Skip to main content
. 2019 Sep 26;13:901. doi: 10.3389/fnins.2019.00901

Table 1.

State-of-the art summary of hand-motor decoding experiments involving high-gamma based invasive BCIs.

Reference No. of subjects Electrode spacinga Frequency bands (Hz) Feature reductionb Classifierc Trial alignment Trial length (s)d Protocole Classesf Mean accuracy (%)
Shenoy et al., 2007 6 Macro 11 − 40
71 − 100
101 − 150
None LPM None Not reported Finger 5 77.0
Kubánek et al., 2009 5 Macro 8 − 12
18 − 24
75 − 115
125 − 159
159 − 175
None LMD Data glove [−1.0, +1.0] Finger 5 80.3
Onaran et al., 2011 3 Macro 65 − 200
CSP SVM Data glove [−0.75,+1.0] Finger 5 86.3
Yanagisawa et al., 2011 1 Macro 1 − 8
25 − 40
80 − 150
None SVM None n/a (online) Move
RPS
1 + 1
3
79.6
68.3
Pistohl et al., 2012 3 Macro 2 − 6
14 − 46
54 − 114
None rLDA Data glove [−1.0,+0.5] Grasp 2 87.8
Chestek et al., 2013 3 Mixed 66 − 114 None NB Data glove [−0.5, +1.5] Gesture
Finger
4 + 1
4 + 1
77.7
79.3
Kapeller et al., 2014 2 Macro 60 − 90
110 − 140
160 − 190
FS
CSP
LDA None [−0.5,+1.5] RPS 3 83.8
95.8
Xie et al., 2015 4 Macro Auto FS LDA None Various Gesture 2
3
95.5
92.7
Bleichner et al., 2016 2 Micro 70 − 125 FS PM Data glove [−1.0,+2.0] Gesture 4 85.5
Hotson et al., 2016 1 Micro 72 − 110 FS LDA Data glove [−0.4, +1.0] Finger 5 96.5
Branco et al., 2017 5 Micro 70 − 125 None PM High-gamma [−1.0,+2.6] Gesture 4 85.0
Jiang et al., 2017 2 Micro 60 − 200 CSP LDA Not reported [−0.15, +0.35] Gesture 2 100.0
Li et al., 2017 3 Macro 4 − 12

70 − 135
FS SVM None [±0.0, +0.9] RPS 3 ≈80
Pan et al., 2018 5 Micro 4 − 12
12 − 40
40 − 70
70 − 135
135 − 200
FS RNN Data glove [±0.0, +0.5]
[±0.0, +1.2]
RPS 3 ≈80
≈90
a

Macro, standard ECoG grid; Micro, high-density ECoG grid; Mixed, standard and high-density ECoG grids.

b

CSP, common spatial patterns; FS, algorithm-based or manual channel/feature selection.

c

LPM, linear programming machine; LMD, linear multivariate decoder; SVM, support vector machine; (r)LDA, (regularized) LDA; NB, naive Bayes; PM, pattern matching; RNN, recurrent neural network.

d

Specified relative to cue, movement onset, or high-gamma onset (depending on trial alignment).

e

Finger, finger movement or tapping; Move, movement vs. rest; RPS, rock-paper-scissors; Gesture, arbitrary hand gestures.

f

Inclusion of a resting-state class denoted by “+1”.