
The ISME Journal (2019) 13:1960–1974
https://doi.org/10.1038/s41396-019-0386-z

ARTICLE

Untangling hidden nutrient dynamics: rapid ammonium cycling and
single-cell ammonium assimilation in marine plankton communities

Isabell Klawonn1,2
● Stefano Bonaglia 1,3

● Martin J. Whitehouse 4
● Sten Littmann5

● Daniela Tienken5
●

Marcel M. M. Kuypers5 ● Volker Brüchert3 ● Helle Ploug1,6

Received: 11 September 2018 / Revised: 25 February 2019 / Accepted: 27 February 2019 / Published online: 25 March 2019
© The Author(s) 2019. This article is published with open access

Abstract
Ammonium is a central nutrient in aquatic systems. Yet, cell-specific ammonium assimilation among diverse functional
plankton is poorly documented in field communities. Combining stable-isotope incubations (15N-ammonium, 15N2 and

13C-
bicarbonate) with secondary-ion mass spectrometry, we quantified bulk ammonium dynamics, N2-fixation and carbon (C)
fixation, as well as single-cell ammonium assimilation and C-fixation within plankton communities in nitrogen (N)-depleted
surface waters during summer in the Baltic Sea. Ammonium production resulted from regenerated (≥91%) and new
production (N2-fixation, ≤9%), supporting primary production by 78–97 and 2–16%, respectively. Ammonium was
produced and consumed at balanced rates, and rapidly recycled within 1 h, as shown previously, facilitating an efficient
ammonium transfer within plankton communities. N2-fixing cyanobacteria poorly assimilated ammonium, whereas
heterotrophic bacteria and picocyanobacteria accounted for its highest consumption (~20 and ~20–40%, respectively).
Surprisingly, ammonium assimilation and C-fixation were similarly fast for picocyanobacteria (non-N2-fixing
Synechococcus) and large diatoms (Chaetoceros). Yet, the population biomass was high for Synechococcus but low for
Chaetoceros. Hence, autotrophic picocyanobacteria and heterotrophic bacteria, with their high single-cell assimilation rates
and dominating population biomass, competed for the same nutrient source and drove rapid ammonium dynamics in N-
depleted marine waters.

Introduction

In various aquatic environments, ranging from inland lakes,
brackish seas to the global ocean, primary production is
fuelled by N2-fixation [1] and regenerated nitrogen (N),
including ammonium [2, 3]. Only few microorganisms, e.g.,
filamentous cyanobacteria are able to reduce N2 to ammo-
nium [1]. In contrast, ammonium is highly bioavailable and
thus the predominant N-compound assimilated by bacter-
ioplankton and phytoplankton [4, 5]. Its cycling is complex,
driven by various sources and sinks in plankton commu-
nities. In brief, ammonium is consumed through assimila-
tion and nitrification (oxidation of ammonium to nitrite/
nitrate). In turn, it is regenerated by bacterial remineralisa-
tion of organic N, zooplankton grazing, parasitic infections,
or cell lysis [6]. New sources include ammonium leakage
from diazotrophic cyanobacteria [7–9] which fix N in
excess relative to their cellular C:N ratio.

Ammonium assimilation by individual microbes in nat-
ural communities is difficult to quantify, mainly due to
methodological limitations. In the past, nutrient assimilation
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in mixed plankton communities was best discriminated after
water pre-filtration, i.e., size-fractionation. However, size-
fractionation poorly separates plankton taxa of similar size
or closely associated cells, often causes cell disruption and
concurrent ammonium release, and destructs interactions
between trophic levels [10, 11]. More recently, assimilation
rates have been analysed by either stable-isotope probing
[12] or flow cytometry combined with stable-isotope ana-
lyses [13] but both approaches are limited to most abundant
taxa and cannot reveal single-cell activities. These metho-
dological limitations can be resolved by secondary-ion mass
spectrometry (SIMS) which enables single-cell analyses in
mixed field populations after stable-isotope incubations
[14]. Nutrient assimilation can thereby be differentiated
between individual taxa and even cells while natural
microbial interactions and nutrient concentrations remain
relatively undisturbed.

Our study was motivated by two uncertainties in aquatic
geomicrobiology. First, single-cell ammonium assimila-
tion rates in natural marine plankton communities are
poorly explored but crucial to elucidate taxa-specific
nutrient preferences, assimilation rates and quantitatively
important taxa for ammonium cycling. Second, previous
studies have quantified the contribution of diazotrophs to
primary production [e.g., ref. [15]] and N2-fixation as a
new N-source, which becomes available as ammonium
[7–9] or DON [9, 16–18]. Further, the transfer of new N
from N2-fixing microbes to other phytoplankton, bacteria
and zooplankton has been studied intensively during
recent years in different environments, e.g., in the tropical
South Pacific Ocean [19, 20], Gulf of Mexico and
Caribbean Sea [17, 21], Southwest Pacific [22] and Baltic
Sea [23–26]. However, the quantitative importance of new
ammonium from N2-fixation in direct comparison to
regenerated ammonium in field communities remains
poorly known [but see ref. [27]]. In order to resolve these
uncertainties, we studied ammonium cycling in N-depleted
surface waters in the Baltic Sea, a semi-enclosed sea which
has been monitored for more than 30 years [28]. Single-
cell and large-scale observations have suggested that the
new N-source from N2-fixation can be equal to or even
exceed net N2-fixation [7, 8, 23, 29, 30]. Moreover, N-
losses from the photic zone appear to be low and new N
from N2-fixation is effectively transferred into pelagic food
webs, explaining the observed increase in the total N
inventory during summer [29, 31]. In the present study, we
quantified ammonium processes, as well as N2-fixation and
C-fixation in the photic zone using isotopic tracer incu-
bations, mass spectrometry, ammonium analyses and
microscopy, and linked our findings on the small-scale to
existing meso-scale observations. The data collected foster
our quantitative and mechanistic understanding of inter-
linked plankton growth and N-dynamics in marine waters,

in which N-depletion, ammonium-based production and
N2-fixation are prevalent.

Materials and methods

Study area and water sampling

Surface water (1–3 m) was collected with a water sampler
(NM Tech AB, Stockholm, Sweden) at a coastal station in
the Baltic Sea (station B1 of the Swedish National Marine
Monitoring Program, N 58° 48’ 18 E 17° 37’ 52, depth
40 m) in June 2012 and August 2013. Sub-samples were
0.45 μm-filtered and stored at −20 °C for later nutrient
analyses on a segmented flow nutrient analyser (ALPKEM
O.I. Analytical Flow Solution IV, methods: phosphate
#319528, nitrite+ nitrate #319527, and nitrite #319527;
with reporting limits of 16, 21 and 14 nmol L−1, respec-
tively). Ammonium was analysed immediately (see below).
Depth profiles of temperature, salinity, oxygen and light
were recorded with a CTD (CTM577, Sea & Sun).

Water incubations

Water was filled headspace-free into 1 L Duran® bottles.
Three bottles were amended with 15N-ammonium
(15NH4Cl, 98 atom% 15N, #299251 Aldrich) and 13C-DIC
(13C-sodium bicarbonate, 98 atom%, #372382 Aldrich),
another three bottles with 15N2 (98 atom% 15N, #364584
Aldrich) and 13C-DIC, and one bottle served as control
without isotope additions. 15N-ammonium concentrations
were 20–30 nM, equal to final 15N-label percentages of 5–
46%. 13C-DIC was added to a final label percentage of 5%
(methods described below). 15N-labelled N2 gas was added
as pre-dissolved 15N2 [32], yielding final 15N-label percen-
tages of 1% in 2012 and 9% in 2013. False N2-fixation rates
due to 15N-contaminations in the gas bottles [33] could be
excluded since the 15N2-amended water was tested negative
for 15N-ammonium (analyses described below).

Water was sampled freshly 1 h before each incubation
which took place at 0.5 m water depth in a mesocosm basin
at in situ temperature and ambient light (Fig. S1) for
approximately 3 h at four different times of the day
(Table 1). The following sub-samples were taken at two (t0
and t3) or three time-points (t0, t1, t3) from the 15N2-
ammonium and 15N-ammonium amended bottles, respec-
tively: (i) 15N-ammonium concentrations, and 15N2-label-
ling and 13C-labelling–Triplicate sub-samples were
preserved in 12 mL Exetainer® vials with 100 µL saturated
ZnCl2 solution. (ii) Bulk ammonium concentrations–40 mL
were transferred into acid-washed Falcon tubes plus 10 mL
ortho-phthalaldehyde solution. Ammonium concentrations
were determined on a fluorometer (Turner design, TD-700)
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after 6 h [34]. A 5-point calibration covering the expected
concentration range (0–500 nM) was prepared, yielding a
strong linear correlation between raw fluorescence and
ammonium concentrations (R2 > 0.99). (iii) Phytoplankton
composition–50 mL were preserved with Lugol solution for
later microscopy. (iv) Single-cell ammonium assimilation
and C-fixation–50 mL were preserved with paraformalde-
hyde (2% final concentration) and filtered onto poly-
carbonate membrane filters (0.22 µm GTTP, 25 mm, Merck
Millipore) for (nano)SIMS analyses. (v) Bulk N2-/C-fixation
and ammonium assimilation–500–600 mL were filtered
onto pre-combusted GF/F filters (25 mm, Whatman) and
analysed on an isotope-ratio mass spectrometer interfaced to
an elemental analyser (EA-IRMS).

Phytoplankton composition and biomass

Lugol-preserved samples were transferred into Utermoehl
sedimentation chambers (Hydrobios) to identify and count
phytoplankton taxa under an inverted light microscope
(NIKON Eclipse Ti-U, ×150–400 magnification). Hetero-
trophic bacteria (DAPI-stained) and unicellular picocyano-
bacteria (autofluorescent) were counted on GTTP filters
under a fluorescence microscope (Zeiss Axio Imager, ×1000
magnification). Cell sizes were measured on ≥40 cells for
each taxon to reach representative mean values. Cellular

biovolumes and biomass were calculated as specified in
supplementary Table S1.

Stable-isotope analyses

The 15N-label% of dissolved N2 was analysed by membrane-
inlet mass spectrometry (MIMS; GAM200, IPI, Bremen,
Germany, relative precision ± 1%). The 13C-label% of dis-
solved inorganic carbon (DIC) was determined by trace gas
isotope-ratio mass spectrometry (UC Davis California, US,
precision ± 0.1‰). 15N-ammonium concentrations were
measured after chemical conversion to N2 with alkaline
hypobromite [35]. Production of 15N-nitrate and 15N-nitrite in
15N-ammonium incubations (i.e., nitrification) was quantified
after conversion of nitrate to nitrite with cadmium, and nitrite
to N2 with sulfamic acid [36] in samples from August 2013.
15N-standards were used to determine conversion factors. The
N2 isotope ratios were analysed by gas chromatographic
isotope-ratio mass spectrometry (GC-IRMS, concentration
precision ± 5% for 15N-standards of 0–100 nM) on a Thermo
Delta V isotope-ratio mass spectrometer [37]. Air was used as
a standard and controls samples (without amendments) to
determine the natural 15Nmol fraction in the respective N-
pools. GF/F filters were freeze-dried, fumed over HCl, pel-
letized into tin cups and analysed by EA-IRMS (UC Davis,
precision ± 0.2‰ for 13C and ± 0.3‰ for 15N). Vienna

Table 1 Rates of ammonium cycling processes, N2-fixation and C-fixation

Date Incubation
period

Bulk NH4
+

concentration
(nM)

Gross NH4
+

consumption
(nmol N h−1 L−1)

Gross NH4
+

production
(nmol N h−1

L−1)

Net NH4
+ rate

(nmol N h−1

L−1)

NH4
+ assimilation

(nmol N h−1 L−1)
NH4

+

turnover (h)
N2-fixation
(nmol N h−1

L−1)

C-fixation
(nmol C h−1

L−1)
Analysed
on GF/F

Analysed
by SIMS

28/29-June-2012

07:30–10:30 111 ± 44
(n= 3)

79 ± 24
(n= 9)

79 ± 24
(n= 9)

0 78 ± 29
(n= 9)

50 ± 34 1.4 9 ± 1
(n= 3)

167 ± 55
(n= 3)

12:00–15:00 97 ± 9
(n= 3)

65 ± 11
(n= 9)

65 ± 11
(n= 9)

0 64 ± 18
(n= 9)

n/a 1.5 14 ± 1
(n= 3)

69 ± 5
(n= 3)

16:30–19:30 79 ± 9
(n= 3)

67 ± 6
(n= 9)

67 ± 6
(n= 9)

0 51 ± 5
(n= 9)

n/a 1.2 22 ± 2
(n= 3)

257 ± 19
(n= 3)

22:00–01:00 78 ± 17
(n= 3)

84 ± 17
(n= 9)

84 ± 17
(n= 9)

0 58 ± 13
(n= 9)

n/a 0.9 11 ± 4
(n= 3)

29 ± 1
(n= 3)

Daily integral [nmol d−1 L−1] 1833 1833 0 1476 1.2 [h] 316 2367

20/21-Aug-2013

07:30–10:30 568 ± 18
(n= 3)

171 ± 13
(n= 9)

120 ± 49
(n= 9)

−51 28 ± 2
(n= 9)

n/a 3.3 0.4 ± 0.3
(n= 3)

597 ± 7
(n= 3)

14:00–17:00 45 ± 9
(n= 3)

94 ± 38
(n= 9)

94 ± 38
(n= 9)

0 36 ± 21
(n= 9)

n/a 0.5 3.5 ± 0.2
(n= 3)

1352 ± 8
(n= 3)

18:30–21:30 32 ± 4
(n= 3)

67 ± 24
(n= 9)

67 ± 24
(n= 9)

0 25 ± 12
(n= 9)

32 ± 22 0.5 2.0 ± 0.3
(n= 3)

287 ± 13
(n= 3)

23:30–02:30 33 ± 10
(n= 3)

92 ± 50
(n= 9)

92 ± 50
(n= 9)

0 37 ± 25
(n= 9)

n/a 0.4 0.79 ± 0.03
(n= 3)

17 ± 1
(n= 3)

Daily integral [nmol d−1 L−1] 2561 2306 −256 809 1.2 [h] 36 11873

AVERAGE 130 ± 179
(n= 8)

90 ± 35
(n= 8)

84 ± 19
(n= 8)

47 ± 18
(n= 8)

1.2 ± 1.0
(n= 8)

Bulk ammonium concentrations indicate concentrations before 15N-ammonium additions (20–30 nM). Data are given as mean ± s.d.

n/a not analysed
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PeeDee Belemnite and air served as C and N standards,
respectively. Rates of bulk N2-fixation, C-fixation and net
ammonium assimilation were calculated as described in
supplementary Text S1. To extrapolate to rates per day, the
rates measured at four different times of the day (Table 1)
were linearly time-integrated over 24 h. Besides ammonium
assimilation (accounting for 15N-PON on GF/F filters), we
also calculated gross consumption (accounting for the actual
15N-ammonium decrease in the water) and production rates
(Text S1). Ammonium production was specified to derive
either from ammonium regeneration or from new ammonium
released during N2-fixation. The latter was assumed to
account for half of the N2-fixation rates, as shown for cells
sampled concurrently with the ones herein [38] and during
previous years [7, 23].

Due to 15N-ammonium additions, bulk concentrations
increased by 5–46%, potentially stimulating ammonium
assimilation. We therefore corrected all rates by accounting
for ammonium uptake kinetics, as done previously [27, 39]. A
half-saturation constant of 50 nM was assumed, in the upper
range of 15–60 nM measured for natural plankton commu-
nities under N-depletion [27, 40, 41]. All equations and the
resulting overestimations are given in supplementary Text S1.

Secondary-ion mass spectrometry (SIMS and
nanoSIMS)

15N-ammonium and 13C incorporation (after 15N-
ammonium and 13C-DIC incubations) into single cells
were analysed using two types of SIMS instruments
(Cameca, France): IMS 1280 and NanoSIMS 50 L (at the
Natural History Museum Stockholm and the MPI for Marine
Microbiology, respectively). The NanoSIMS 50 L instru-
ment offers a higher spatial resolution (50–100 nm) than the
IMS 1280 (1000 nm) but the latter allows for a higher
sample throughput and its higher primary-ion beam current
facilitates the removal of consolidated cell walls. Accord-
ingly, we analysed heterotrophic bacteria and unicellular
picocyanobacteria (cf. Synechococcus spp.) exclusively on
the NanoSIMS 50 L, and Chaetoceros sp. and dino-
flagellates (Dinophysis sp., Heterocapsa sp.) on the IMS
1280. Aphanizomenon sp., Dolichospermum spp., Nodularia
spumigena, colony-forming picocyanobacteria (Aphano-
capsa sp., Cyanodictyon sp. and Aphanothece paralleli-
formis) and Pseudanabaena sp. were analysed with both
instruments. Heterotrophic bacteria and Synechococcus were
distinguished as free-living and attached (to other phyto-
plankton cells), as validated under a fluorescence micro-
scope prior nanoSIMS analyses. Analyses were done on
cells incubated during 07:30–10:30 in June 2012 and 18:30–
21:30 in August 2013, since samples from those periods
offered the highest cell abundances of the targeted plankton
groups. SIMS analyses were conducted as presented

elsewhere [38], except that diatoms and dinoflagellates were
pre-sputtered with a higher Cs+ beam (4–6 nA for 240–480 s
instead of 3 nA for 100 s) and imaged with 70 pA (instead of
40–60 pA) to remove the solid frustules/theca and penetrate
into their rather thick cells. Regions of interest (ROIs) were
drawn manually on the 12C14N ion images using the soft-
ware Look@nanoSIMS [42] and WinImage (for IMS 1280
analyses). Isotope ratios for each ROI were averaged over
40–60 planes (nanoSIMS 50 L) and 100 planes (IMS 1280),
and discarded if the standard error was >5%. Cells from
control bottles without isotope additions served as standards.
The 15N-atom% excess for control cells was on average
0.001 ± 0.001 (n= 235) and 0.000 ± 0.001 (n= 51), and the
13C-atom% excess 0.001 ± 0.001 (n= 235) and 0.000 ±
0.004 (n= 51) for analyses on the IMS 1280 and nanoSIMS
50 L, respectively. We mostly analysed >50 cells to reach
representative mean values for each taxon [43, 44] (excep-
tions can be read from the number of replicates in Table 2).

Activities measured by SIMS are expressed as element-
specific assimilation rates (h−1), calculated as described in
the supplementary (Text S1). Statistical differences between
taxa were calculated with the post-hoc Tukey’s honest sig-
nificant difference (HSD) test in R 3.3.0. To obtain cell-
specific rates (fmol cell h−1), N-specific ammonium assim-
ilation and C-specific C-fixation rates (h−1) were multiplied
by cellular N-contents and C-contents (fmol cell−1),
respectively. The C-contents and N-contents derived from
empirical biovolume to biomass relationships (Table S1)
which are routinely used for the long-term monitoring of
Baltic Sea plankton [45] or have been measured directly for
cyanobacteria at the sampling station [43]. Cell abundances
were multiplied with cell-specific assimilation rates to
quantify taxa-specific contributions to total ammonium
assimilation. Uncertainties ( ± s.d.) in single-cell activities
and taxa-specific contributions to total assimilation derived
from combined uncertainties of each variable, following the
laws of error propagation. To verify whether ammonium
assimilation was diffusion-limited, we calculated maximum
ammonium fluxes explained by mass transfer theory, i.e.,
diffusion-limited ammonium supply to single cells. Fluxes
at Synechococcus cells were calculated from the analytical
solutions of diffusion to a sphere [46] and at Chaetoceros
for cylindrical cell-chains [47] (Text S1).

Results

Environmental data

Water temperature was 14.5 and 17.0 °C during sampling in
June 2012 and August 2013, respectively; salinity was 6.2
and the mixed layer depth 25 m during both occasions
(Fig. S2a). Nutrient concentrations were 0.03–0.57 µmol L−1
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for ammonium (Tables 1), 0.02–0.04 µmol L−1 for
nitrate+ nitrite and 0.07–0.18 µmol L−1 for phosphate,
similar to those reported by the Monitoring Program
(Fig. S2b). POC and PON contents were 419 ± 60 µg C L−1

and 60 ± 8 µg N L−1 (n= 61) during June, and 380 ±
38 µg C L−1 and 64 ± 4 µg N L−1 (n= 60) during August
(Fig. S3).

The bacterioplankton and phytoplankton biomass
(ca 250 µg C L−1 during both samplings) comprised
mainly Cyanobacteria (45–56% of the C-biomass),
heterotrophic bacteria (23–49%), and to a lesser extent
Dinophyta (0.3–12%) and Bacillariophyceae (4%, Fig. S3).
The cyanobacterial biomass consisted of two orders
(Chroococcales, 43–94% and Oscillatoriales, <1%) which
did not fix N2 [38] and one N2-fixing order (Nostocales,
6–57%). Thus, 3–31% of the bacterioplankton and
phytoplankton biomass were diazotrophs. Chroococcales
were dominated by unicellular picocyanobacteria (>90%)
which were classified as Synechococcus-type cells (cf.
Synechococcus spp.).

Single-cell ammonium assimilation and C-fixation

Single-cell activities are presented as element-specific rates
(h−1) which are independent of cell size and thus allow to
directly compare activities among different cell types and
sizes. For instance, N-specific ammonium assimilation rates
of 0.005 h−1 imply that 0.5% of the cellular N-content was
assimilated per hour. Note that the assimilation rates are
only valid for the time of the day when incubations for
SIMS analyses were conducted while different activities can
be expected during other times of the day.

Taxa analysed with SIMS included N2-fixing cyano-
bacteria, non-N2-fixing cyanobacteria, heterotrophic bac-
teria and eukaryotes (Fig. 1), covering most of the
C-biomass of the enumerated bacterio plankton and phy-
toplankton (≥84%). The taxa not analysed were less
abundant (e.g., ciliate Mesodinium, diatom Cyclotella,
Haptophyceae Chrysochromulina, and Cryptophyceae
Teleaulax and Plagioselmis, Fig. S3). N-assimilation rates
were highly variable, with mean N-specific assimilation
rates ranging from 0.0008 to 0.054 h−1 (see Fig. 2 and
Table 2 for details). Mean N-specific ammonium assim-
ilation was lowest in filamentous N2-fixing cyanobacteria
(0.0008–0.007 h−1) of which Dolichospermum had the
highest rates, followed by Aphanizomenon and Nodularia.
Cells of dinoflagellates (Dinophysis, Heterocapsa)
were rare. Thus, their mean values obtained from only
twelve cells (six per taxa) may poorly represent their
entire population but indicated that ammonium assimila-
tion was low (0.006 h−1). The quantitatively most
significant groups for total assimilation were unicellular
picocyanobacteria (Synechococcus) and heterotrophic

bacteria—both small cells with high population biomass
(Fig. 3) and high ammonium assimilation rates (mean
values: 0.012–0.054 and 0.005–0.022 h−1, respectively,
Table 2). Synechococcus accounted for 38 ± 31 and 23 ±
17%, and heterotrophic bacteria for 17 ± 18 and 24 ± 27%
of the total assimilation in June 2012 and August
2013, respectively (Fig. 3c). Chain-forming diatoms
(Chaetoceros) showed mean N-assimilation rates as high
as 0.034 h−1 (Table 2). By comparison, theoretical
ammonium assimilation rates constrained by diffusion-
limited ammonium supply were 0.033–0.066 h−1 for
chain-forming Chaetoceros (with 2–17 cells per chain)
and 1.414 h−1 for unicellular Synechococcus (at ambient
ammonium concentrations of 111 nM, as measured
during the morning sampling in June 2012), indicating
diffusion-limited assimilation in large Chaetoceros but no
diffusion-limitation for Synechococcus.

Mean C-specific C-fixation rates ranged from 0.003 to
0.025 h−1 for phototrophic taxa. They were highest for
Chaetoceros (0.020 h−1 in June 2012 and 0.024 h−1 in
August 2013) and unicellular picocyanobacteria (0.025 and
0.018 h−1 for attached and free-living Synechococcus,
respectively in August 2012). The remaining phototrophic
cells showed lower C-fixation (mean: 0.003–0.012 h−1,
Fig. 2 and Table 2).

Community N2-fixation and C-fixation, and
ammonium cycling

N2-fixation rates were 0.4–21.9 nmol N h−1 L−1 (Table 1)
with higher rates in June 2012 compared to August 2013
when the biomass of N2-fixing cyanobacteria was low
(<10 µg C L−1, Fig. S3). New ammonium from daily-
integrated N2-fixation potentially accounted for 9 and 1% of
total ammonium production in June 2012 and August
2013, respectively, while the remaining ≥91% derived
from regeneration. Added 15N-ammonium concentrations
decreased exponentially over time. On average, 57 ± 28%
(n= 16) of the consumed 15N was recovered as 15N-PON
on GF/F filters. Bulk concentrations, however, remained at
steady-state since gross consumption and production rates
balanced each other (Fig. 4a–d). The turnover time through
consumption was 1.2 ± 1.0 h. A diel pattern in ammonium
processes was not evident (Table 1). Nitrification was not
detectable since changes in 15N-nitrate/nitrite concentrations
overtime were not significant (linear regression analyses,
p > 0.10).

C-fixation rates were 17–1352 nmol C h−1 L−1, peaking
during day-time and decreasing towards midnight (Table 1).
In August 2013, 97% of the N-demand for diurnal C-fixation
was supported by ammonium regeneration (Fig. 4e) and 2%
by N2-fixation (assuming Redfield ratio and given that 24%
of the produced ammonium was assimilated by heterotrophic
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bacteria and not by primary producers, as shown in Fig. 3b).
In June 2012, ammonium production even exceeded the
N-demand but C-fixation was probably photo-inhibited (at up
to 1250 µmol photons s−1 m−2, Fig. S1) since C-fixation rates

of the same plankton community measured in a parallel study
at lower light were five times as high as those measured
herein [38]. Assuming that actual C-fixation was five times
higher, the N-demand for diurnal C-fixation would have been

Table 2 Single-cell ammonium assimilation and C-fixation rates of different plankton groups

N-specific NH4
+

-assimilation
Cell-specific NH4

+-assimilation C-specific
C-fixation

Cell-specific C-fixation n

h−1 fmol NH4
+ cell−1 h−1 h−1 fmol C cell−1 h−1

June
2012

Aug
2013

June
2012

Aug
2013

June
2012

Aug
2013

June
2012

Aug
2013

June
2012

Aug
2013

N2-fixing cyanobacteria

Aphanizomenon sp. 0.003 ±
0.001

0.001 ±
0.001

1.1 ± 0.5 0.5 ± 0.2 0.012 ±
0.006

0.005 ±
0.002

25.7 ± 13.4 10.9 ± 5.2 65 53

(0.001–
0.007)

(0.0003–
0.003)

(0.3–2.5) (0.1–1.0) (0.003–
0.029)

(0.001–
0.010)

(7.3–61.0) (1.8–21.3)

Nodularia spumigena – 0.0008 ±
0.0004

n/p 0.6 ± 0.3 n/p 0.009 ±
0.005

n/p 46.5 ± 26.7 n/p 136

– (0.0001–
0.003)

(0.1–2.2) (0.002–
0.021)

(9.5–107.3)

Dolichospermum spp. 0.007 ±
0.003

0.003 ±
0.003

1.5 ± 0.9 0.6 ± 0.7 0.009 ±
0.002

0.011 ±
0.014

12.6 ± 5.8 14.7 ± 19.5 102 164

(0.003–
0.021)

(0.0001–
0.014)

(0.6–4.5) (0.02–3.1) (0.005–
0.016)

(0.001 ±
0.058)

(6.6–22.0) (0.8–78.9)

Non-N2-fixing cyanobacteria

Filamentous Pseudanabaena sp. 0.029 ±
0.010

0.006 ±
0.002

0.8 ± 0.3 0.18 ± 0.06 0.005 ±
0.003

0.009 ±
0.005

1.0 ± 0.5 1.6 ± 1.0 27 69

(0.015–
0.051)

(0.003–
0.012)

(0.4–1.5) (0.08–0.35) (0.002–
0.017)

(0.001–
0.026)

(0.4–3.2) (0.2–5.0)

Colonial picocyanobacteria
Aphanocapsa sp./Cyanodictyon sp.

0.023 ±
0.010

0.008 ±
0.004

0.21 ± 0.11/
0.12 ± 0.06

0.07 ± 0.04/
0.04 ± 0.02

0.006 ±
0.003

0.008 ±
0.005

0.33 ± 0.19/
0.19 ± 0.11

0.46 ± 0.34/
0.27 ± 0.20

174 116

(0.007–
0.058)

(0.001–
0.024)

(0.06–0.51)/
(0.04–0.30)

(0.01–0.22)/
(0.01–0.13)

(0.001–
0.012)

(0.002–
0.024)

(0.03–0.69)/
(0.02–0.40)

(0.12–1.40)/
(0.07–0.81)

Colonial picocyanobacteria
Aphanothece paralleliformis

0.017 ±
0.005

0.005 ±
0.002

0.11 ± 0.04 0.03 ± 0.02 0.003 ±
0.001

0.005 ±
0.003

0.11 ± 0.06 0.21 ± 0.14 79 127

(0.010–
0.027)

(0.002–
0.018)

(0.06–0.16) (0.01–0.11) (0.001–
0.005)

(0.001–
0.013)

(0.02–0.21) (0.03–0.54)

Unicellular picocyanobacteria cf.
Synechococcus spp. (attached)

0.054 ±
0.023

0.015 ±
0.003

0.14 ± 0.07 0.04 ± 0.01 0.007 ±
0.001

0.025 ±
0.013

0.11 ± 0.03 0.42 ± 0.24 20 19

(0.026–
0.101)

(0.010–
0.020)

(0.07–0.26) (0.03–0.05) (0.004–
0.008)

(0.002–
0.043)

(0.07–0.15) (0.04–0.74)

Unicellular picocyanobacteria cf.
Synechococcus spp. (free-living)

0.044 ±
0.026

0.012 ±
0.005

0.11 ± 0.07 0.03 ± 0.02 0.008 ±
0.007

0.018 ±
0.009

0.13 ± 0.13 0.32 ± 0.16 71 126

(0.008–
0.101)

(0.002–
0.029)

(0.02–0.26) (0.01–0.07) (0.001–
0.033)

(0.001–
0.047)

(0.01–0.57) (0.02–0.82)

Heterotrophic bacteria

Heterotrophic bacteria (attached) 0.016 ±
0.010

0.022 ±
0.014

0.007 ± 0.004 0.009 ± 0.006 – – – – 24 54

(0.003–
0.050)

(0.003–
0.061)

(0.001–0.021) (0.001–0.025)

Heterotrophic bacteria (free-living) 0.011 ±
0.010

0.005 ±
0.006

0.005 ± 0.004 0.002 ± 0.002 – – – – 302 86

(0.002–
0.057)

(0.0003–
0.031)

(0.001–0.024) (0.0001–
0.013)

Eukaryotes

Diatom Chaetoceros sp. 0.034 ±
0.016

0.007 ±
0.002

13.9 ± 8.1 2.9 ± 1.2 0.020 ±
0.008

0.024 ±
0.011

55.9 ± 28.1 66.9 ± 38.1 65 23

(0.005–
0.081)

(0.003–
0.011)

(2.0–33.6) (1.0–4.6) (0.002–
0.036)

(0.007–
0.047)

(6.4–97.5) (18.6–128.8)

Dinoflagellates (Dinophysis,
Heterocapsa)

0.006 ±
0.005

n/a n/a n/a n/a n/a n/a n/a 12 (6
+6)

n/a

(0.001–
0.017)

Rates were measured for cells incubated during 07:30–10:30 in June 2012 and 18:30–21:30 in August 2013. Data are given as mean ± s.d. with
their ranges in parentheses, n indicates the number of analysed cells

n/p cells not present, n/a not analysed
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sustained to 78% by ammonium regeneration (Fig. 4e) and to
16% by N2-fixation (at Redfield ratio and given that 17% of
the ammonium were assimilated by heterotrophic bacteria).

Discussion

Tight ammonium coupling and N2-fixation sustain
long-term N-availability for primary production

Primary production based on N2-fixation and ammonium
regeneration often dominates across diverse aquatic envir-
onments [1–3]. At the herein sampled coastal area,
ammonium production derived mostly from regeneration
and less from recent N2-fixation (Fig. 3c). Yet, parts of the
regenerated ammonium may have its origin in N2-fixation
hours, days or weeks prior to our sampling. Additional N
may have been supplied as DON released from diazotrophs

[9, 16, 18, 48]. Recently, amino acids have been shown to
be newly synthetised during N2-fixation, and incorporated
into bulk PON at rates of 0.5–7.0 nmol L−1 h−1 during
summer in the Baltic Sea [18]. Those rates correspond to
1–8% of the ammonium consumption rates measured in our
study (on average 90 nmol L−1 h−1, Table 1). Ammonium
regeneration was the predominant N-source for the auto-
trophic plankton community (78–97%), as shown earlier in
the Baltic Sea [49]. By comparison, new production, i.e.,
N2-fixation, supported 2–16% of the N-demand for primary
production, in rough agreement with our previous
estimate that N2-fixation supports 21% of the C-fixation
over summer in the euphotic zone of the Northern Baltic
Proper [38].

Interestingly, primary production rates were as high as
those typically measured during spring (Swedish Monitor-
ing Program) when new production is based on nitrate.
High primary production rates despite low nutrient
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Fig. 1 Secondary-ion mass spectrometer (SIMS) images of 12C14N
counts (left panel) and 15N/14N isotope ratios (right panel) after 15N-
ammonium incubations. Samples were analysed at high-resolution
with the NanoSIMS 50 L (a–c) and at lower resolution with the IMS-

1280 (d–f). Cell identification was done based on fluorescence
microscope images taken prior SIMS analyses. White scale bars are
10 µm (note the different scale bars in panels a–c and d–f)
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concentrations were reconciled by a tight coupling of pro-
duction and consumption rates, following a close to 1:1
ratio (Fig. 4d) [see also refs. [3, 50]]. Therefore, the de facto
N-availability was extended by fast turnover times (on
average 1 h), which are common in N-depleted marine
estuaries and lakes [51–53] but shorter than under N-rich
conditions [51, 54]. The high N-retention through regen-
eration and re-assimilation in the photic zone combined
with low sedimentation losses, e.g., of slow-sinking pico-
cyanobacteria and buoyant N2-fixing cyanobacteria [55]
supports an increase of the total N inventory due to new N
from N2-fixation [29, 31]. Thus, diazotrophic-derived and
regenerated N is effectively retained and accumulated in the
upper mixed layer from early towards late summer when the
food demand by fish is highest [24].

Quantitative ammonium assimilation assays: SIMS
vs. EA-IRMS

Ammonium consumption and production rates were 65–
171 nmol N L−1 h−1 (Table 1), similar to those reported
for coastal areas but higher than those previously mea-
sured in the Baltic Sea [56] and in worldwide oceanic and
estuarine systems [summarised in refs. [4, 6]]. As a
novelty—compared to numerous black-box-experiments,
dating as far back as half a century ago [57], and also

more recent SIMS-based ammonium analyses in fresh-
water systems [58], marine sediments [59] and coral–
dinoflagellates symbioses [60]—we quantified ammonium
assimilation for major taxa of the bacterioplankton and
phytoplankton in marine waters. Recently, single-cell
analyses by SIMS could fully explain community N2-
fixation [38] measured on GF/F filters by EA-IRMS when
large phytoplankton dominated the activity. In the herein
presented study, taxa analysed by SIMS explained 48–
63% of the gross ammonium consumption, whereas
assimilation by cells collected onto GF/F filters explained
37–98%. Hence, both approaches (EA-IRMS and SIMS)
did not fully explain total ammonium consumption rates.
Small heterotrophic bacteria greatly contributed to com-
munity biomass and ammonium assimilation (Fig. 3a, b)
but GF/F filter have been shown to poorly retain bacter-
ioplankton [56], thus underestimating their activities
[27, 61]. Our SIMS data may underrate single-cell
assimilation rates of the picoplankton due to uncertain-
ties in their cellular N-contents and uptake kinetics. To
correct assimilation rates for any potential stimulation
after 15N-ammonium additions, we used a half-saturation
constant value of 50 nM, which might be lower for small
heterotrophic bacteria and picocyanobacteria, and poten-
tially underestimate our rates after correction. Bulk C-
fixation was indeed not stimulated by 15N-ammonium

Fig. 2 Single-cell ammonium assimilation (a, b) and carbon fixation
(c, d) analysed by secondary-ion mass spectrometry. Rates were
measured for cells incubated during 07:30–10:30 in June 2012 (a, c)
and 18:30–21:30 in August 2013 (b, d). Significantly different rates
are indicated by different letters (ammonium assimilation and carbon
fixation rates were tested separately, shown by non-capitalised and

capitalised letters, HSD-test, p < 0.05, Df= 1892 and 1279, respec-
tively). Shown are the range (including 25 and 75% percentile,
minimum, maximum and median) and outliers (circles). Note the
different x-axes for ammonium assimilation and C-fixation. Asterisks
indicate that no data are available. Details are listed in Table 2
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additions, as implied from similar C-fixation rates mea-
sured after 15N2 and 15N-ammonium incubations
(Fig. S4). Numerically inconspicuous taxa not analysed
by SIMS might have also contributed to ammonium
assimilation disproportionally to their population bio-
mass, as shown for anaerobic bacteria [58] and diatoms
[62]. The mismatch of ammonium assimilation and con-
sumption might also be explained by nitrification but we
could not detect any significant rates of this process.
Nitrification was also not detectable in previous studies
in N-depleted Baltic Sea surface waters during summer
[63, 64] and nitrifiers are generally outcompeted by

phytoplankton under nitrate-replete regimes [65].
Consistently, high nitrification rates have been measured
recently in other coastal areas of the Baltic Sea
when nitrate concentrations were substantially higher
(>0.7 µmol L−1) than at our sampling station [66, 67].

Single-cell ammonium assimilation by diazotrophs

Using SIMS, we could analyse in situ assimilation rates
across various functional plankton taxa with different or
even similar cell sizes. Intriguingly, filamentous N2-fixing
cyanobacteria did not substantially take up ammonium

Fig. 3 Relative carbon biomass (a) and ammonium assimilation (b) of
bacterioplankton and phytoplankton in N-poor surface waters in the
Baltic Sea. The not assigned biomass reflects the biomass of organisms
which were microscopically identified and enumerated but not
analysed by SIMS (see result section). Ammonium assimilation by
the identified and analysed bacterio- and phytoplankton explained
48–63% of the total ammonium consumption (the remaining fraction

is indicated as not assigned). Ammonium production resulted partly
from N2-fixation but mostly from ammonium regeneration of unknown
sources (d). Percentages are given in brackets (for contributions >1%).
The relative standard deviation of the taxa-specific contributions
in panels (a, b) was 59 ± 25% (n= 42). Dinoflagellates included
Dinophysis and Heterocapsa
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which is supported by long-term observations of natural
isotopic compositions of these cyanobacteria in the Baltic
Sea [68]. Aphanizomenon contributed maximally 4 ± 3% to
the total ammonium assimilation although they accounted
for up to 30 ± 12% of the C-biomass (Fig. 3a, b). Ammo-
nium assimilation rates were low (Table 2), as already
shown for Aphanizomenon sp., presumably due to colony-
formation which reinforces diffusion-limited ammonium

transport towards cells [23]. In a parallel study to that
in June 2012, N2-fixation rates were as fast as 0.023–
0.097 h−1 for Aphanizomenon and Dolichospermum [38]
while herein measured ammonium assimilation rates
were 0.0008–0.007 h−1. Therefore, their potential cellular
N-turnover was more than one order of magnitude faster
by N2-fixation than by ammonium assimilation. The
low ammonium assimilation by filamentous N2-fixing

y = 1.07 (±0.06)x + 1.09 ( ±5.42)
R² = 0.81
n=78
p=6.3E-30
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Fig. 4 Ammonium dynamics in
surface waters during N-
depletion. Added 15N-
ammonium decreased
exponentially with time (a) and
was mostly recovered in the
biomass filtered onto GF/F
filters (b), while total
ammonium concentrations
(measured after 15N-ammonium
was added) remained at steady-
state (c). Data are given as mean
± s.d. (n= 3) and are shown for
incubations from June 2012 (a–
c). Gross ammonium production
and consumption rates
(measured in June 2012 and
August 2013) were positively
correlated, following a close to
1:1 ratio (dashed line) (d). The
rapid ammonium turn-over due
to ammonium regeneration
within 1 h could substantially
sustain the N-demand for
primary production (e)
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cyanobacteria is also supported by the observation that
cyanobacterial colonies release significant amounts of
ammonium [7, 8] and DON [16, 18], depending on their
energy reserves. Colony-forming cyanobacteria such as the
Baltic Sea strains and the widespread Trichodesmium may
indeed re-assimilate only parts of their newly released
N [69] while the remaining parts may benefit attached
microbiota and co-occurring plankton [20, 23, 25, 70].

Single-cell ammonium assimilation by non-
diazotrophs

Single-cell ammonium and C-assimilation rates were highly
variable, often differing by one order of magnitude among
diverse taxa and even single species (Fig. 2). Such pheno-
typic heterogeneity in metabolism can result from (i)
diffusion-limited nutrient assimilation in chain- or colony-
forming species in which cells are exposed to distinct
chemical microenvironments [44], (ii) variable substrate
preferences of cells within the same population [71, 72] or
(iii) metabolic versatility within cell populations to cope
with substrate fluctuations [73].

Colony-forming picocyanobacteria and Pseudanabaena
have been considered as potential N2-fixers [74, 75]. How-
ever, recent SIMS-based analyses did not confirm substantial
N2-fixation with rates as low as 0.001–0.004 h−1 of those
taxa in the Baltic Sea [38]. Instead, they seem to preferably
assimilate ammonium at rates of 0.006–0.029 h−1 (Table 2).
Total ammonium assimilation was dominated by auto-
trophic picocyanobacteria and heterotrophic bacteria
(Fig. 3b) which apparently competed for the same N-source.
Their assimilation rates agreed well with recent studies on a
single-cell level for both taxa [23] and on a community
level for prokaryotes [76] and specifically heterotrophic
bacteria [77, 78]. Single-cell assimilation rates of Syne-
chococcus were also similar to those reported from the
Pacific Ocean [72] and to doubling times of ~1–2 days
(equivalent to net N-assimilation rates of 0.021–0.042 h−1)
measured for entire picocyanobacterial communities during
summer in the Baltic [79, 80]. Such fast assimilation rates
may substantially support higher trophic levels, since
picocyanobacteria are actively grazed by zooplankton in the
Baltic Sea [81, 82]. Heterotrophic bacteria usually regen-
erate ammonium through the degradation of dissolved
organic matter (DOM), i.e., ammonification. Still, their
ammonium assimilation rates were high, comparable to
those of phototrophic, non-N2-fixing cells (Fig. 2 and
Table 2). Potentially, some cells received their 15N-
enrichment not directly from 15N-ammonium assimilation
but rather from 15N-DON released after 15N-assimilation by
the bacterioplankton or phytoplankton. DON greatly sup-
ports plankton nutrition [83, 84] and its release accounts for
on average 20–30% of the ammonium assimilation [85, 86].

However, only parts of the recently released DON may be
bioavailable [87] and DON turnover times are rather long,
in the order of days [18, 88, 89]. We thus consider the 15N-
enrichment in cells due to recently excreted 15N-DON as
minor during our 3-h incubations. In the Baltic Sea, the C:N
ratios of DOM are >10 [90] while bacterial C:N ratios are
commonly 3.7 [91] with mean bacterial growth efficiencies
(BGE) of 0.34 [92]. Such combination of high BGE, high
substrate C:N ratio and low bacterial C:N ratio implies net
N assimilation rather than release by heterotrophic bacteria
[93]. Regenerated ammonium can also derive from, e.g.,
zooplankton grazing, release by phytoplankton, viral
infections or cell lysis [6]. Teasing these processes apart is
challenging but should be targeted in future studies, to
untangle the herein reported large fraction of ammonium
regeneration of unknown sources (Fig. 3c).

Nutrient acquisition in small vs. large cells

Small cells are generally believed to grow faster than large
cells at low steady-state nutrient concentrations because of
their higher cell surface-to-volume ratios [94]. Never-
theless, we measured similar ammonium-assimilation and
even C-assimilation rates (h−1) in small picocyanobacteria
and large chain-forming diatoms (Table 2). Chaetoceros
even showed N-assimilation rates similar to those predicted
by theoretical diffusion-limited ammonium supply.
N-assimilation rates of Chaetoceros based on ammonium
during June (0.034 ± 0.016 h−1) were also similar to those
based on nitrate (0.023 ± 0.015 h−1 at 0.3 µM) during
diffusion-limited growth at the end of the spring bloom at
the same sampling station [44]. Diatoms may thus compete
well for dissolved inorganic N not only in upwelling,
nitrate-rich areas but also in the N-poor regions. In fact,
diatom diversity is comparable in oligotrophic and nutrient-
rich areas with Chaetoceros as the most abundant and
diverse genus [95], and diatoms have been shown to
compete well for N released from N2-fixation [20, 23]. A
recent study has also demonstrated that Chaetoceros con-
tributed ≥20% to the total C and N assimilation under
N-depleted conditions although it accounted for only 6% of
the phytoplankton biomass [62]. However, high C-specific
and N-specific assimilation rates of Chaetoceros contra-
dicted their low population biomass (<0.2 µg C L−1) in this
study, which remains enigmatic at present. Assimilation
rates measured by SIMS are a relative measure of the
elemental turn-over within cells, independent on cell sizes.
Those rates may reflect single-cell growth rates, yet they
may not necessarily correlate to actual biomass built-up.
Rates obtained from SIMS analyses assume that the CN-
biomass is evenly distributed in cells, which may not
always hold true. For instance, nutrient-storing vacuoles
can cover large parts of the cell volume in diatoms but
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account for proportionally little biomass—a structural
feature which may overestimate N-growth rates of diatoms
when using SIMS [96]. Moreover, the population size of
Chaetoceros might have been limited by other nutrients
than N and/or moderated by fast sinking as indicated by
their proportionally high retrieval in sediment traps [97]
and high grazing pressure from zooplankton [24].

In conclusion, our experimental conditions resembled
growth conditions for plankton communities—including N-
depletion, ammonium regeneration and N2-fixation—that
currently predominate in marine waters and may even inten-
sify in the future [98–100]. Under these conditions, eukaryotic
diatoms showed a fast C-turnover and N-turnover on a single-
cell level but minor population biomass. In contrast, prokar-
yotic picoplankton of different trophic levels, i.e., hetero-
trophic bacteria and autotrophic picocyanobacteria quickly
turned over their cellular C-content and N-content by C-
fixation and ammonium assimilation, respectively, and also
dominated the community biomass, thereby facilitating rapid
nutrient dynamics in N-depleted marine systems.
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