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Abstract 

Clinical decision support using data mining techniques offers more intelligent way to reduce the decision error in the 
last few years. However, clinical datasets often suffer from high missingness, which adversely impacts the quality of 
modelling if handled improperly. Imputing missing values provides an opportunity to resolve the issue. Conventional 
imputation methods adopt simple statistical analysis, such as mean imputation or discarding missing cases, which 
have many limitations and thus degrade the performance of learning. This study examines a series of machine learn-
ing based imputation methods and suggests an efficient approach to in preparing a good quality breast cancer (BC) 
dataset, to find the relationship between BC treatment and chemotherapy-related amenorrhoea, where the perfor-
mance is evaluated with the accuracy of the prediction. To this end, the reliability and robustness of six well-known 
imputation methods are evaluated. Our results show that imputation leads to a significant boost in the classification 
performance compared to the model prediction based on listwise deletion. Furthermore, the results reveal that most 
methods gain strong robustness and discriminant power even the dataset experiences high missing rate (> 50%).
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Introduction
Clinical data with substantial missing information pre-
sents significant challenges for pattern classification and 
decision making. Machine learning and statistical analy-
sis based clinical decision support systems associate the 
patient health status with the prediction for the disease 
or medical outcomes of interest, such as in-hospital mor-
tality [11], breast cancer [7] and diabetes [20]. Data min-
ing has been widely recognized as a crucial approach 
for many clinical prediction rules. In practice, collected 
clinical datasets are sometime incomplete, usually attrib-
uted to manual collection, erroneous measurements 
and equipment failures. The missing values dramatically 
degrade the performance if handled improperly. When 
the missing rate exceeds 15%, missing values should be 
carefully treated with a special consideration  [1]. The 
simplest solution is the case deletion strategy, which 
discards all missing cases and works only when a few 

missing values exist. Another solution is substituting 
missing entries with the mean or mode values of a spe-
cific feature, which reduces the variability of the dataset 
and totally ignores the covariance among features  [23]. 
Such techniques have many limitations and may not 
always benefit model construction. The motivations for 
innovative imputation are to develop efficient and benefi-
cial algorithms to improve the classification performance. 
Many studies have demonstrated that machine learning 
based techniques are effective and useful in managing 
small to large missingness and data scales [13].

Over the last decade, there have been tremendous 
developments in clinical data analysis. BC is the most 
common type of cancer in women   [10, 12]. Among 
those who are of reproductive age (<  35 years) at diag-
nosed, 15% have not yet been pregnant or started a fam-
ily yet [22]. According to [6], the 10-year survival rate of 
early BC is almost 85% and pregnancy does not nega-
tively impact prognosis. However, one of the main side 
effects of cancer treatment is amenorrhoea (permanent 
cessation of menstruation), that can affect up to 98% of 
women in the reproductive age, and around 76% of sur-
vivors wish to conceive in the future pregnancy  [19]. 
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Therefore, infertility risk prediction after cancer treat-
ment becomes a priority for young BC patients who wish 
to conceive after cancer. In this study, we are preparing 
datasets to describe factors related to fertility and breast 
cancer treatments to determine likely post-treatment 
amenorrhoea. The datasets are collected from six institu-
tions over the world and originally archived in different 
formats, which are not fully aligned e.g. some essential 
features in one subset may be fully or partially absent in 
another. As a consequence, substantial missing values are 
introduced. We aim to evaluate the well-known impu-
tation methods, i.e., mean/mode imputation, random 
imputation, multiple imputation using chained equation 
(MICE)  [4], k-nearest neighbor (KNN)  [3], random for-
est (RF)  [24] and expectation maximization (EM)  [15] 
imputation on missing values and find the potential rela-
tionship between cancer treatments and post-treatment 
amenorrhoea by constructing multiple classifiers. Use 
of the datasets are authorised by the FoRECAsT consor-
tium of Psychosocial Health and Well-being Research 
(emPoWeR) Unit, University of Melbourne  [17]. The 
quality of the imputation will be measured by the pre-
diction accuracy of post-treatment amenorrhoea status. 
To this end, we undertake extensive experimental com-
parisons and simulations with some popular imputation 
algorithms. The main contributions of this paper are 
summarized as follows:

1.	 The work explores the impact of some notable impu-
tation techniques using statistical and machine learn-
ing methods, and further evaluates the performance 
regarding the classification tasks on prediction of 
amenorrhoea after 12 months of breast cancer treat-
ments.

2.	 We examine whether the imputation across different 
datasets achieves significant improvements, even if 
the data has a large amount of missing values.

The paper is structured as follows. Related work of impu-
tation techniques and chemotherapy-related amenor-
rhoea are illustrated in “Related work”. “Experiments" 
reviews the clinical data and includes descriptions of 
experimental methodologies.   “Results and discussion” 
presents and discusses the results, and “Conclusion” con-
cludes the paper.

Related work
Chemotherapy-related amenorrhoea (CRA) can be 
caused by breast cancer treatment, the involvements to 
maintain the fertility options should be accessed before 
the treatment regularly and young women should be 
informed of the possibility of amenorrhoea or recovery 
of menstruation and contraceptive choices [18]. Lee [10] 

reported that the incidence of CRA hinges on age at diag-
nosis and adjuvant endocrine therapy, for those who are 
older than 40 years, CRA is more likely to occur and be 
permanent, especially after adjuvant endocrine therapy. 
Also Liem  [12] pointed out the age at diagnosis is the 
main factor associated with chemotherapy-related infer-
tility. Apart from the age, post-cancer fertility will also 
depend on personal factors, Peate [18] found out that low 
knowledge can reduce the quality of decision making. To 
conclude, prediction of chemotherapy-related infertil-
ity involves consideration of complex factors such as age, 
lifestyle factors, knowledge, previous pregnancies, ovula-
tion, history of previous medical and gynaecological dis-
eases [8]. Decision support is critical in ensuring patients 
can make informed decisions about fertility preservation 
in a timely manner, but in practice women are making 
this decision without knowing their infertility risk, which 
has the potential for adverse effects. The key challenge 
with fertility prediction is that the data usually contains 
substantial missing elements which adversely impact 
the prediction results. Imputation methods can help to 
accommodate this issue.

Missing values
Missing values are common in datasets and these val-
ues have serious drawbacks in data analysis. The reasons 
for missing data may vary, some information cannot be 
obtained immediately, data might be lost due to unpre-
dictable factors, or the cost for accessing the data is unaf-
fordably high. There are four main types of approaches 
for dealing with missing data, these include deleting the 
incomplete data and only use complete data portion, 
treating missing values as a new category where stand-
ard routines can be applied, using statistical based pro-
cedures e.g. mean imputation and EM algorithms, and 
adopting machine learning methods, such as KNN, deci-
sion trees, and logic regression method.

Types of missing data are defined by Little and 
Rubin  [14], who categorizes missing data into three 
types, which are missing completely at random (MCAR), 
missing at random (MAR) and missing not at random 
(MN-AR).

MCAR cases occur when the probability that an ele-
ment missing is independent of the variable itself or 
any other related influences, simple examples of MCAR 
include accidental data lost, occasional omission col-
lection of questionnaire, and manual recording errors 
in medical data. MAR is the case such that the missing 
value is independent of the missing attribute itself but 
can be predicted from the observed responses. A typical 
case is that young BC patients have more missing data in 
terms of fertility and productivity, compared with older 
patients, by leveraging the observed age information. 
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MNAR situation occurs that the missingness is related 
to the missing feature itself and missing data can not be 
predicted only from the observed and missing entries 
from the database. For example, BC patients will be more 
inclined to conceal private information unrelated to the 
cancer such as education and salary levels, which are 
unlikely to be foreseen. Handing this category of missing 
data is problematic and there are no generalized methods 
that can resolve this issues properly.

In our cases, when the MNAR type is rare in this mix-
ture of different missing data types [5], we may only con-
sider that the missing values are under MCAR or MAR 
assumptions if a feature is not totally missing.

Imputation techniques
Imputation with statistical analysis
When missing data are MCAR or MAR, they are termed 
’ignorable’ or ’learnable’, which implies that researchers 
can impute data with certain procedures, by statistical 
analysis or machine learning approaches. Some popular 
and well-known statistical imputation techniques will be 
presented in this section. The easiest way of filling miss-
ing value is imputing the average value of the observed 
data, known as ’mean imputation’. The method is elemen-
tary thus the drawbacks are obvious, e.g., it fails to deal 
with large amount of missing values, distorts the distri-
bution of the dataset and totally ignores the covariance 
between different attributes as the expectation of the 
attribute E[xi] does not change in this case [23]. Another 
random imputation method, assigning a random selec-
tion of observed values for missing items  [9], is also 
employed when missing features are quantitative. How-
ever this method neglects the latent potential relation-
ship among present features. Another way to utilise the 
knowledge of whole dataset is the model-based approach. 
Expectation maximum (EM), is introduced to deal with 
missing data by constructing fitting models in incom-
plete data capitalizing of the knowledge from complete 
sets  [16]. If the model is correct for the complete sam-
ple, the maximum likelihood estimation of the unknown 
parameters can be made by observing the marginal dis-
tribution of the data  [14]. Expectation maximization is 
suitable and outperforms mean substitution and listwise 
deletion in cases where there is little or no interdepend-
ency between the input variables. The methods described 
above are single imputation and the statistical uncer-
tainty of the missing values is not reflected. The multiple 
imputation (MI) procedure provides a solution to this 
issue [21], MI will replace all missing values with a set of 
conceivable attributes that can present the uncertainty 
of the plausible values which are generated by regres-
sion models. All missing data is filled in M times (M > 
20) to generate M complete data sets. The M complete 

datasets are then analysed in certain standard tasks such 
as regression, classification and clustering. The results 
are pooled and averaged to produce a single estimate. 
MICE imputation is particularly flexible in a broad range 
of frameworks as it invents varied complete datasets and 
takes the uncertainty into account to yield accurate devi-
ations. But as the prediction models are constructed suc-
cessively, the computational cost is relatively high.

Imputation with machine learning methods
Machine learning achieves great success in many fields 
and the flexibility allows us to capture the high-order 
interactions in the data  [7] and thus impute missing 
attributes. This section reviews several imputation rou-
tines characterized by machine learning concepts.

KNN approach is a type of hot deck supervised learn-
ing method, providing a path to find the most similar 
cases for the given instances, in which KNN is a useful 
algorithm that matches a case with its closest k neigh-
bours in a multi-dimensional space. In missing data 
imputation, KNN aims to find the nearest neighbours to 
minimize the heterogeneous euclidean-overlap metric 
distance  [26] between two samples, then missing items 
are further substituted with the values from k complete 
cases. The advantage is that the method is suitable for 
large amount of missing data, but the disadvantage is 
high imputation as it will compare all dataset and find the 
most similar cases. Moreover, Stekhoven  [24] proposed 
a model-based iterative imputation meth-od based on 
random forest. The random forest is generated by deci-
sion trees from sampled subset of datasets, the proximity 
matrix from the random forest is learned and updated to 
approximate the missing values while a set of fitting mod-
els are constructed. The random forest imputation can 
deal well with non-parametric data with mixed types. In 
this study, we will compare six common imputation tech-
niques, which are mean imputation, random imputation, 
multiple imputation using chain equations, expectation 
imputation, KNN imputation and random forest imputa-
tion, where the classification accuracy is measured in dif-
ferent datasets, compared with the outcome resulting in 
raw data by listwise deletion. Finally we examine whether 
the imputation works across different datasets.

Experiments
Experimental setup
Data description
The FoRECAsT dataset is split into six sub-datasets, and 
the basic information is summarized in Table  1, which 
contains 1565 records and 87 features. The six subsets 
are collected from different collaborators all over the 
world and combined in the regulated formats, e.g., all 
age data are grouped into a particular feature. As features 
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of interest are not fully aligned, e.g., some features are 
observed in one track but totally absent in another, which 
will introduce large missingness in the whole dataset.

Among all entries, 37,443 are observed and 98,712 are 
missing, presenting 72.5% missing of the whole dataset. 
The main features for mining include personal health 
status and some cancer-oriented features such as age cat-
egory, smoking status, alcohol intake, body mass index 
(BMI) classes, and pregnancy-related status. The accord-
ing outcome label of interest is the amenorrhoea sta-
tus after the cancer treatment for 12 months, which are 
binary indicators, where 0 stands for negative status and 
1 stands for positive. The outcome label is abbreviated as 
‘Amen_ST12’ and it is totally complete (100% observation 
rate).

Method
The proposed method consists of two phases, imputation 
and prediction process. In the imputation procedures, 
we firstly test six common imputation methods on sin-
gle data track separately to work out whether prediction 
can take advantage of filling missing items, and extended 
imputation experiments are conducted on the whole 
dataset by applying the different present features, namely 
‘cross imputation’, the purpose of the simulation is to 
investigate the robustness of the imputation techniques 
and potentially find better correlation between cancer 
treatment and fertility, by intelligently utilising missing 
values across different datasets, rather than individual 
ones. Regarding the prediction procedures, a collection 
of common supervised learning classifiers are formed 
and the results of fivefold cross-validation predication 
accuracy are discussed.

Imputation and classification methods
To investigate the effectiveness of the imputation 
methods on infertility classification tasks, six notable 
approaches are adopted, which include mean imputa-
tion, random imputation, MICE, EM, KNN and RF 

imputation. All modules are implemented in Python 
3.7 [25] in the operating system Mac OS 10.14.3.

The datasets are a mixture of types, including quantita-
tive and qualitative data where RF imputation generally 
fits well. Specially for mean imputation, absent numeri-
cal data are substituted with mean while categorical cases 
are replaced with their mode. Random imputation and 
KNN imputation will fill missing values with possible 
selections from observed cases. Furthermore, two model-
based algorithms, EM and MICE will learn series of clas-
sifiers and regressors for categorical data and numerical, 
respectively.

From the perspectives of prediction procedures, six 
common supervised learning classifiers are constructed 
to test the effectiveness of imputation. The classifica-
tion model include support vector machine (SVM), 
decision tree (DT), multilayer perceptron (MLP), 
random forest (RF), logistic regression (LR), Gauss-
ian Naive Bayesian (GNB), and KNN algorithms. We 
undertook a series of imputation approaches on the six 
sub-datasets as described, and our benchmarks are the 
prediction outcomes from the raw data by the listwise 
deletion. Extended simulations on the entire database (all 
instances included) using the cross imputation will also 
be reviewed.

Result and discussion
Imputation on single sub‑dataset
Figure  1 and Table  2 demonstrated the accuracy meas-
ured by 7 classifiers and 6 imputation techniques, for six 
data tracks respectively. The imputation is implemented 
within the single dataset and missingness of each set is 
relatively low, missing values are under the assumption of 
MCAR or MAR.

From the point view of classifiers, it can be seen that 
the SVM and RF prediction models achieve the highest 
accuracy, at approximately 74% in average and the num-
ber is almost 24% percentage higher than Naïve Bayesian 
method (50%). The low accuracy of GNB is due to that 

Table 1  Data description for  FoRECAsT dataset, the  dataset is  split into  six subsets regarding  the  sources. Observed 
feature here implies that  the  feature has  at  least one observation within  the  dataset, and  missingness hinges 
on the observed features

Data track Instances Observed features Categorical Numerical Missingness (%) Label

Track 1 725 19 19 0 8.6 ‘Amen_ST12’

Track 2 280 36 36 0 9.1

Track 3 209 34 29 5 10.5

Track 4 154 20 20 0 22.2

Track 5 101 42 40 2 23.6

Track 6 96 47 43 4 18.3

Total 1565 87 76 11 72.5
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input space is categorical and as a result the distribution 
of most features is not Gaussian. On the other hand, by 
considering the imputation techniques, the results show 
a commonly observed pattern that most imputation 

methods help improve the classification performance, 
except a few conditions such as GNB result in track 6, 
MLP result in track 5. It is noticeable that even the ele-
mentary mean imputation can improve the performance 

Fig. 1  Resutls of prediction (Y axis) by seven classifiers (X axis) in terms of six sub-datasets, the imputation is performed on single sub-dataset

Table 2  Classification accuracy and  its standard deviation in  different imputed datasets (upper) and  classifiers (lower), 
the results are averaged by seven classifiers (upper) and six datasets (lower), respectively, using fivefold cross-validation

Highest accuracy and lowest standard deviation are highlighted in bold in each row

Accuracy averaged by the results from different classifiers (single dataset)

Data track Deletion Mean Random MICE EM KNN RF

Track 1 0.736± 0.253 0.781± 0.0223 0.775± 0.224 0.781± 0.224 0.777± 0.230 0.779± 0.221 0.781± 0.223

Track 2 0.567± 0.045 0.621± 0.055 0.620± 0.055 0.620± 0.055 0.620± 0.055 0.601± 0.055 0.620± 0.055

Track 3 0.648± 0.095 0.745± 0.055 0.740± 0.063 0.686± 0.155 0.747± 0.055 0.743± 0.054 0.741± 0.056

Track 4 0.469± 0.134 0.665± 0.045 0.656± 0.055 0.669± 0.053 0.650± 0.045 0.655± 0.045 0.665± 0.045

Track 5 0.596± 0.077 0.624± 0.045 0.614± 0.045 0.615± 0.032 0.627± 0.045 0.626± 0.045 0.616± 0.033

Track 6 0.605± 0.077 0.716± 0.141 0.719± 0.145 0.714± 0.141 0.719± 0.145 0.718± 0.137 0.716± 0.146

Accuracy averaged by the results from different datasets (single dataset)

Classifier Deletion Mean Random MICE EM KNN RF

SVM 0.710± 0.091 0.750± 0.081 0.745± 0.084 0.741± 0.087 0.745± 0.084 0.746± 0.084 0.751± 0.081

RF 0.608± 0.141 0.745± 0.089 0.741± 0.092 0.747± 0.090 0.738± 0.088 0.739± 0.095 0.742± 0.089

MLP 0.635± 0.151 0.714± 0.120 0.708± 0.121 0.711± 0.117 0.701± 0.129 0.709± 0.117 0.711± 0.124

LR 0.633± 0.120 0.730± 0.087 0.727± 0.091 0.731± 0.089 0.726± 0.088 0.725± 0.091 0.731± 0.088

GNB 0.433± 0.164 0.509± 0.155 0.497± 0.154 0.519± 0.169 0.501± 0.155 0.507± 0.151 0.501± 0.152

Tree 0.569± 0.160 0.711± 0.095 0.705± 0.098 0.710± 0.095 0.709± 0.092 0.706± 0.100 0.712± 0.094

KNN 0.636± 0.068 0.684± 0.084 0.687± 0.089 0.691± 0.085 0.683± 0.093 0.679± 0.087 0.687± 0.086
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to some extent and produce competitive results com-
pared to other more complicated approaches, which 
emphasizes the importance of filling missing values 
and corresponds to the results from [2]. From the aver-
age results of the classifiers, RF and MICE achieved the 
best performance and RF showed more robustness in 
prediction.

In conclusion, when data are under MCAR or MAR 
cases and missingness is comparatively low, imputation is 
necessary as even the fundamental method can improve 
the prediction performance. The appropriate combina-
tion of imputation and classifier can lead to flexible and 
outstanding solutions for missing data.

Cross imputation across sub‑datasets
In this section, we use a subset of dataset to impute 
missing values in other subsets and we call it as cross 
imputation.

In cross imputation conditions, some present features 
in one subset may be completely missing in other sub-
sets, the missing information is no longer under MAR or 
MCAR mechanism as the researcher did not have initials 
in collecting them. For example, track 1 has 725 records 
and 19 features are observed, but for the other tracks, 
features are not fully overlapped with track 1 and some 
of which may be entirely missing, then we learn a model 
with present features from track 1 to impute the missing 

features in the rest of the sub-datasets. As a consequence, 
this imputation will introduce more uncertainty. Cross 
imputation provides a possible solution for initialising 
the missing values under MNAR. We examine whether 
the imputation techniques can still perform well in the 
target dataset. The results are portrayed in Figure 2 and 
Table 3. The differences in deletion results between single 
and cross imputation are compared.

Similarly, imputation improves classification perfor-
mance in most cases. In large scale imputation, missing 
mechanism is different and more data are absent, mean 
imputation is no longer as effective as some machine 
learning methods such as KNN and RF, which gained 
significant advantages and robustness in our experi-
ments, as highlighted in Table  2. We also compared 
Table 2 with Table 3 and found out that cross imputa-
tion can even outperform single imputation, for exam-
ple, in averaged results from different classifiers, cross 
imputation accuracy using RF (76–80.7%) is signifi-
cantly higher than that of single imputation(62–78.1%). 
This also happens in KNN, mean, and random imputa-
tion techniques, indicating that though cross imputa-
tion introduces more uncertainty and complexity into 
analysis, utilization of full dataset with latent relation-
ships between similar sub-datasets can have a better 
prediction performance. We can also conclude that 
for the datasets of mixed types, e.g., containing both 

Fig. 2  Resutls of prediction (Y axis) by seven classifiers (X axis) in terms of present features from various sub-datasets, the imputation is imple-
mented by present features in different tracks using the entire database
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numerical and categorical features, RF method can 
handle the missing values well in both single and cross 
imputation.

Conclusion
According to our analysis, results from various classifier 
with single imputation were similar, despite that results 
from Naïve Bayesian is much less precise. Compared 
with the listwise deletion, even simple mean imputa-
tion can achieve good results. The outcome also suggests 
that in general RF and MICE are likely to be the best 
approaches within a small scale database. When the scale 
enlarges and more uncertainty is introduced, the results 
indicate that mean imputation is no longer as efficient as 
machine learning based imputation such as RF and KNN, 
which are probably the best choices with the least stand-
ard deviation. Overall, most of the imputation techniques 
show strong robustness and high efficiency in cross-data-
set imputation with regard to high missingness, even out-
perform than single imputation cases.
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