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Sleep stage classification from 
heart-rate variability using long 
short-term memory neural 
networks
Mustafa Radha   1,2, Pedro Fonseca   1,2, Arnaud Moreau3, Marco Ross   3, Andreas Cerny3, 
Peter Anderer3, Xi Long   1,2 & Ronald M. Aarts1,2

Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and 
low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-
based sleep monitoring. Current methods however are limited in their ability to take into account long-
term sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution 
to model long-term cardiac sleep architecture information and validated on a comprehensive data 
set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of 
ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation 
standard. It is shown that the model outperforms state-of-the-art approaches which were often limited 
to non-temporal or short-term recurrent classifiers. The model achieves a Cohen’s k of 0.61 ± 0.15 and 
accuracy of 77.00 ± 8.90% across the entire database. Further analysis revealed that the performance 
for individuals aged 50 years and older may decline. These results demonstrate the merit of deep 
temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage 
classification. Further research is warranted into individuals over the age of 50 as performance tends to 
worsen in this sub-population.

Sleep is a reversible state of disconnection from the external environment characterized by reduced vigilance and 
quiescence. It plays an essential role in the diurnal regulation of mind and body in mammals, and is hypothesized 
to have a wide array of functions ranging from digestion to memory consolidation. The objective measurement 
of sleep in adult humans involves sleep staging: the process of segmenting a sleep period into epochs, typically 
30 seconds long, and assigning a sleep stage to each epoch. The American Association of Sleep Medicine (AASM)1 
distinguishes five sleep stages: rapid eye movement (REM) sleep, three levels of non-REM sleep (N1, N2, N3) and 
wake (W). Sleep staging is done through manual visual scoring of electro-graphic measurements of the brain, eye 
movement and chin muscles, measured respectively with electroencephalography (EEG), electrooculography 
(EOG) and electromyography (EMG). Together with sensors measuring cardiac and respiratory activity, this 
sensor montage is collectively referred to as polysomnography (PSG).

Although it remains the gold standard for clinical assessment of sleep and diagnosis of sleep disorders, PSG is 
practically limited to one or two measuring nights, and cannot be effectively performed at home for a prolonged 
period of time. Over the last decade a variety of surrogate modalities have been studied to alleviate the cost and 
discomfort associated with polysomnography. One of the feasible surrogates is HRV acquired through cardiac 
sensors such as electrocardiography (ECG)2–4. HRV is a measure of autonomic nervous system activity5. The 
parasympathetic component of the autonomic system increases with sleep depth (i.e. N1, N2, N3) while the 
sympathetic component is related to awakenings. REM sleep is characterised by variations in the sympathetic to 
parasympathetic tone balance.

The inference of sleep stages is done by training machine learning algorithms which translate HRV features 
to sleep stages. The field has been increasingly studied in recent years. Most of the studies focused on sleep-wake 
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classification6–9 and wake-REM-NREM classification4,10–12 while only a few have developed methods that separate 
light non-REM sleep (N1 and N2) from slow wave sleep (N3), i.e. wake-REM-N1/N2-N3 classification. The N3 
class represents the most restorative period of sleep for metabolic functioning13 and is associated with mainte-
nance of sleep and sleep quality14. Lack of N3 may have considerable impact on well-being, e.g., loss of daytime 
performance14. This work focuses on the 4-class classification problem of W-REM-N1/N2-N3 and the remainder 
of this section only reviews previous studies that have done that as well. Table 1 lists the best-performing methods 
published in recent past years.

Non-temporal models.  Many algorithms have been published in the past that do not take into account 
temporal context when classifying sleep stages: in these models a set of f physiological features that are extracted 
for an epoch at time t in the night make up the feature space = f , with a marginal probability distribution 
P(Xt). Together they form the domain = P X{ , ( )}tD X  of the sleep staging problem (note that no other epochs 
than the one at time t are included in the domain). The sleep stage label space   then, in the simplified case of 
four-class sleep staging, comprises the labels ∈W N N N R, 1/ 2, 3,   (corresponding to Wake, combined N1 and 
N2, N3 and REM sleep) and the conditional distribution P(Yt|Xt). The goal of the machine learning algorithm is 
then to find a solution for the classification task = |P Y X{ , ( )}t tT Y . Performance is most often reported in accu-
racy and Cohen’s κ, a measure of agreement that factors out agreement by chance due to the imbalance in preva-
lence of different sleep stages throughout the night.

Some of the earlier ECG-based methods for sleep stage classification were published by Yilmaz et al.15 and 
Noviyanto et al.16. Noviyanto et al. found a random forest classifier to work best with Cohen’s κ of 0.43 and accu-
racy of 65.56% in a dataset of 18 participants. Yilmaz et al. found a support vector machine to perform best with 
with an accuracy of 73.1% (no 4-class Cohen’s κ reported) with 17 participants of which 5 with sleep apnea. More 
recently, Surantha et al.17 evaluated an approach using HRV features from ECG selected with a particle swarm 
optimization feature selection and a support vector machine (SVM) classifier, observing a similar accuracy of 
around 67% (Cohen’s κ was not reported).

HRV characteristics can also be derived from other sensors than ECG. Several studies validated photoplethys-
mography (PPG)-based approaches in identifying wake, sleep or REM sleep with acceptable performance18–20. 
To classify the four sleep stages, Hedner et al.21 used actigraphy, pulse oximetry, and peripheral arterial tone data 
from 227 apnea patients, and achieved a moderate performance with a Cohen’s κ of 0.48. In a recent study by 
Beattie et al.22, a large number (180) of motion-, breathing-, and HRV-based features were extracted from PPG 
and accelerometer signals obtained from 60 healthy adults. A linear discriminant analysis model was used in that 
study, achieving a slightly improved sleep staging performance (accuracy = 69%, Cohen’s κ = 0.52). de Zambotti 
et al.23 conducted a study including 44 adults to evaluate a commercially available device (Fitbit Charge 2), where 
REM sleep and Light sleep can be detected more reliably than wake and deep sleep. Fujimoto et al.24 attempted 
to classify sleep stages using a PPG sensor combined with a 3D accelerometer and they showed a classification 
accuracy of 68.5% based on data from 100 healthy volunteers. Most recently, Li et al.25 applied a deep convolu-
tional neural network to ECG-derived spectrograms (as an alternative to hand-engineered feature extraction), 
and achieved a Cohen’s κ of 0.54/accuracy of 75.4% in a small validation hold-out (N = 18) and Cohen’s κ of 0.47/
accuracy of 65.9% in a large dataset containing 5793 participants for 4-class sleep stage classification.

There were also studies that used autonomic characteristics of sleep other than HRV. Some notable works were 
presented by Hong et al.26 reported an accuracy of 81% using a Doppler radar system to capture cardiorespiratory 
activity; and Hwang et al.27 reported a Cohen’s κ of 0.48 and an accuracy of 70.9% using body movement and 
respiratory dynamics.

Temporal models.  Given that sleep architecture has common temporal patterns throughout the night, the 
non-temporal approach may not achieve optimal performance as it does not exploit the dependency between 
time steps. Short-term recurrent models solve this problem by formulating the classification task as 
T Y= | −P Y X X{ , ( , )}t t t 1 . Adding the HRV characteristics of the previous time step t − 1 enables the model to learn 
the short-term epoch-to-epoch architecture of sleep. For example, they can capture the sleep stage dependent 
time-delay between cortical and autonomic nervous activities during transitions between some sleep stages (e.g. 
between light and deep sleep)28,29. A few methods have been proposed in this field. Fonseca et al.30 compared 

Author, year Participants Sensors/signals Algorithm Cohen’s κ Accuracy

Hwang27 12 healthy, 13 apnea Bed sensors Decision rules 0.48 70.9%

Tataraidze33 685 healthy RIP XGB 0.56 —

Beattie22 60 healthy ACT, PPG Linear discriminant 0.52 69.0%

Fonseca30 100 healthy ECG, RIP CRF 0.53 70.8%

Aggarwal31 400 apnea Nasal flow Neural CRF 0.57 74.1%

Li25 5793 ECG Deep CNN 0.47 65.9%

This study 195 healthy, 97 patients ECG LSTM 0.61 77.0%

Table 1.  A list of best-performing methods for wake-REM-N1/N2-N3 classification (30-s basis) using 
autonomic activity. ACT: actigraphy, RIP: respiratory inductance plethysmography, ECG: electrocardiography, 
RF: radio frequency, XGB: extreme gradient boosting, CRF: conditional random field. CNN: convolutional 
neural network.
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probabilistic classifiers using similar cardiorespiratory features and showed that a conditional random field clas-
sifier outperformed classifiers based on linear discriminant and hidden Markov models, with a Cohen’s κ and 
accuracy of 0.53 and 70.8% respectively for 100 healthy participants and of 0.45 and 69.7% respectively for 51 
sleep apnea patients30. A structured learning approach with a neural conditional random field algorithm was 
recently proposed to identify sleep stages from nasal flow signals, where a Cohen’s κ of 0.57 was achieved31.

Given these improvements in performance, these approaches motivate the investigation of better temporal 
models that can take into account a wider temporal context, especially given the variance in sleep architecture 
as the night progresses32, making the relationship between Xt−1 and Yt variable throughout the night. A few 
approaches have been proposed in the past for this. Tataraidze et al.33 proposed to tackle time-varying patterns in 
sleep architecture through a cycle-based approach that adapts a priori probabilities over time for different sleep 
stages. Using an extreme gradient boosting algorithm on respiratory effort signals acquired from 685 participants, 
they improved the classification performance by 8% with a Cohen’s κ of 0.56 compared with their base algorithm. 
As an alternative, Fonseca et al.4 proposed learning the probability of each sleep stage for each epoch number 
of the night and using those probabilities to post-process the classification of the corresponding epochs. This 
approach was applied to the predictions of a linear discriminant classification approach with 142 HRV (measured 
from ECG) and respiratory effort features. The approach found a moderate overnight sleep staging performance 
(Cohen’s κ = 0.49, accuracy = 69%). While these solutions have shown empirical gain over non-temporal models, 
they are limited by the fact that they make an explicit connection between the time of the night and the expected 
sleep stages. It is easy to conceive of limitations of such methods. For example, disruptions during sleep may 
change the sleep architecture entirely, or insomnia patients might have an unusually long sleep onset period 
which these probabilities will fail to model as they are based on population statistics.

To overcome the issues of modelling sleep stage probabilities as a function of absolute time in bed, Willemen 
et al.3 proposed using contextual features based on an accelerometer, such as “time passed since the last observed 
movement” or “time until the next observed movement”. These relative measures combined with ECG and res-
piratory effort in an SVM method were used to classify the four sleep stages and a Cohen’s κ of 0.56 was achieved 
(however the epoch size with 60 seconds, unlike the 30 second epoch size used in other studies). This method is 
effective, however it is likely only capturing a fraction of the contextual information that could potentially help 
making better predictions. A more structural approach to temporal modelling is required that can model the task 
T Y= | ...P Y X X{ , ( , , )}t t1  for any given t, without being restricted to only short-term patterns, without relying on 
a priori assumptions based on the time in bed, and finally without being restricted to only a few features/charac-
teristics of the data.

Long short-term memory model.  Bi-directional multi-level LSTM networks34 are temporal models that 
could potentially overcome all the limitations outlined in the last subsection, because they (1) can model tem-
poral context unlike feed-forward approaches17, (2) have a large temporal scope unlike Markovian models such 
as conditional random fields31, (3) do not model class probabilities as a function of absolute time in bed4 and 
(4) can perform temporal inference over any feature, instead of being restricted to a set of hand-designed tem-
poral features3, making them a promising solution for sleep stage classification. LSTM cells consist of memory 
units that can store long-term information from time series and generate an output based on the current time 
step input, their last output (short-term recurrence) and the internal memory state (long-term recurrence). The 
memory state is controlled through gating mechanisms. A detailed description and equations of LSTM cells are 
given in the original paper34. Stacking multiple layers of LSTM cells allows for the memorization of deeper tem-
poral structures in the data. By having two LSTM stacks in parallel, one applied in the forward and another in 
the backward direction, it is possible to take into account both past and future input data to classify each single 
time step35, allowing the sleep scoring label to be conditioned on both the past and future epochs of the night. 
Such models could learn to capture both the desirable properties of short-term recurrent models, as well as model 
the temporal context of the night through memory cells, allowing it to reason over different contextual patterns 
independent of time slept.

LSTM-based algorithms have been applied in EEG-based sleep staging36,37 with excellent results, raising the 
question how long human annotation of sleep EEG will still be needed in the future. With non-EEG data, Sano 
et al.38 combined actigraphy, skin conductance, and skin temperature data using a LSTM method to enhance the 
performance of classifying sleep and wake. Zhao et al.39 proposed an adversarial architecture to LSTM to learn 
sleep stages (wake, REM, N1/N2, and N3) from radio signals from 25 healthy participants (annotated by an auto-
mated EEG sleep stage classifier) and achieved an unprecedented result (Cohen’s κ = 0.7).

LSTM approaches have not been applied to HRV-based sleep stage classification before. As mentioned earlier, 
Li et al.25 did use a deep neural architecture, but their model consisted of convolutional layers which serve to 
replace regular manually engineered features, rather than representing the long-term temporal dependencies 
in sleep stage scoring. Some tricks exist to increase the perceptive fields of convolutional networks (e.g. max 
pooling25), but it is always bounded to a limited time frame (comparable to how HRV features are extracted 
over windows of about 5 minutes, see Section 2.2). To the contrary, LSTM models can retain information in the 
internal cell state for a large number of discrete steps (> 1000), making them exceptionally good at long-term 
temporal modelling.

Materials and Methods
Materials.  The data set used in this study was collected as part of the EU SIESTA project40 in the period from 
1997 to 2000 in seven labs from five European countries. The study was approved by the local ethical committee of 
each research group. The ethical committees of the following departments have approved the study: Department 
of Psychiatry, School of Medicine, University of Vienna, Austria; Department of Neurology, School of Medicine, 
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University of Vienna, Austria; Area d’Investigacio Farmacologica, Institut de Recerca de l’Hospital de la Santa 
Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry, Free University of Berlin, Germany; Zentrum fur 
Innere Medizin, Klinikum der Philipps-Universitat Marburg, Germany; Department of Psychiatry, University of 
Mainz, Germany Department of Clinical Neurophysiology, Tampere University Hospital, Finland; Sleep Center, 
Westeinde Hospital, Den Haag, The Netherlands. All participants signed informed consent.The study was carried 
out in accordance with the relevant guidelines and regulations. Each participant was monitored for a total of 15 
days and at day 7 and 8 participants were invited to sleep in the sleep laboratory to collect overnight PSG. The 
PSG included EEG, ECG, EOG and EMG measurements. Each recording was scored by two trained somnologists 
from different sleep centers according to the RnK guidelines41, and revised by a third expert who took the final 
decision in case of disagreement.

The total number of participants was 292, from whom 584 nights of recordings were collected comprising 
541.214 annotated sleep epochs. Of those participants, 126 were female (252 nights, 43.3% of the data set). 
Participants had no history of alcohol use, drug use or irregular shift work. The data set further includes a total of 
26 patients (52 nights) with insomnia disorder, International Classification of Diseases, tenth edition (ICD-10) 
F51.0. Insomnia was either related to a mild to moderate generalized anxiety disorder (ICD-10 F51.0) or mood 
disorder (ICD-10 F51.0 and F3). Furthermore, 51 patients (102 nights) were diagnosed with sleep apnea (ICD-10 
G47.3), 5 patients (10 nights) with periodic limb movement disorder (ICD-10 G25.8), and 15 patients (30 nights) 
with Parkinson’s disease (ICD-10 G20)40. The total number of patients with a sleep or sleep-disturbing disorder 
was 97.

More details regarding participants and study design were described by Klosh et al.40. Table 2 contains partic-
ipant demographics and sleep statistics.

Feature extraction.  This study used a set of 132 HRV features extracted from inter-beat intervals (IBIs) 
computed from ECG. For this, a beat detection algorithm was used first to pre-process the signal to a sequence of 
IBI values. The algorithm was a modification42 of the Hamilton-Tompkins beat detection algorithm43. All features 
are summarized in Table 3 with citations to the original manuscripts.

A large part of the feature set from these IBI sequences has been described in earlier work where a set of car-
diac and respiratory features were evaluated7, however only the cardiac subset of the features is used in this work 
as no respiratory signal was included. The features were computed for each 30 second epoch of sleep by using a 
4.5 minute window of heart beat data centred around the epoch (except when stated otherwise in Table 3). These 
were measures of HRV in the time domain, the frequency domain, results of entropy analysis, detrended fluctu-
ation analysis, several measures of signal energy as well as features approximating the cardiorespiratory coupling 
during sleep by inspecting the regularity of the heart beat rhythm. Furthermore, Teager energy was used to char-
acterize transition points and local maxima in IBI series44, including the mean energy, percentage of transition 
points and maxima, mean and standard deviation of intervals between transition points and maxima, mean and 
standard deviation of the amplitude of normalized IBI at transition points and maxima, all calculated based on 
the IBI time series, and on the first intrinsic mode function after empirical mode decomposition45.

To express the interaction between cardiac and respiratory autonomic activity, a cardiac-to-respiratory phase 
synchronization rate was determined by matching regular patterns in the sign of the IBI sequence. Patterns of 6:2, 
7:2, 8:2, 9:2 are detected. The dominant rate is determined, as well as short- and long-term coordination in terms 
of presence and duration of synchronized heart beats46,47. Higuchi’s fractal dimension was also used as a measure 
of phase coordination48.

Finally, visibility graphs were used to model cardiorespiratory interaction in the IBI series49 and used to cal-
culate the assortativity mixing coefficient, the mean and standard deviation of the clustering coefficients and 
degrees, slope of the power-law fit to the degree distribution and percentage of nodes with a small and with a high 
degree, all computed based on the visibility graph and the corresponding difference visibility graph49.

Machine learning model.  Model description.  The model is illustrated in Fig. 1, showing how for a single 
epoch the features are translated into class probabilities. It consists of 5 layers: first, a perceptron layer; then three 
consecutive layers of LSTM cells; and finally 2 more perceptron layers. The first perceptron layer consists of 32 
perceptrons, each generating a linear combination of all features. Each LSTM layer consists of 64 cells: 32 move 
in the forward direction, passing their internal values to future epochs, while the other 32 cells pass values in the 

Parameter Mean (SD) Range

Age (year) 51.5 (17.3) 20.0–95.0

BMI (kg/m2) 25.6 (4.5) 16.5–43.3

TIB (hour) 8.0 (0.5) 5.8–9.6

SE (%) 80.8 (12.8) 14.6–99.1

N1 (%) 13.1 (8.4) 2.4–77.1

N2 (%) 53.8 (8.8) 13.6–78.8

N3 (%) 13.8 (8.4) 0.0–44.5

REM (%) 18.2 (5.9) 0.0–34.8

Table 2.  Demographics and sleep statistics of participants in the Siesta data set. Sleep statistics are computed 
based on the sleep stage annotation of the data set. N1, N2, N3, and REM percentages were calculated over the 
total sleep time for each recording. BMI: body mass index, TIB: time in bed, SE: sleep efficiency.
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opposite direction. Finally, the 64 values coming out of the last LSTM layer are processed by a perceptron layer 
with 32 neurones and subsequently a last layer with 4 neurones corresponding to the 4 class probabilities. All acti-
vation functions used are sigmoid, with the exception of the last layer where a softmax activation function is used.

Training and evaluation.  The model is trained and validated using the Siesta database. The inputs are the HRV 
features computed from ECG and the labels were derived from the R&K annotations: S1 and S2 were combined as 
the “N1/N2” class and S3/S4 were combined as the “N3” class. The validation is done in a 4-fold cross-validation 
scheme in which folds are created on participant level, thus ensuring that nights from the same participants are 
always either in the training or the testing portion. An early stopping criterion was used to stop training the 
model once the loss on the test fold did not improve for a 100 subsequent passes over the training data. The mod-
el’s performance is quantified using performance over all folds.

For each fold, the 2.6·105 free parameters of the model were trained simultaneously with the RMSprop optim-
izer, a variant of AdaDelta50 introduced in a lecture series51. Dropout52 on the input (20%), on LSTM outputs 
(50%) and LSTM recurrent connections (50%) was applied during the training phase to reduce overfitting. 
Categorical cross-entropy was used as the loss function during model fitting. Categorical cross-entropy H(Y,Ŷ) 
for a night with N epochs can be computed as:

Count Feature name

50 Time domain features

4 Means and medians of HR and RR (both detrended and absolute)2,57

12 SDNN, RR range, pNN50, RMSSD, and SDSD57, MAD15 (both detrended and absolute RR)

28 Percentiles (5%, 10%, 25%, 50%, 75%, 90% and 95%) of detrended and absolute HR/RR15

6 RR DFA, its short, long exponents and all scales, and WDFA over 330 s and PDFA over non-overlapping segments of 64 
heartbeats58–60

12 Frequency domain features

4 RR logarithmic VLF, LF, and HF power and LF-to-HF ratio on 270 s windows57,61

4 Boundary-adapted RR logarithmic VLF, LF, and HF power and LF-to-HF ratio on 270 s windows57,61

4 RR mean respiratory frequency and power, max phase and module in HF pole62

31 Entropy and regularity features

20 Multiscale sample entropy 1 of RR intervals at length 1 and 2, scales 1–10 over 510 s63

1 Sample entropy of symbolic binary changes in RR intervals64

2 Short- and long-range phase coordination of R-R intervals in patterns of up to 8 consecutive heartbeats7,11

7 Phase synchronization for 6:2, 7:2, 8:2 and 9:2 phases, dominant ratio, short- and long-term coordination46,47

1 Higuchi’s fractal dimension of the normalized IBI sequence48

39 Miscellaneous features

21 Mean teager energy, % of transition points and maxima and mean and sd of intervals between them, mean and sd of the amplitude 
of normalized IBIs at transition points and maxima44

5 Arousal probabilities (max, mean, median, min, sd)65

13 Visibility graph features49

Table 3.  Cardiac features used in the study. HR heart rate; RR R-R interval; SDNN standard deviation of 
RR; pNN50 pecentage of successive RR differences >50 ms; RMSSD, root mean square of successive RR 
differences; SDSD, standard deviation of successive RR differences; MAD, mean absolute difference; VLF, very 
low frequency; LF, low frequency; HF, high frequency; DFA, detrended fluctuation analysis; PDFA, progressive 
DFA; WDFA, windowed DFA; PSD, power spectral density. 1The estimation accuracy of sample entropy is lower 
in series shorter than 10m (where m is the pattern length, in samples)66,67. In practice this means that this feature 
will be accurate for all scales with m = 1 and for scales below 6 with m = 2. The choice of window size was 
discussed in our earlier work4.

128 features

4 classes

Figure 1.  Computational graph of the neural network architecture. The three large blocks denote LSTM cells34. 
Dotted black lines denote recurrent connections that pass computed values to the next epoch in the sequence. 
The sigmoid-like functions are a linear combination of all inputs.

https://doi.org/10.1038/s41598-019-49703-y


6Scientific Reports |         (2019) 9:14149  | https://doi.org/10.1038/s41598-019-49703-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ ∑= − = ⋅ =
= =

ˆ ˆH Y Y
N

P Y C log P Y C( , ) 1 ( ) ( ( ))
(1)i

N

c
i c i c

1 1

4

where C1 up to C4 are the 4 sleep stages W, R, N1/N2 and N3, P(Yi = Cc) is the fraction of sleep annotators who 
scored Yi as Cc and the P(Yi = Cc) is the model’s predicted probability (i.e. softmax activation) for the same epoch 
and class pair. By using this representation of the ground truth (instead of simply assigning a value of 1 to the 
consensus annotated class) the neural network can also learn to model the uncertainty between annotators.

Analysis.  Performance is evaluated using metrics of accuracy and Cohen’s κ coefficient of agreement on an 
epoch-per-epoch basis in comparison with ground-truth. All performances are calculated per night, and both 
average and standard deviation are reported.

Performance is also analysed with respect to the demographic factors of age, sex and body-mass index (BMI). 
The effect of these demographic factors on accuracy and Cohen’s κ is tested through Pearson’s correlation coefficient 
for age and BMI and through a Mann-Whitney U-test between the two sexes. This test is used to avoid invalid results 
due to violations of parametric assumptions (e.g. normality) about the distributions of the performance that other 
tests may have. Next to that, performance for each of the main sleep disorder groups in the data set will be presented. 
Mann-Whitney U-tests are used to compare the performance distribution of each disorder to the healthy group.

Finally, performance will also be reported per sleep stage using several metrics of classification performance: 
precision (fraction of predicted instances of the class that was correct), recall (fraction of true instances of the 
class that were predicted as such), Cohen’s κ and accuracy.

Architecture optimisation.  To optimise the size of the LSTM network, different model parameters were evalu-
ated: models with 1 up to 6 LSTM layers were trained and compared, as well as models with 32, 64 and 128 cells 
per LSTM layer. For the best-performing model (3 LSTM layers and 64 LSTM cells per layer) the model was also 
evaluated without the use of any dropout, which showed a drastic decrease in performance. This is how the model 
configuration described in Sections 2.3.1 and 2.3.2 was chosen.

Results
Model training and evaluation.  The 588 nights of the Siesta database40 were divided into 4 folds to evalu-
ate the LSTM model. The data was randomly split into folds at the level of participants (294 in total). An overview 
of the data set is given in Table 2. For every 30 second epoch, all features from Table 3 were extracted, resulting in 
a feature sequence for every night, used as input to the machine learning model shown in Fig. 1. The test perfor-
mance was obtained per fold by training the model on the remaining folds in a 4-fold cross-validation scheme. 
Performance in Cohen’s κ and accuracy is shown in Table 4. Alternative architectures with reduced and increased 
complexity as well as with and without dropout were also evaluated in the same manner. Performance for these 
models over all participants is shown in Table 4.

Performance for each of the sleep stages was also measured (precision, recall, accuracy, Cohen’s κ). For wake, 
precision was 0.73 ± 0.20, recall was 0.71 ± 0.20, accuracy was 0.90 ± 0.07 and Cohen’s κ was 0.63 ± 0.19. For 
REM, precision was 0.71 ± 0.22, recall was 0.76 ± 0.24, accuracy was 0.92 ± 0.04 and Cohen’s κ was 0.68 ± 0.22. 
For combined N1/N2, precision was 0.80 ± 0.11, recall was 0.82 ± 0.08, accuracy was 0.79 ± 0.08 and Cohen’s κ 
was 0.56 ± 0.15. Finally, for N3, precision was 0.62 ± 0.33, recall was 0.61 ± 0.30, accuracy was 0.92 ± 0.04 and 
Cohen’s κ was 0.53 ± 0.27. The prevalence of each of these sleep stages in the data is given in Table 2).

The effect of demographic factors on performance.  Subsequently, the test results of all folds were 
pooled together to analyze the performance over the entire data set. Relationships between demographic factors 
and Cohen’s κ performance are shown in Fig. 2. The correlation between demographic factors and performance 
was compared within the group of 195 healthy participants. Significant correlations were found for both Cohen’s 
κ (−0.45, p < 0.001, N = 584) and accuracy (−0.40, p < 0.001, N = 584) with age but BMI correlated with neither. 
There was a significant difference between the male (N = 126) and female (N = 252) subgroups for Cohen’s κ 
(p < 0.05, Mann-Whitney U-test) but not for accuracy.

To understand which of the sleep stages are mostly affected by age difference, also the performance per sleep 
stage is shown across young (≤50) and old (>50) participants in Fig. 3. Performance is given using precision, 
recall, accuracy and Cohen’s κ. The differences between each of these metrics, for each sleep stage, across the two 
age groups, was compared in all 16 cases (Mann-Whitney U-test). All differences were significant (p < 0.05). The 
difference in recall for N1/N2 had p = 0.025, the differences for W precision, W Cohen’s κ and N3 accuracy had 
p < 0.01, the difference in accuracy for R had p < 0.001 while all other tests had a p value lower than 0.00001.

Performance for different patient groups.  The performance has also been assessed for each of the 5 
most prevalent health profiles in the Siesta database, being patients of Sleep Apnea, Insomnia, Parkinsons disease, 
PLMD as well as a large Healthy control group. The distribution of the performances in Cohen’s κ for each of 
these groups is shown in Fig. 4 (broken down across ages) as well as summarized in Table 4.

Differences between the healthy group (N = 195) and the sleep disorder groups were tested for significance using 
a Mann-Whitney U-test on a participant level. Performance of Insomnia (N = 26) and Parkinsons disease (N = 15) 
patients did not differ significantly from Healthy. For Sleep apnea (N = 51), only Cohen’s κ had a significantly differ-
ent performance (p < 0.05) while for PLMD (N = 5) both κ (p < 0.001) and accuracy (p < 0.001) were significantly 
different.
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Discussion
The presented model achieves state-of-the-art performance for HRV-based sleep stage classification, surpassing all 
previously published results presented in the introduction and summarized in Table 1, even though a significant 
part of the dataset used to evaluate this model included participants with disorders and old age, which are rarely 
included in prior work. These results confirm the capabilities of deep sequence-to-sequence models such as LSTM 
for sleep stage classification, in comparison to traditional feed-forward or short-term recurrent approaches. The 
obtained performance was also higher than what was obtained by Li et al.25 (Table 1) who evaluated a convolutional 
neural network model using ECG data in a very large dataset. As explained in Section 1.3, convolutional neural 
networks, while also falling in the same category of “deep neural networks”, do not address the long-tem temporal 
dependencies that LSTM models address, instead their main function is to replace manual, local, feature extraction. 
Thus, while it may be an attractive alternative to manual feature engineering, it does not fulfil the same function 
as the LSTM model. Future work should aim at combining a deep convolutional (or similar) structure to replace 
feature engineering with a LSTM (or similar) structure to capture the long-term temporal dependencies, however 
this would require an extremely large amount of data that has not been available for this purpose so far.

Model
Nr of 
participants

Cohen’s 
κ ± sd

Accuracy 
% ± sd

Performance for cross-validation of final model with 3 LSTM layers, 
64 cells per layer

Fold 1 73 0.60 ± 0.15 76.53 ± 8.47

Fold 2 73 0.60 ± 0.14 76.28 ± 8.92

Fold 3 73 0.64 ± 0.15 78.60 ± 10.15

Fold 4 73 0.61 ± 0.16 76.58 ± 10.15

All participants 292 0.61 ± 0.15 77.00 ± 8.90

Performance for clinical subgroups of final model with 3 LSTM 
layers, 64 cells per layer

Healthy subgroup 195 0.63 ± 0.16 76.53 ± 10.14

Sleep apnea subgroup 51 0.60 ± 0.15 78.50 ± 7.90

Insomnia subgroup 26 0.65 ± 0.14 78.50 ± 7.07

Parkinson’s disease 
subgroup 15 0.43 ± 0.17 65.38 ± 10.04

PLMD 5 0.62 ± 0.15 78.33 ± 4.81

Performance for alternative models in 4-fold cross-validation, all 
participants

LSTM layer, 64 cells 292 0.59 ± 0.14 75.92 ± 8.64

LSTM layers, 32 cells 292 0.59 ± 0.15 75.54 ± 9.26

LSTM layers, 128 
cells 292 0.61 ± 0.15 77.00 ± 9.02

LSTM layers, 64 cells 292 0.61 ± 0.14 76.64 ± 8.76

Table 4.  Performance of the model over all folds, as well as the overall performance for alternative 
architectures.

Figure 2.  Distribution of Cohen’s κ over three key demographic factors: age, sex and BMI.

https://doi.org/10.1038/s41598-019-49703-y


8Scientific Reports |         (2019) 9:14149  | https://doi.org/10.1038/s41598-019-49703-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3.  Distribution of performance for each sleep stage, reported in precision, recall, Cohen’s κ and 
accuracy, split across young and old age groups.

Figure 4.  Distribution of performance in Cohen’s κ per patient group, broken down into young and old age 
segments. Every point represent a single night (multiple nights could belong to the same person).
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A non-EEG approach where LSTMs have been used is the work of Zhao et al.39 where they achieved a Cohen’s 
κ of 0.70, higher than what we have seen. However the input modality used in that study (radio-frequency sig-
nals) potentially contains more information (such as posture). The model was also only trained and evaluated in 
25 participants, leaving generalisability as an unknown.

The performance of the model was examined across demographic factors as well as patient profiles. Figure 2 
illustrates the negative correlation found between performance and age. This finding resonates further in the 
examination of patient profiles: while performance for insomnia, sleep apnea and PLMD patients remained 
close to the healthy control, a strong (and significant) drop in performance was observed for Parkinson’s disease 
patients. In Fig. 4 it is seen that all Parkinson’s disease patients were over 50 years old, thus partially explaining 
the short-coming of the method for this patient profile. In the same figure, it is clearly visible that in other groups, 
including the healthy group, performance tends to be lower for those over 50 years of age. However a different 
explanation for the decrease in performance for Parkinson’s disease patients could be the autonomic dysfunction 
associated with the disease53.

In Fig. 3 an overview of performance was given for each individual sleep stage, again split up at the age of 50. 
Performance drops are most apparent for the N3 and R classes across these age segments, while performance 
distributions of were closer to each other for the two age segments. However all differences between the two 
age groups were significant. The performance decrease for participants of higher age are likely caused by the 
changes in both autonomic function54,55 as well as sleep architecture56 with older age. Further research is needed 
into this age group, especially focused on improving performance for the non-wake classes. Auxiliary training 
objectives could be used to steer the neural network towards a better performance in this age demographic, for 
example by amplifying the neural network’s loss function for older participants or by steering the model to learn 
an age-invariant representation of the data.

Conclusion
In conclusion, the method presented in this study performs at a level that advances the state-of-the-art for 
HRV-based sleep stage classification. However there are still issues to be addressed until the system can reach the 
accuracy of EEG-based sleep stage classification systems. Especially performance in older individuals remains 
limited. Complementing the HRV data with other unobtrusive modalities or improving the neural architecture 
through auxiliary learning tasks and other regularizers could both enhance performance. In the meantime, the 
method could still have a variety of clinical uses as a low-burden, cheap alternative to home polygraphy in low 
acuity settings. Finally, the pathological profiles in the data set do not fully represent the clinical population and 
thus further validation in larger clinical populations is also warranted.
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