we collected transcriptomics samples at 29
and metabolomics samples at 35 different time points in dupli-
cates from a single bioreactor (Supplementary Data 3), with
average errors of 18% for metabolites and 16% for transcripts.
Only 8% of metabolites and 17% of the transcripts did not change
significantly in either phase. To explore global dynamics of the
metabolome and transcriptome data, we grouped each data set
into four clusters (hierarchical clustering, z-score normalized).
The clusters showed that the largest group of metabolites (63%)
and transcripts (68%) decreased during the starvation phase and
increased during the exit-phase (Cluster A, Supplementary
Fig. 3). This group included intermediates in glycolysis like
fructose-bisphosphate, dihydroxyacetone phosphate, and acetyl-
CoA, as well as the nucleotide-triphosphates ATP and GTP
(Fig. 2). Another group of metabolites and transcripts accumu-
lated during the first 4–6 h into starvation, such as the amino
acids lysine and phenylalanine that originate from degradation of
proteins17 (Cluster C, Supplementary Fig. 3). Similarly, accu-
mulation of nucleotide derivatives like hypoxanthine was

presumably a consequence of RNA degradation (Fig. 2). These
data indicate that starving E. coli cells catabolize RNA and pro-
teins during the early phase of starvation, an interpretation that is
consistent with the relatively high production of CO2 in this
phase (Supplementary Fig. 1), and also with the expression of
genes involved in RNA, protein, and glycogen degradation pro-
cesses (Supplementary Fig. 4). Notably, expression of genes in
glycogen degradation preceded the expression of genes in RNA
and protein degradation (Supplementary Fig. 4), confirming that
glycogen functions as short-term energy storage. After switching
cells back to glucose, 95% of the metabolites and 78% of tran-
scripts reached the same steady-state levels that they had before
the starvation phase. However, for many metabolites and tran-
scripts, it took over 1 h until they reached a steady state, thus
indicating extensive regulation during the exit phase.

Integrating metabolomics and transcriptomics data. To identify
metabolites that are potential regulators of gene expression dur-
ing the growth–starvation-growth switch, we searched for cor-
relations between dynamics of metabolites and transcripts.
Because metabolites modulate transcription through allosteric TF
regulation, we sought to determine the activity of TFs and other
regulators like σ70 and σS. The relationship between transcrip-
tional regulators and their target genes is well-characterized in E.
coli, in the form of a transcription regulation network18. A well-
mapped transcription regulation network allowed us to infer
activities of transcriptional regulators from measured gene
expression profiles using algorithms like network component
analysis (NCA)19,20. The NCA algorithm estimates activity pro-
files of transcriptional regulators, which minimize the error
between theoretical and measured gene expression profiles (for
2167 genes that are mapped to 209 transcriptional regulators in
the E. coli transcription regulation network). In total, we per-
formed 100 searches with the NCA algorithm, each with a dif-
ferent randomized initial condition, such that we obtained means
and confidence intervals for activity profiles of the 209
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Fig. 2 Examples of metabolite concentration changes during the growth–starvation-growth switch. Absolute concentration of metabolites in central carbon
metabolism (green), amino acid metabolism (orange), and nucleotide metabolism (blue). The dashed lines indicate the starvation and growth phases.
Black dots show concentrations of two replicates per time point (four at the first time point), colored dots are the mean. The energy charge is calculated
from the concentration of ATP, ADP, and AMP. fbp fructose-1,6-bisphosphate, dhap dihydroxyacetone phosphate, pep phosphoenolpyruvate, accoa acetyl-
coenzyme A, glu glutamate, arg arginine, lys lysine, phe phenylalanine, atp adenosine triphosphate, gtp guanosine triphosphate, hxan hypoxanthine. Source
data are provided as a Source Data file
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transcriptional regulators (Fig. 3a, Supplementary Data 5). These
209 activity profiles were able to reproduce 75% of the transcript
dynamics and were consistent with the expected responses of
transcriptional regulators during starvation and growth21. For
example, σ70, the major sigma factor during exponential growth,
was deactivated upon entry to starvation, and the stress response
regulator σS was immediately activated (Supplementary Fig. 5).

Allosteric regulation of a TF by a metabolite is often described
by Hill-type kinetics11, which assumes a sigmoidal relationship
between TF activity and the concentration of an effector
metabolite. In a canonical example of this regulation, the
secondary messenger cyclic-AMP activates CRP, which is a
global TF in E. coli22,23. On the basis of Hill kinetics, we tested
how well the measured cyclic-AMP concentration predicts the
activity profile of CRP (Fig. 3b). Cyclic-AMP and CRP activity
revealed indeed a Hill-type relationship with an activation
constant (KH) of 39 μM, which is very close to the in vitro
determined value of 27 μM23. Thus in vivo metabolite and
transcript data identifies the existence of the known interaction
between cyclic-AMP and CRP, and additionally captures the
underlying kinetics of allosteric TF regulation. Another well-
known metabolite–TF pair is tryptophan and the repressor of the
tryptophan operon (TrpR), which also showed Hill-type kinetics,
and the in vivo KH of 355 μM was again relatively close to the
in vitro value of 160 μM24 (Fig. 3c).

Next, we wondered how many of the known metabolite–TF
interactions are covered by our data, and whether they show a
Hill-type relationship. Therefore, we first constructed a “literature
network” of known metabolite–TF interactions by mining
RegulonDB18, the EcoCyc database25 and the Allosteric Data-
base26. This literature metabolite–TF network included in total
134 interactions between 87 TFs and 106 metabolites (Supple-
mentary Fig. 6). 41% of the interactions are activating, 38%
inhibiting and for 21% it is not known whether the metabolite
inhibits or activates the TF. Our data covered interactions for 21
out of the 87 TFs, and 12 of them correlated with at least one of

the known regulatory metabolites (Fig. 4a, Pearson’s correlation
coefficient R² > 0.75). Thus, our data recovered known interac-
tions in more than 50% of the cases, and in each of these cases the
correlation correctly reflected, whether the metabolite activates or
inhibits the TF. In case of NadR and ExuR, our data suggests that
they are inhibited by ATP and lysine, respectively.

Mapping metabolism-transcription interactions systematically.
A problem of the correlation analysis was that several meta-
bolites correlated with the activity of a TF, resulting in many
false positives (Fig. 4b). The large number of false positives is
mainly caused by metabolites that have similar dynamics. The
same problem was previously reported for a multi-omics ana-
lysis of yeast metabolism, which searched for correlations
between metabolites and fluxes27. In this study, correlations
between metabolites caused also many false positives, and
including prior knowledge about metabolic flux regulation
solved the problem. Here, we could not adapt such an
approach, due to the limited information about allosteric TF
regulation. Instead, we reduced the number of putative inter-
actions by using a distance criterion for metabolites and TFs:
metabolite–TF pairs were only considered, if at least one target-
gene of the TF encodes an enzyme that participates in the same
metabolic subsystem as the metabolite or if the metabolite is a
substrate or a product. The hypothesis behind this distance
criterion is that metabolites are more likely to regulate genes
that are involved in their own biosynthesis. This assumption is
supported by a recent study in cancer cells, which showed that
metabolite-gene pairs have a higher correlation when they are
close in the metabolic network28. We observed a similar
proximity of metabolite–TF interactions in our literature net-
work, because more than 80% of these interactions have a small
distance in the E. coli genome-scale metabolic model29 (Sup-
plementary Fig. 6). We then applied the distance criterion to
our data and only considered metabolite–TF pairs that fulfilled
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Fig. 3 Metabolite levels and transcription factor activities recover regulatory interactions. a Z-score normalized activity of 209 transcriptional regulators.
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the distance criterion (black dots in Fig. 4b). For the 12 known
metabolite–TF interactions that showed a Hill-type relation-
ship, 11 fulfilled the distance criterion, and only the interaction
between ExuR and lysine was rejected. The advantage of the
distance filter was that it reduced the number of highly corre-
lating metabolites from an average of 34 metabolites per TF to
an average of 9 (Fig. 4b).

Among the false positives that remained after the distance filter
were lysine–ArgR and tyrosine–TrpR (orange dots in Fig. 4b).
Because lysine and tyrosine share structural similarity with the
known allosteric effectors (arginine for ArgR and tryptophan for
TrpR), we tested if lysine and tyrosine are additional and previously
unidentified regulators of ArgR and TrpR. Therefore, we purified
the two TFs and tested binding of lysine and tyrosine in vitro using
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micro-scale thermophoresis (MST). The in vitro MST assays
showed indeed binding of lysine and tyrosine to ArgR and TrpR,
respectively, thus validating the in vivo prediction (Fig. 4c,
Supplementary Fig. 9). The in vitro assays also confirmed the
known arginine–ArgR and tryptophan–TrpR interactions (Fig. 4c,
Supplementary Fig. 9). Because ArgR regulates essential steps in
lysine biosynthesis, as well as two lysine transporters, the
physiological function of the lysine–ArgR interaction is presumably
a metabolic feedback that inhibits lysine production and import
when lysine is abundant30,31. In case of TrpR, previous studies
showed that deletion of TrpR, affects expression of tyrA in the
tyrosine biosynthesis pathway32. Here, we show that also tyrosine is
linked to TrpR, and the crosstalk between the two aromatic amino
acids could potentially coordinate their biosynthesis.

Finally, we tested if we can generate hypotheses about the
existence of metabolite–TF interactions in an unbiased fashion by
fitting Hill functions to all pairs of metabolites and TFs. We first
reduced the number of TFs from 209 to 125 by excluding: (i) TFs
that followed simple on-off-on dynamics, (ii) TFs with poor
estimates of activity profiles (confidence interval >100%), and (iii)
TFs that are part of two-component systems (these regulators are
more likely modulated by external signals rather than internal
metabolites). The remaining 125 TFs and 123 metabolites resulted
in 15,375 metabolite–TF pairs, for which we tested if they show a
Hill-type relationship. A total of 3067 metabolite–TF pairs (20%)
showed a Hill type relationship (R² > 0.75 Supplementary Data 6),
and by applying again the distance criterion we reduced this
number to 513, which we considered as putative metabolite–TF
interactions (Supplementary Figs. 7, 8 and Supplementary Data 7).

The putative 513 interactions included 71 TFs, and we focused on
the 30 TFs that correlated only with one or two metabolites
(Supplementary Data 7). The resulting network shows mostly

interactions of TFs with metabolites from amino acid and nucleotide
metabolism but also with intermediates in carbon and cofactor
metabolism (Fig. 5a). We purified three of the identified TFs to test
if they bind the predicted metabolite. In vitro MST assays validated
that SoxR binds tryptophan, SgrR binds glutamate, and DhaR binds
the glycolysis intermediate dihydroxyacetone phosphate (DHAP)
(Fig. 5b, Supplementary Fig. 9). SoxR is known to activate the
expression of aroF and tyrA, which encode enzymes catalyzing the
first step in the biosynthesis of all aromatic amino acids (aroF) and
the tyrosine branch (tyrA)33. By binding tryptophan, SoxR could be
part of a feedback regulation circuit in aromatic amino acid
biosynthesis, which reduces expression of aroF and tyrA when
tryptophan levels are high. SgrR activates alaC that encodes a
transaminase that converts glutamate and pyruvate to alpha-
ketoglutarate and alanine34. This transaminase accounts, together
with a corresponding isoenzyme, for 90% of the catalytic activity for
biosynthesis of alanine in E. coli35. As our in vivo data show an
inhibition of SgrR by glutamate, low glutamate levels would
upregulate alaC. Because low glutamate level brings the transamina-
tion reaction closer to thermodynamic equilibrium, an accompany-
ing upregulation of alaC might provide the necessary enzymatic
capacity36. The last new interaction is DhaR and DHAP, a regulator
of dihydroxyacetone kinases, which seems to activate in response to
increasing DHAP levels37. As DhaR activates the dihydroxyacetone
kinases, the interaction could be part of a positive feedback loop.

Discussion
In conclusion, data of the E. coli transcriptome and metabolome
during a 20 h starvation–growth–starvation switch generated
hypotheses about potential interactions between metabolites and
TFs. The scale of this approach is the biggest advantage, because it
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or nucleotide metabolism (yellow). Connections in bold black highlight new interactions that are validated in vitro. b In vitro measured KD values of the new
interactions indicated in bold in (a). Binding was measured with His-tag purified SoxR, SgrR, and DhaR using micro scale thermophoresis (MST). Error bars
show the 95% confidence intervals of KD estimates, which are based on fitting n= 9 MST assays (proteins purified three times, each measured in three
MST assays). MST data are shown Supplementary Fig. 9. ala alanine, leu/ile leucine/isoleucine, asp aspartate, glu glutamate, arg arginine, 26dap
diaminopimelic acid, trp tryptophan, 15-dap 1,5-diaminopimelate, val valine, pser 3-phosphoserine, ahcys S-adenosylhomocysteine, amet S-
adenosylmethionine, PP pentose phosphate, acgam6p N-acetyl-D-glucosamine-P, udpg UDP-glucose, pep phosphoenolpyruvate, dhap dihydroxyacetone
phosphate, ppcoa propionyl-coenzyme A, ipdp isopentenyl diphosphate, pydam pyridoxamine, glucys gamma-glutamyl-cysteine, dhpt dihydropteroate,
nadh nicotinamide adenine dinucleotide (reduced), nadph nicotinamide adenine dinucleotide phosphate (reduced), dhnpt dihydroneopterin, 2dr5p
deoxyribose phosphate, dtdp thymidine diphosphate, xtsn xanthosine, dcmp deoxycytidine monophosphate, adp adenosine diphosphate. Source data are
provided as a Source Data file
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allows pair-wise testing of all TFs against all metabolites. Here, we
provided a first proof-of-principle that the combination of tran-
scriptomics and metabolomics has a great potential to identify
metabolite–TF interactions at a metabolism-wide scale. To this
end, we showed that many of the known metabolite–TF inter-
actions were reflected by our data (e.g., cyclic AMP-CRP), and,
therefore, that metabolite and gene expression data contain the
information that is necessary to reconstruct metabolic-genetic
networks. Moreover, we could validate five of the predicted
metabolite–TF interactions with in vitro assays (lysine–ArgR,
tyrosine–TrpR, glutamate–SgrR, tryptophan–SoxR and dihy-
droxyacetone phosphate–DhaR).

In our analysis, we excluded two-component systems, because
they are likely responsive to external metabolites. By measuring
the exo-metabolome it should be possible to identify effectors of
two-component systems with the method proposed in this study.
We also excluded TFs with poor estimates of activity profiles, and
to include these TFs one could probe their activities with fluor-
escent transcriptional reporters as recently suggested16. Accurate
information about TF activities was important for our approach
because it allowed pairwise testing of Hill-type relationships
between TF activities and metabolites. Here, we inferred TF
activities with the NCA algorithm that requires a well-mapped
transcription regulation network. While the transcription reg-
ulation network is known in E. coli, it is unknown for most other
organisms. To overcome the need for a known transcription
regulation network, the TF activities could be inferred from the
transcriptome data directly without using prior knowledge about
the transcription regulation network. Previous studies showed for
example that machine learning methods can infer TF activities in
E. coli based on transcriptomics data38, and inference of reg-
ulatory metabolites with such methods was also suggested39.
Future approaches could even consider determining TF activities
and regulatory metabolites simultaneously.

The main limitation in our study was that many metabolites
showed similar dynamics, which in turn caused false positive
predictions of metabolite–TF interactions. The high correlation
among metabolites could be a general problem in metabolomics-
based inference approaches27. A solution for this problem is to
enforce more specific metabolite concentration changes by loca-
lized perturbations of metabolism, for example by disturbing
single enzymes. We anticipate that the transcriptome and meta-
bolome of hundreds of locally perturbed metabolic states would
provide sufficient information to faithfully map metabolite–TF
interactions of an organism. An effective perturbation method is
CRISPR interference, because of its potential to interfere with the
expression of every enzyme of an organism.

A complete map of metabolite–TF interactions would advance
our knowledge about the dynamic nature of metabolic regulation
and enable the construction of dynamic metabolic models. Here,
we focused mainly on interactions that are part of metabolic-
genetic feedback circuits, because we considered the distance
between TFs and metabolites. However, metabolites will not only
affect the transcription of genes encoding enzymes, but also affect
genes involved in various other physiological processes. Under-
standing these long-ranging metabolite–TF interactions would
dramatically increase our understanding about how metabolism
drives physiological responses, e.g. to oxidative stress40 or anti-
biotics41. Finally, there is the possibility to exploit the knowledge
about metabolite–TF interactions to engineer better strains for
biotechnology, e.g. by designing genetic-metabolic feedback that
acts as valves in production strains42 or growth switches43.

Methods
Strains and cultivation. E. coli BW25113 (parent strain for the Keio Collection,
CGSC#: 7636) was cultivated in 1 L bioreactor with 500 mL of M9 minimal

medium containing 5 g L−1 glucose to an optical density at 600 nm (OD) of 2.
Then the culture was centrifuged at 37 °C and 1800 × g for 5 min Pelleted cells were
resuspended in M9 medium at 37 °C without glucose and transferred back to the
bioreactor. After 12 h, the culture was supplemented glucose to a final concertation
of 5 g L −1 glucose. The M9 minimal medium consisted of the following compo-
nents (per liter): 6 g Na2HPO4 · 2 H2O, 3 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl.
The following components were sterilized separately and then added to the med-
ium (final concentrations): 0.1 mM CaCl2, 1 mM MgSO4, 60 μM FeCl3, 2.8 μM
thiamine-HCl, and 10 mL trace salt solution. The trace salt solution contained (per
liter) 180 mg ZnSO4 · 7 H2O, 120 mg CuCl2 · 2 H2O, 120 mg MnSO4· H2O, 180 mg
CoCl2 · 6 H2O. The dissolved oxygen in the bioreactor was kept at 30% and pH 7
was controlled with 5M NH4OH and 20% H3PO4. The bioreactor was a BioFlo115
bioprocess system (Eppendorf, Hamburg, Germany), equipped with a pH-sensor
(Mettler Toledo, Colombus, OH) and a DO-sensor (Mettler Toledo, Colombus,
OH). Exhaust gas of the cultivation was analyzed by a DASGIP GasAnalyser
(Eppendorf, Hamburg, Germany). The GasAnalyser was calibrated with two-point-
calibration prior to the cultivation. The bioreactor cultivation was monitored with
the BioCommand-Software (Eppendorf, Hamburg, Germany).

Metabolomics. For metabolomics 1 mL culture aliquots were vacuum-filtered on a
0.45 μm pore size filter (HVLP02500, Merck Millipore). Filters were immediately
transferred into 40:40:20 (v-%) acetonitrile/methanol/water at −20 °C for extrac-
tion. Extracts were centrifuged for 15 min at 11,000 × g at −9 °C. Centrifuged
extracts were mixed with 13C-labeled internal standard. Chromatographic
separations were performed on an Agilent 1290 Infinity II LC System (Agilent
Technologies) equipped with an Acquity UPLC BEH Amide column (2.1 × 30 mm,
particle size 1.8 μm, Waters) for acidic conditions and an iHilic-Fusion (P) HPLC
column (2.1 × 50 mm, particle size 5 μm, Hilicon) for basic conditions. We were
applying the following binary gradients at a flow rate of 400 μl min−1: acidic
condition) 0–1.3 min: isocratic 10% A (water/formic acid, 99.9/0.1 (v/v), 10 mM
ammonium formate), 90% B (acetonitrile/formic acid, 99.9/0.1 (v/v)); 1.3–1.5 min
linear from 90 to 40% B; 1.5–1.7 min linear from 40 to 90% B, 1.7–2 min isocratic
90% B. Basic condition) 0–1.3 min: isocratic 10% A (water/formic acid, 99.8/0.2 (v/
v), 10 mM ammonium carbonate), 90% B (acetonitrile); 1.3–1.5 min linear from
90 to 40% B; 1.5–1.7 min linear from 40 to 90% B, 1.7–2 min isocratic 90% B. The
injection volume was 3.0 μl (full loop injection).

Eluting compounds were detected using an Agilent 6495 triple quadrupole mass
spectrometer (Agilent Technologies) equipped with an Agilent Jet Stream
electrospray ion source in positive and negative ion mode. Source gas temperature
was set to 200 °C, with 14 L min−1 drying gas and a nebulizer pressure of 24 psi.
Sheath gas temperature was set to 300 °C and flow to 11 L min−1. Electrospray
nozzle and capillary voltages were set to 500 and 2500 V, respectively. Metabolites
were identified by multiple reaction monitoring (MRM), and MRM parameters
were optimized and validated with authentic standards44. Metabolites were
measured in 12C− and 13C isoforms, and data were analyzed with published
Matlab code44. Metabolites were sampled four times at the first time point t0; and
two samples were collected at the remaining time points (see also reporting
standards in Supplementary Data 10). Metabolomics metadata is accessible under
the MetaboLights accession number MTBLS1044.

Transcriptomics. For transcriptomics 0.5 mL culture was transferred into reaction
tubes and centrifuged at 11.000 × g for 2 min, and the pellet was frozen in liquid
nitrogen. The total RNA of the cells was isolated using the Total RNA Isolation
Mini Kit (Agilent, Santa Clara, CA). The integrity of the RNA was measured using
the BioAnalyzer Pico-Kit (Agilent, Santa Clara, CA). RNA-sequencing was per-
formed by the Max Planck-Genome-Centre Cologne, Germany (https://mpgc.
mpipz.mpg.de/home/). The sequencing reads were analyzed and mapped using the
CLC Software (QIAGEN, Venlo, NL). For normalization, gene expression was
calculated as transcripts per kilobase million (TPMs). RNA was sampled four times
at the first time point t0; and two samples were collected at the remaining time
points. For the time points t13, t15, t19 and t24 one of the two replicates was excluded
due to low quality of the sampled RNA. Transcriptomics metadata is accessible
under the GEO number GSE131992.

Network component analysis (NCA). NCA was performed by iteratively opti-
mizing connectivity strength and TF-activity by using the connectivity matrix of
the transcription regulation network and the measured gene expression. The
optimization is a least square optimization between the gene expression and the
product of connectivity and TF-activity:

min
A;P

E � APk k2 ð1Þ

Where E is the log10 transformed gene expression data (in TPMs) (Supplementary
Data 9), A the connectivity matrix of the transcription regulation network (matrix
with regulator-gene interactions Supplementary Data 8) and P the TF-activity19. To
generate the connectivity matrix, a matrix of transcription regulator—gene inter-
actions was generated by combining the matrixes of TF— gene interactions and
sigma factor—gene interactions of RegulonDB18. Additional regulation that was
added was the (p)ppGpp regulon and transcriptional attenuation, as described in
the EcoCyc database25. To account for basal expression of every gene by the RNA
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polymerase we added a global regulator, which was connected to all genes in the
connectivity matrix. Randomized starting points were used for each calculation
cycle of the algorithm. A calculation cycle was aborted if the summed squared 2-
norm of the residuals did not change by more than 1%.

Correlations between metabolites and TF activities. Metabolite concentrations
and TF activities were first correlated linearly. In case of a positive linear corre-
lation, we used activating Hill kinetics as the basis for a non-linear fit. In case of a
negative linear correlation we used inhibition kinetics:

Activation kinetics : y ¼ ymax �
xh

xh þ Kh
H

ð2Þ

Inhibition kinetics : y ¼ ymax �
Kh
H

xh þ Kh
H

ð3Þ

Where y is the TF activity, and x the metabolite concentration. KH is the activation
constant, h the Hill coefficient and ymax is the maximal TF activity, which was
assumed to be constant over time. Parameters of the Hill equations (KH and h)
were estimated in total 50 times per metabolite–TF pair. The Hill coefficient h was
constrained to an upper value of 10. For each pair of metabolite and TF, we tested if
a negative time-shift of the TF activity by one time point would improve the
parameter estimation. This accounts for the fact that TF activities are derived from
gene expression data, which could potentially succeed changes of metabolite levels
(Supplementary Fig. 10). The correlation coefficient R2 was calculated between the
measured TF activity and the transformed metabolite levels using the estimated
Hill parameters.

Distances of metabolite–TF interactions. First, we remove all cofactors, as well as
periplasmatic and extracellular metabolites from the stoichiometric matrix of the
iJO1366 metabolic genome-scale model of E. coli. Next, we create a metabolite-gene
adjacency matrix, F, by calculating the inner product of the modified stoichiometric
matrix, N, and the reaction-gene matrix, G. We finish by computing the Boolean of
F, F’. Next, we transform F’ it into an undirected, bipartite graph, nodes denoting
metabolites and genes, respectively. For this graph, we calculate a distance matrix,
D, containing all pairwise distances between metabolites and genes in F. For known
metabolite–TF interactions, we look for the distances between the regulating
metabolite and each of the target genes of the TF and take the smallest distance. In
case a regulating metabolite is not part of the iJO1366, we omit the distance
calculation45.

The distance criterion for correlating metabolite–TF pairs (Fig. 4b) was also
based on the genome-scale model iJO136629. Pairs of metabolites and TFs were
only considered if at least one of the two criteria was fulfilled. Criteria 1: the
metabolite is a product or a substrate of an enzyme that is encoded by a target-
gene of the TF. Criteria 2: the metabolite is listed in the same metabolic
subsystem as an enzyme that is encoded by a target-gene of the TF. Subsystems
of TFs were defined as the metabolic pathways controlled by the TF in the
genome scale model. Subsystems of metabolites were defined according to the
Supplementary Data 1.

Protein overexpression and purification. TFs were purified from the E. coli
ASKA strains46. Cells were grown in 200 mL TB medium containing 30 μg × mL−1

chloramphenicol at 37 °C. When cells reached OD 0.6 we added 0.5 mM IPTG.
Cells were incubated at 37 °C for 3 h more and harvested by centrifugation. Pro-
teins were purified from the pellets using Protino™ Ni-TED-IDA 1000 Kit
(Macherey-Nagel, Düren Germany). Protein purity was confirmed by SDS-PAGE
and concentrations were determined by the Pierce protein BCA Assay (Thermo
Fischer Scientific, Waltham, MA).

Quantitation of interactions by microscale thermophoresis. Microscale Ther-
mophoresis (MST)47 was performed on a Monolith NT.115 (Nano Temper
Technologies GmbH, Munich, Germany) at 21 °C (red LED power was set to
75% and infrared laser power to 80%). 50 nM of the respective protein was
labeled with the dye Monolith His-Tag Labeling Kit RED-tris-NTA 2nd Gen-
eration (MO-L018) supplied by NanoTemper Technologies. Labeled proteins
were titrated as indicated with the respective metabolite in buffer T (50 mM
NaH2PO4, 500 mM NaCl, and pH 5.7). At least nine independent MST
experiments (three technical replicates of three biological replicates) were
performed at 680 nm and processed by Nano Temper Analysis package 1.2.009
and Origin8 (OriginLab, Northampton, MA).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Code availability
Matlab code to perform Network Component Analysis and Kinetic correlations can be
accessed from the GitHub repository via https://github.com/nfarke/Lempp_Metabolite_
TF_interaction_Ecoli.

Data availability
Gene expression data that support the findings of this study have been deposited in
NCBI’s Gene Expression Omnibus with the accession code GSE131992. Metabolomics
data that support the findings of this study have been deposited in MetaboLights
database with the accession codes MTBLS1044. The source data of Figs. 1a, b, 2, 3a–c, 4b,
c and 5b and Supplementary Figs. 1, 3, 4, 5, 7, and 9 are provided as a Source Data file.
All other data are available from the corresponding author on reasonable request.
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