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Abstract

The incidence of urinary stone disease (USD) has increased four-fold in 50 years. Oxalate, which is degraded exclusively by
gut bacteria, is an important constituent in 80% of urinary stones. We quantified the effects of antibiotics and a high fat/high
sugar (HFHS) diet on the microbial metabolism of oxalate in the gut. High and low oxalate-degrading mouse models were
developed by administering fecal transplants from either the wild mammalian rodent Neotoma albigula or Swiss-Webster
mice to Swiss-Webster mice, which produces a microbiota with or without the bacteria necessary for persistent oxalate
metabolism, respectively. Antibiotics led to an acute loss of both transplant bacteria and associated oxalate metabolism.
Transplant bacteria exhibited some recovery over time but oxalate metabolism did not. In contrast, a HFHS diet led to an
acute loss of function coupled with a gradual loss of transplant bacteria, indicative of a shift in overall microbial metabolism.
Thus, the effects of oral antibiotics on the microbiome form and function were greater than the effects of diet. Results

indicate that both antibiotics and diet strongly influence microbial oxalate metabolism.

Background

The gut microbiome is strongly associated with health and
disease, in part because of complex metabolic interactions
between host and microbes that contribute to xenobiotic
transformations, toxin degradation, immunomodulation,
and the production of metabolites that have either pro- or
anti-inflammatory effects, among other functions [1-6].
Dysbiosis has been defined as alterations in the microbiome
that contribute to disease processes [7]. Dysbiosis can be
further separated into two distinct categories. Gain of
function dysbiosis is a shift in the microbiome that leads to
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the emergence of microbial functions that cause disease.
Such dysbiosis underpins infectious diseases such as
Clostridium difficile infection, cholera, or pneumococcal
disease. Loss of function dysbiosis is a shift in the micro-
biome that leads to the loss of microbial functions that
protect health. Loss of function dysbiosis associated with
disease is more subtle to detect as there is not an overt
growth of a particular disease-causing pathogen or patho-
gens. However, evidence is accumulating that loss of
function dysbiosis is driving the emergence of a number of
diseases [8].

Several studies have found significantly lower levels of
microbiome diversity associated with disease states, such as
Clostridium difficile infection, IBD, diabetes, asthma, col-
orectal cancer, autism, psoriatic arthritis, Celiac disease, and
obesity, implicating loss of function dysbiosis as a con-
tributor to the onset of disease [9-19]. Dysbiosis is often
correlated with diet and antibiotic use, which can alter
microbial diversity and composition [17, 20-29]. The levels
of fats, sugars, and salts in the diet specifically can impact
host-microbe interactions in ways that alter inflammation,
gut barrier function, endotoxemia, energy balance, intestinal
permeability, insulin resistance, and other physiological
responses [30-38]. Furthermore, antibiotic use can lead to
broad alterations in host-microbe interactions driven by the
loss of bacteria [39—44]. Despite the emerging evidence of
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the association between loss of function dysbiosis and dis-
ease, studies that link antibiotic use, diet, or other factors to
the loss of specific microbial functions associated with
disease are rare [45, 46].

Urinary stone disease (USD) is an ideal condition to
examine questions related to loss of function dysbiosis. The
incidence of USD has increased four-fold in the last 50
years, which is coincident with the rise of antibiotic use and
a shift to a high-fat, high-sugar (HFHS) diet [47-52].
Approximately 80% of stones contain oxalate as a primary
constituent [53]. In humans, oxalate comes from two
sources. First is the ingestion of oxalate containing plants
such as tea, rhubarb, chocolate, nuts, berries, spinach, and
potatoes [54-56]. In addition, oxalate is produced endo-
genously as a terminal metabolite in the liver, primarily
from the precursor glyoxylate [57-61]. However, despite
the toxicity of oxalate associated with calcium oxalate
crystal formation, it is not degraded by mammalian
enzymes [62]. Instead, humans and other mammals rely in
part on diverse oxalate-degrading bacteria in the gut to
minimize the amount of oxalate in circulation [63—69]. The
most common pathway for microbial oxalate degradation
involves a two-step enzymatic reaction that involves the
enzymes oxalyl-CoA decarboxylase and formyl-CoA
transferase, along with an oxalate-formate antiporter
[70-72]. Oxalobacter formigenes, a bacterium that requires
oxalate as a carbon and energy source, is negatively asso-
ciated with USD, but is also sensitive to many antibiotics
[63, 73, 74].

The white-throated woodrat, Neotoma albigula, is a wild
rodent that normally consumes a high oxalate diet in the
wild and can degrade ~100% of dietary oxalate, even when
on a 12% oxalate diet [75]. Studies with this host species
have revealed that oxalate metabolism is associated with a
diverse and consistent oxalate-degrading microbial network,
which increases in relative abundance upon consumption of
oxalate [75, 76]. Furthermore, fecal transplants from
N. albigula to Sprague-Dawley rats, can induce microbial
oxalate metabolism and reduce urinary oxalate excretion
more effectively and persistently than microbial transplants
containing oxalate-degrading bacteria alone [77, 78].

Given that oxalate is a primary constituent in 80% of
stones and is only degraded by gut microbes, the connection
between USD and loss of function dysbiosis is more direct
compared to other conditions such as diabetes, obesity,
inflammatory bowel disorders, or cardiovascular disease
where lifestyle and host genetics present additional complex
interactions [79-81]. In comparison to subjects with no
history of USD, those with an active episode of USD are
more likely to have taken oral antibiotics in the last year,
have a reduced oxalate-degrading microbial network in the
gut, and have a reduced microbe to urinary metabolome co-
occurrence network for both the microbiome of the gut and
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of the urinary tract, which provides a direct mechanism
between antibiotic use, loss of function dysbiosis, and the
onset of USD [82].

The objective of the current investigation was to examine
the effects of antibiotics and a HFHS diet, two factors with
known antagonistic interactions with the gut microbiota, on
microbial oxalate metabolism directly. Our goal was to
determine if these factors cause the loss of microbial oxalate
metabolism. Results of the study have implications speci-
fically for the prevention and management of USD along
with broader implications for understanding the role of
antibiotics and HFHS diets on other dysbiosis-associated
diseases.

Methods

Development of mouse models to study loss of
function dysbiosis

For the current study, we developed two distinct host-
microbe model systems. For both models, Swiss-Webster
mice were used as the host to remove any effect of host on
the subsequent results. As a negative control, Swiss-
Webster mice were given fecal transplants using feces
from other Swiss-Webster mice, as discussed below. A diet
of 1.5% oxalate is sufficient to induce hyperoxaluria in
laboratory rodents such as Swiss-Webster mice, as defined
by a 50% increase in urinary oxalate excretion, which is
specifically an effect of a lack of microbial oxalate meta-
bolism in the gut [65, 77, 78]. As a positive control and as a
baseline for subsequent antibiotic and dietary treatments,
Swiss-Webster mice were given fecal transplants from
N. albigula. Previous studies show that fecal transplants
from N. albigula are sufficient to induce significant and
persistent oxalate metabolism [77, 78].

Fecal collection

Feces for fecal transplants were collected from two sources.
For the N. albigula feces, 14 individual animals (mixed sex
and age) were placed on a 3% oxalate diet in a metabolic
chamber at the University of Utah TACUC #12-12010) to
acclimate the microbiome to oxalate metabolism. We have
previously determined that 3% oxalate is sufficient to sti-
mulate the oxalate-degrading microbial network in these
animals [76]. After 3 days of acclimation, feces were col-
lected from animals within 2 h of defecation, submerged in
sterile 15% glycerol, and flushed with CO, prior to freezing
at —80 °C. Feces were then sent to the Cleveland Clinic on
dry ice and frozen at —80 °C until use in the diet trials
approximately 6 months after receipt (IACUC #2016-1653).
For the Swiss-Webster feces, 20 individual animals



Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet 1381

(Taconic farms, female, six weeks old) were placed on a 0%
oxalate diet in cages with a custom-designed insert to
separate urine and feces (Fig. S1). Swiss-Webster mouse
feces were collected from animals and subjected to the same
preservation procedures as the N. albigula feces.

Fecal microbial transplants

During and after fecal transplants, animals were grouped
four to a cage, with five cages assigned to each treatment
group, for a total of twenty animals per experimental group.
To minimize individual variability and eliminate any cage
effect in subsequent metrics, samples and data collected
from all animals in a cage were considered an individual
sample. To develop the two different mouse models, study
animals needed to have their native microbiota robustly
converted to the study microbiome. The conversion of the
gut microbiota was completed in two stages. First, to reduce
the native microbiota in animals and maximize the success
of fecal transplants, all animals were given neomycin for
5 days, by adding neomycin at 0.5 g/l in their water along
with 2 g/l sucralose. Mice were given ad libitum access to
water during this time and throughout the experiment.
Neomycin is a broad spectrum antibiotic that is poorly
absorbed across the gut, and effectively reduces gut
microbiota density by up to 90% [83]. After treatment with
neomycin, mice were given fecal transplants from either
Swiss-Webster mice or from N. albigula. Fecal transplants
were performed by first thawing feces, then aseptically
mixing 32 g feces per kg body weight directly into pow-
dered mouse chow. Fecal transplants were performed daily
for 6 days (Fig. 1). All animals were given a 1.5% oxalate,
low fat, low sugar diet (Envigo, Madison, WI) during the
antibiotic and fecal transplant periods (composition pre-
sented in Table 1). One experimental group was given fecal
transplants from Swiss-Webster mice, with four groups
given fecal transplants from N. albigula.

Cefazolin and dietary treatments

To determine the effect of diet and antibiotics on oxalate
metabolism, animals were maintained on a 1.5% oxalate
diet. Cefazolin (3 day course) was chosen for the antibiotic
treatment due to its common use prior to surgical proce-
dures to remove kidney stones [84]. Fat content was added
to the HFHS diet in the form of milk fat, while the addition
of sugar content was in the form of sucrose for both diets
(Table 1, Envigo, Madison, WI). Sucrose was specifically
chosen because it has been shown to not alter endogenous
oxalate production [58].

Animals receiving fecal transplants from Swiss-Webster
mice were maintained on a 1.5% oxalate, LFLS diet with no
additional antibiotics (“SWM?”) as a negative control. The

SWM

FT: Swiss-Webster
Abx: none

Diet: LFLS

» NALB
FT: Neotoma albigula
Abx: none
Diet: LFLS

» CEF

FT: Neotoma albigula
Abx: Cefazolin

Diet: LFLS

FAT

FT: Neotoma albigula
Abx: none

Diet: HFHS

e FT: Neotoma albigula
Abx: Cefazolin
Diet: HFHS

) 3 days Cefazolin (CEF/CEFFAT)
5 days Neomyain ? ‘;f,’/oyzgate 12 days 1.5% oxalate (LFLS or HFHS)
1.5% olxalale ) Collect urine/fqces 3-day intervals

( \( T \

Preparation Experimental

Fig. 1 Study design. A population of Swiss-Webster mice (four ani-
mals/cage, five cages/group) were initially given Neomycin for 5 days
to clear their gut microbiota. Then all mice were given fecal transplants
(FT) from either Swiss-Webster mice or Neotoma albigula for 6 days.
Some groups were then treated with antibiotics (Abx) and/or were
maintained on a low fat/low sugar diet (LFLS) or switched to a high
fat/high sugar diet (HFHS) for 12 days. Urine and feces were collected
for creatinine, oxalate, and microbial assays at 3-day intervals

Table 1 Composition of the diets used in the diet trials

Ingredients LFLS (g/Kg) HFHS (g/Kg)
Casein 200 200
L-cysteine 3 3
Corn starch 285.5 NA
Maltodextrin 120 120
Sucrose 100 185.4
Anhydrous milkfat NA 200
Soybean oil 70 70
Cellulose 150 150
Mineral mix 42 42
Vitamin mix 12 12
Choline bitartrate 2.5 2.5
TBHQ, antioxidant 0.014 0.054
Sodium oxalate 15 15

remaining four treatment groups given fecal transplants
from N. albigula and subsequently given the following: (1)
A 1.5% oxalate, LFLS diet with no cefazolin (NALB) as a
positive control; (2) A 1.5% oxalate, LFLS diet with 3 days
of cefazolin administered at 0.125 g/l in the water with 2 g/
sucralose (CEF) starting on the first day after fecal
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transplants had stopped, to examine the impact of anti-
biotics; (3) A 1.5% oxalate, HFHS diet with no cefazolin
(FAT) to examine the impact of a HFHS diet; and (4) A
1.5% oxalate, HFHS diet with cefazolin for 3 days (CEF-
FAT) to examine the synergistic effects of antibiotics and a
HFHS diet (Fig. 1). All post-transplant diets were main-
tained for the remainder of the trial (12 days). All urine and
feces excreted from the past 24 h were collected from every
cage, daily during the diet trial starting on the fourth day of
fecal transplants, after the host-microbe models were suc-
cessfully developed. Samples were pooled by 3-day inter-
vals to longitudinally track changes in urinary creatinine,
fecal and urinary oxalate, and the composition of the fecal
microbiome. Urine samples were split into two aliquots
with one aliquot acidified with 3 M HNOj; for oxalate assays
and a second that was unmodified for creatinine assays.
Both aliquots were then frozen at —20 °C prior to analysis.
Approximately 0.5 g of feces were frozen at —80 °C prior to
DNA extraction for microbiome analysis, with the remain-
der of the samples dried at 45°C overnight, for oxalate
quantification. Body mass, food, water, and oxalate intake,
urine output, and dry matter digestibility (DMD) were
quantified daily and averaged at 3-day intervals. Oxalate
intake was calculated as 1.5% of total daily food intake.
The DMD was calculated as 1 (fecal output/food consumed
on a dry matter basis), where 1 indicates 100% of dry matter
in the diet.

Creatinine and oxalate metrics

Urine oxalate and creatinine were quantified using the
enzymatic oxalate assay kit or the colorimetric creatinine
assay kit (both from Sigma-Aldrich) following manu-
facturer’s instructions. Positive controls included a known
amount of either oxalate or creatinine and negative controls
excluded either oxalate oxidase or creatinine, and were
quantified along with each sample. All samples were run in
duplicate. Total urinary oxalate and creatinine excretion was
quantified for each 3 day period, then divided by 3 to
acquire the average daily excretion.

Enzymatic oxalate assays were specifically designed for
urinary oxalate and do not require the isolation of oxalate.
Preliminary tests of the suitability of the kit for fecal oxalate
produced results that often varied by an order of magnitude
between duplicates, indicative of the presence of com-
pounds that interfere with the enzymes. Therefore, fecal
oxalate excretion was quantified with isolation followed by
KMnO, titration as previously described [75, 77, 78, 85].
Briefly, dried fecal samples were ground to a powder with a
sterile mortar and pestle. Oxalate was extracted by sub-
mersing 1 g of powder in 6 M H,SO, at room temperature
for 15 min. Following extraction, particulate matter was
filtered out, and the remaining solution was brought up to
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pH 7. Calcium oxalate was then precipitated through the
addition of CaCl,, and isolated by centrifugation. Isolated
calcium oxalate was re-suspended in de-ionized water and
titrated with 0.1 M KMnQO,. Titrations were compared to a
standard curve. Positive controls included the 1.5% oxalate
mouse chow (LFLS & HFHS) and negative controls were
the same diets (LFLS & HFHS) without oxalate. Total fecal
oxalate excretion was quantified for each 3 day period and
then divided by 3 to acquire average daily excretion. Daily
oxalate degradation was then quantified as oxalate con-
sumed - (urinary oxalate 4 fecal oxalate).

DNA extraction and 16S rDNA sequencing

Fecal DNA was extracted from approximately 200 mg of
feces using the QIAamp PowerFecal DNA Kit (Qiagen),
following manufacturer’s instructions. A total of 125
microbial inventories were generated from all samples
across five timepoints, starting on the last 3 days of the fecal
transplant. It is at this timepoint that the first differences in
gut microbiota composition and oxalate metabolism were
expected among groups (Fig. 1). To generate microbial
inventories from samples, DNA was sent to Argonne
National Laboratory (Chicago, IL) for sequencing of the V4
region of the 16 S rRNA gene, with primers 515 F and 806
R [86]. Samples were multiplexed with 12 bp barcodes for
sequencing on a single-lane, MiSeq run with 150 bp paired-
end sequencing. Duplicate samples were run for three
samples to determine if the sequencing run itself had an
effect on the resulting community composition. Addition-
ally, DNA extracted from sterile MilliQ water was
sequenced to control for variability due to potential con-
tamination of DNA extraction Kits.

Raw sequencing data were demultiplexed and quality
controlled with default parameters in QIIME [87]. Opera-
tional taxonomic units (OTUs) were assigned using an open-
reference strategy with UCLUST [88], with a custom refer-
ence database derived from 2011 Greengenes database [89],
combined with de novo assigned sequences from previous
studies on N. albigula [75-78]. Sequences that did not match
the reference database at >97% homology were then assigned
de novo. Following taxonomic assignment, OTUs were fil-
tered out if they were assigned as chloroplasts or mitochon-
dria, had fewer than 10 representations across the entire
dataset, or were chimeras identified with ChimeraSlayer [90].

Bioinformatic analysis

Unless otherwise noted, bioinformatic analysis was con-
ducted in QIIME. Following the creation of OTU tables,
data was normalized with a negative binomial Wald test,
using the DESeq2 algorithm [91]. Normalized data were
used for alpha and beta diversity analyses. Alpha diversity
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metrics included Margalef’s species richness, Equitability,
Shannon’s Index, and Phylogenetic Diversity. Beta diver-
sity analyses included unweighted and weighted UniFrac
analyses, which is a measure of community membership
and structure, respectively [92].

To conservatively quantify the bacteria involved in
oxalate metabolism, a differential abundance analysis was
conducted between the microbial inventories of the NALB
group and the SWM group with all timepoints pooled by
group, which assumes that the difference in oxalate meta-
bolism between these two groups resulted from the differ-
entially abundant bacteria. Differential abundance analysis
is executed as the log fold change of normalized OTU
counts, divided by the standard error [91].

To track the oxalate-degrading microbial network in each
treatment group, across the diet trial, the co-occurrence of
bacteria enriched in the NALB group from the differential
abundance analysis, was quantified in each treatment group at
each timepoint, using the SparCC algorithm [93]. This algo-
rithm was specifically developed for microbial count data and
conducts all pairwise comparisons of defined OTUs. Only
strong positive correlations, with a r>0.6 and p-value =0
were used in subsequent network analyses. Co-occurrence
networks were then visualized in Cytoscape software [94].

Statistical analysis

For food, water, and oxalate intake, urine output, DMD,
creatinine and oxalate excretion, and alpha diversity, means
were compared with a repeated measures ANOVA comparing
treatment group, timepoint, and the interaction between group
and timepoint, followed by a Holm’s corrected, Tukey’s
honestly significant difference test to determine differences by
both group and time point. The slope of body mass change
was compared with ANOVA. Prior to ANOVA testing, all
data was tested for normality with a Shapiro-Wilk test for
normality and sphericity with a Bartlett test for homogeneity
of variance, both in R statistical software. For beta diversity,
unweighted UniFrac distance matrices were statistically
compared with a repeated measures Adonis, with 999 per-
mutations that included treatment Group, Time, and
Group*Time as factors. This analysis was followed by post-
hoc pairwise comparisons of each group, which were Holm’s
corrected for multiple comparisons.

Results

Effect of microbiome, diet, and antibiotics on host
and oxalate metrics

During the fecal transplant period (0 days post transplant),
there were significantly higher levels of water intake, urine

output, fecal output, urinary creatinine excretion, and food
consumed compared to the remaining time points (Figs. 2
and 3). Transplants from N. albigula significantly increased
total oxalate metabolism and decreased urinary oxalate
excretion at the start of the trial (Fig. 3). Within 3 days, the
cefazolin and HFHS diet treatments resulted in an acute and
persistent loss of oxalate metabolism, compared to the
NALB treatment group (Fig. 3b). The loss of oxalate
degradation of these groups led to comparable levels of
oxalate metabolism to that observed in the negative control
group (SWM). There was no apparent synergistic effect
between these treatments. Additionally, both cefazolin and a
HFHS diet led to a more moderate, but still significant
increase in urinary oxalate excretion, when compared to the
NALB group, again with no apparent synergistic effect
(Fig. 3c).

Effect of diet and antibiotics on the microbiome

There was a gradual but significant decline in alpha-
diversity across all treatment groups, with some recovery
apparent depending on the specific metric (Fig. 4). Fur-
thermore, treatment groups that received cefazolin exhibited
an acute loss of diversity, followed by a strong recovery to
near baseline levels by the end of the diet trial (Fig. 4). This
effect was most apparent in the phylogenetic diversity
metric, indicative of a taxon-specific response (Fig. 4d).

Both cefazolin and a HFHS diet had a significant effect
on the composition of the microbiota as assessed by a
repeated measures Adonis analysis of the unweighted
UniFrac beta diversity (Fig. 5, Table 2). Specifically, all
treatment groups were significantly different from each
other, except for the CEF and CEFFAT groups. Addition-
ally, cefazolin caused an initial drift in community com-
position away from all other treatment groups, followed by
a return to the post-transplant baseline (Fig. 5, Table 2).

Effect of diet and antibiotics on the oxalate-
degrading microbial network

The oxalate-degrading microbial network is defined as the
community of bacteria associated with oxalate metabolism
[75-78, 95, 96]. In the current study, we conservatively
defined the oxalate-degrading network as the OTUs that
were enriched in the NALB group compared to the SWM,
as assessed by a significant difference in normalized
abundance, with the assumption that the difference in total
oxalate metabolism was specifically due to the difference in
microbial community composition. Differential abundance
analysis resulted in a total of 438 OTUs (Table S1). The
taxa identified through this analysis largely overlapped taxa
identified in previous studies that used varying analytical
techniques in both rodent and human studies (Fig. S2).

SPRINGER NATURE
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To track the oxalate-degrading microbial network across
time and treatment group, co-occurrence analyses of bac-
teria enriched in the NALB group were conducted for each
treatment group and time point (Fig. 6). For the NALB
group, there was a gradual increase in both the number of
bacteria and interactions of the network, indicative of net-
work size and cohesiveness respectively (Figure S3). The
increases in number of bacteria and interactions were
accompanied by a gradual differentiation in interaction
clusters, indicated by the emergence of denser regions
within the overall network (Fig. 6a). For the SWM group,
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by Treatment group (in legend) or by time point (on x-axis) as
determined by a repeated measures ANOVA and post-hoc Tukey’s
honestly significant difference analysis. Group, timepoint, and inter-
action ANOVA p-values are presented in the chart

there were considerably fewer bacteria and interactions in
the defined network compared to the NALB group, which
declined over the course of the diet trial. Furthermore, no
structural differentiation was apparent in the network
(Fig. 6b). Corroborating the alpha- and beta-diversity ana-
lyses, the cefazolin-treated groups saw an acute loss of
bacteria within the network, followed by a gradual recovery
(Figs. 6c, e). Finally, the FAT group exhibited similar levels
of bacteria and interactions to the NALB group initially.
However, these numbers remained unchanged throughout
the diet trial (Fig. 6d, S3).
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Discussion

Subjects with an active episode of USD are more likely to
have taken oral antibiotics in the previous year and have
reduced functional microbial networks in both the micro-
biome of the gut and the urinary tract compared to subjects
with no history of USD [82]. Thus, there is a direct potential
mechanism between oral antibiotics, loss of function dys-
biosis, and the onset of USD. The current study was
designed to further test the potential links between pertur-
bation of the gut microbiota, driven both by antibiotics and
diet, and the loss of a specific microbial function associated
with the inhibition of USD.

The oral antibiotic cefazolin led to an acute loss of both
microbial oxalate metabolism and bacterial diversity
(Figs. 3, 4, 6). The loss of diversity was apparent both at
the level of the whole community and from the oxalate-
degrading microbial network specifically (Figs. 4, 6).
Interestingly, the microbial diversity of cefazolin-treated
animals recovered back to their post-transplant microbiota
composition 9 days after antibiotic use ceased. However,
oxalate metabolism had not recovered over this time

Shannon's Index
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ence analysis. No letters indicate no significant differences. Group,
timepoint, and interaction ANOVA p-values are presented in the chart

period, corroborating the incomplete recovery indicated
by network analysis (Fig. 6). The loss and incomplete
recovery of the gut microbiota due to antibiotic use has
been shown previously [22, 23]. It is not known if the
function would have fully recovered if the experiment
continued or if a second round of fecal transplants would
have been required to recover the function.

For the animals receiving the HFHS diet, there was an
acute loss of oxalate metabolism, with no significant loss of
bacteria either from the whole gut microbiota or the oxalate-
degrading network (Figs. 3, 4, 6). However, there was a
significant shift in overall gut microbiota composition (Fig. 5,
Table 2). These data indicate that a broader shift in microbial
metabolism away from oxalate degradation resulted from the
switch to a HFHS diet. The lack of a reduction in alpha-
diversity from the switch to a HFHS diet is in contrast to our
hypothesis and to other studies [24, 97-100]. However, when
a HFHS diet is consumed, bacteria in the gut increase the net
energy harvest from food, decrease energy expenditure, and
exhibit a broad shift in their microbial metabolic phenotype,
consistent with the results of the current study [35, 99]. The
fact that all animals receiving the N. albigula fecal transplant
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Table 2 Adonis p-values of unweighted UniFrac distance matrices

Comparison Adonis p-value Category
Group 0.031* rmAdonis
Time 0.715 rmAdonis
Group*Time 0.661 rmAdonis
SWM v NALB 0.002* Group x Group
SWM v FAT 0.002% Group x Group
SWM v CEFFAT 0.002* Group x Group
SWM v CEF 0.002* Group x Group
NALB v FAT 0.003* Group x Group
NALB v CEF 0.002* Group x Group
FAT v CEFFAT 0.002* Group x Group
FAT v CEF 0.002* Group x Group
CEF v CEFFAT 0.847 Group x Group

Data matrices were compared by group, time, and group*time using a
repeated measures Adonis (rmAdonis), followed by post-hoc pairwise
comparisons (Group x Group).

“indicates significant differences between pairwise group comparisons
and for each group over the duration of the experiment. p-values were
FDR-corrected for multiple comparisons
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Table 2

consistently grouped away from animals receiving the Swiss-
Webster transplant and that the microbiota returned to the
post-transplant baseline after cefazolin treatment indicate that
cefazolin and HFHS diet led to a loss of function dysbiosis in
the NALB microbiome rather than a return to the native
Swiss-Webster microbiome.

To date, the oxalate-degrading microbial network has
been identified through gradual changes to dietary oxalate
and association with O. formigenes, in both rodent and
clinical studies [75-78, 82, 101]. In the current study, we
conservatively identified the oxalate-degrading microbial
network by quantifying the OTUs that were significantly
enriched in the NALB group compared to the SWM group
with the assumption that the difference in oxalate degra-
dation resulted from the difference in community compo-
sition between these two groups. In a meta-analysis of
studies, a taxonomic core set of bacteria were identified in at
least 71% of studies, with diverse taxa apparently oppor-
tunistic or dependent on the method of detection (Fig. S2).
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Fig. 6 Oxalate-degrading microbial network by group-time. The
microbial network was defined as OTUs significantly enriched in the
NALB group vs. the SWM group, totaling 438 bacteria (Table S1).
Detailed below are the Group, Time point, No. of bacteria present in

Of these, the Coprococcus, Lachnospriaceae, Oscillospira,
and Ruminococcaceae were associated with the oxalate-
degrading microbial network in all studies. Additionally, the
Bacteroides, Bifidobacterium, Clostridiales, Lachnospira,
Morganella, Oxalobacter, RF39, Rikenellaceae, Roseburia,
Ruminococcus, S24-7, and YS2 taxa were found in all but
one of the studies. Oxalobacter is a genus of bacteria that
requires oxalate as a carbon and energy source. Other taxa,
such as the Bifidobacterium or S24-7, have been shown to
degrade oxalate in vitro and/or harbor oxalate-degrading
genes [68, 102].

We have previously hypothesized that the taxa associated
with the oxalate-degrading network relies on the by-
products produced by the metabolism of oxalate, CO, and
formate, which can be used subsequently in downstream
metabolic pathways such as acetogenesis, methanogenesis,
and sulfate-reduction, [75, 76, 103-106]. However, the
hypothesis that the by-products of microbial oxalate meta-
bolism are used in downstream metabolic pathways needs
to be explicitly tested. Regardless, the data here show that a
strong perturbation can effectively and persistently inhibit
this functional microbial network.

Days Post Transplant
6 days 9 days

423/4020
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428/3432 423/4436

252/2237 227/1810

168/1379

284/1944 355/2730

*

306/1897
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396/3544
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273/1811 328/3698

319/2318

the network, and No. of Interactions in the network. Also of impor-
tance is the level of structural differentiation within each of the net-
works apparent from denser regions of the network

The incidence of USD and co-morbidities is rapidly
increasing. Evidence is accumulating that the increase in
incidence is being driven by a loss of bacteria in the gut that
normally provide a health benefit. The current study
implicates oral antibiotics and a HFHS diet in the loss of a
specific function of the gut microbiota, oxalate metabolism,
that is associated with USD. We only tracked one specific
microbial function associated with a generalized perturba-
tion of the gut microbiota. The results obtained here likely
have broad implications for the loss of microbial functions
associated with other diseases. In fact, a recent meta-
analysis showed many common taxa that were lost between
USD and co-morbidities [95]. Thus, our results suggest that
treatments for USD and other diseases, particularly centered
on antibiotic use and dietary recommendations, need to
consider the gut microbiota and the functions that maintain
health.

Data availability

Sequence reads are available at the Sequence Read Archive
under Accession # SRP179737.
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