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Abstract

Seizures, status epilepticus, and seizure-like rhythmic or periodic activities are common, 

pathological, harmful states of brain electrical activity seen in the electroencephalogram (EEG) of 

patients during critical medical illnesses or acute brain injury. Accumulating evidence shows that 

these states, when prolonged, cause neurological injury. In this study we developed a valid method 

to automatically discover a small number of homogeneous pattern clusters, to facilitate efficient 

interactive labelling by EEG experts. 592 time domain and spectral features were extracted from 

continuous EEG (cEEG) data of 369 ICU (intensive care unit) patients. For each patient, feature 

dimensionality was reduced using principal component analysis (PCA), retaining 95% of the 

variance. K-medoids clustering was applied to learn a local dictionary from each patient, 

consisting of k=100 exemplars/words. Changepoint detection (CPD) was utilized to break each 

EEG into segments. A bag-of-words (BoW) representation was computed for each segment, 

specifically, a normalized histogram of the words found within each segment. Segments were 

further clustered using the BoW histograms by Affinity Propagation (AP) using a χ2 distance to 

measure similarities between histograms. The resulting 30 50 clusters for each patient were scored 

by EEG experts through labeling only the cluster medoids. Embedding methods t-SNE (t-

distributed stochastic neighbor embedding) and PCA were used to provide a 2D representation for 

visualization and exploration of the data. Our results illustrate that it takes approximately 3 

minutes to annotate 24 hours of cEEG by experts, which is at least 60 times faster than unaided 

manual review.
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I. Introduction

In contemporary medicine, it is increasingly recognized that a significant fraction of 

critically ill patients in the intensive care unit (ICU) have nonconvulsive seizures (NCS): 
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seizures with little or no clinical manifestations [1], [2]. NCS can cause neuronal injury or 

worsen existing injury, and are related to poor neurologic outcomes for patients.

Besides seizures, seizure-like patterns are frequently observed in ICU patient EEGs, known 

as “interictal-ictal continuum” (IIC) patterns. These IIC patterns are associated with 

increased risk of seizures and poor outcome in critically ill patients [3]. According to 

American Clinical Neurophysiology Society (ACNS) standardized terminology [4], IIC 

patterns are a group of rhythmic and periodic EEG patterns, including “Periodic Discharges”

(PD), and “Rhythmic Delta Activity”(RDA). IIC patterns can be further categorized as 

“Lateralized”(L) or “Generalized”(G) based on whether the patterns present in a single (L) 

or in both (G) hemispheres.

IIC patterns are associated with an increased risk of seizures [3]. PD and frequent NCS are 

an independent risk factor for worse prognosis [5]. In current clinical practice, it is up to 

clinicians to weigh the risk that a given EEG pattern is harmful against the risk and side 

effects associated with available treatments. In order to create a more objective approach, the 

relationships between the presence, frequency and duration of NCS and IIC patterns need to 

be studied systematically.

It is fairly hard to capture NCS or IIC in routine EEG, since these recordings only typically 

last 20 to 30 minutes. Prolonged continuous EEG monitoring (cEEG) is therefore important 

for detecting NCS and IIC patterns. However, it is a complex and time-consuming task for 

the electroen-cephalographer to interpret the large amount of data in cEEG. Therefore, the 

first essential step towards this systematic study is to automate the analysis of the cEEG.

Some earlier studies tried to break the EEG into segments by detecting event boundaries, 

i.e., moments where the pattern changes [6], [7]. Afterward the EEG segments were 

clustered based on features extracted from each segment. The resulting clusters were, 

however, not related to a specific EEG pattern. More recent studies have tried to 

automatically classify preset segments in fixed duration of EEG data [8], [9]. However, the 

analysis was either carried out on too limited a number of pattern types [8], or was for 

scoring the entire EEG based on combined predetermined thresholds for each segment [9].

In this study, we aimed to apply unsupervised machine learning methods to achieve efficient 

pre-clustering of NCS and IIC patterns in prolonged cEEG recordings into a small number 

of clusters. This method facilitates efficient interactive labelling of prolonged EEG 

recordings by experts. Our results suggest that cEEG recordings can be rapidly annotated by 

experts at least 60 times faster than unaided manual review.

II. Materials and Methods

A. EEG Samples

In this study, we analyzed data from 369 ICU patients admitted at MGH between 2012 to 

2017. The first 24 hours of each cEEG recording for each patient was converted to 

longitudinal bipolar montage and re-sampled to 200Hz. Digital bandpass filtering between 

0.5Hz to 40Hz was applied to de-noise the data before further analysis.
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To include contextual information of the surrounding EEG at various scales, we computed 

the same features (see below) within windows of 4 different lengths, centered on the 2 

second central interval to which we wish to ultimately attach a label (see Fig. 1a). In 

addition, as shown in Fig. 1b and c, regional average spectrograms (LL:Left Lateral, 

RL:Rigth Lateral, LP:Left Parasagittal, and RP:Right Parasagittal) were computed to include 

both spectral and spatial domain knowledge before feature extraction.

As can be seen in Table I, for each spatial location and temporal scale, we extracted a variety 

of features that describe each 2 second EEG interval; features included classic measures 

such as line length, kurtosis, entropy, nonlinear energy operator activation, relative power, 

power ratios, and power kurtosis. Accounting for all 4 spatial regions, all 4 temporal scales, 

and the 37 different spectral and temporal features, we extracted 37×4×4=592 features to 

describe each 2 second EEG interval. This rich set of features is intended to suffice for 

differentiating all patterns encountered in NCS and IIC events in cEEGs from ICU patients. 

Principal component analysis (PCA), with 95% variance retained, reduced the 

dimensionality for each feature array.

B. CPD-BoW based Unsupervised Clustering

Changepoint Detection: A changepoint is a time instant at which some statistical 

property of a signal changes abruptly. Changepoint detection (CPD) [10], [11] is a general 

method to find abrupt changes in time series. The property in question can be the mean of 

the signal, its variance, or a spectral characteristic, among others. For changepoint detection 

we employed a parametric global method, implemented in the MATLAB (Natick, MA) 

Signal Processing Toolbox.

The CPD algorithm chooses a point and divides the signal into two sections. Then it 

computes an empirical estimate of the desired statistical property for each section. At each 

point within a section, CPD measures how much the property deviates from the empirical 

estimate, and adds the deviations for all points. After that, the algorithm adds the deviations 

section-to-section to find the total residual error.

In addition, it varies the location of the division point until the total residual error attains a 

minimum. In this study, the chosen statistic is the mean of the total power of EEG. In this 

case, CPD minimizes the total residual error from the best horizontal level for each section. 

Given a signal x1, x2, ⋯, xN, if there are K changepoints to find, then the objective function 

to minimize is given by:

J(K) = ∑
r = 0

K
∑

r = kr

kr + 1 1

(xi − 〈x〉kr

kr + 1 1)2 + βK, (1)

where k1, ⋯, kK are the indices of K changepoints, with k0 and kK+1 defined as the first and 

last samples in the signal respectively. Moreover, x
b
a = 1

a b + 1 ∑i = b
a xi stands for the mean 
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operator, βK represents the penalty term added to avoid overfitting, with β=10 (chosen 

empirically) the penalty constant.

CPD rejects adding additional changepoints if the reduction in residual error does not meet 

the threshold. To perform the minimization, CPD leverages on a recursive optimization 

algorithm based on dynamic programming with early abandonment [12].

BoW-based Clustering: A bag-of-words (BoW) model (also known as a “term-frequency 

counter”) [13] records the number of times that words appear in each document of a 

collection. In this study, we consider EEG recordings as a special type of “text”, with pattern 

vectors extracted for each consecutive 2 second EEG interval as the elementary “words”. For 

each patient, we learn a dictionary of words consisting of the most representative EEG 

intervals or exemplars. Those exemplars are identified as the cluster medoids by 

unsupervised k-medoids clustering with k=100 (chosen empirically) on the reduced feature 

space after applying PCA (see Fig.3).

As shown in Fig.2b, the CPD algorithm breaks EEG into segments that are relatively 

homogeneous between change-points (green lines). We align each changepoint to the onset 

of its nearest 2-second EEG interval to resolve boundary issues. First we map the feature 

vector associated with each 2 second EEG interval to one of 100 words. As a result, each 

segment obtained from CPD is represented as a sequence of words (“sentence”). For each 

such sequence, we calculate the histogram of words (a.k.a. “Bag of Words” or BoW in 

short). At last, we cluster the EEG segments based on their corresponding word histograms 

by applying χ2-based Affinity Propagation (AP) [14].

From our experiments, the proposed CPD-BoW model typically identifies 30–50 clusters for 

each 24 hours of EEG recording. To facilitate rapid annotation, instead of labelling each 

consecutive intervals in a brute force way, the idea is to label only those 30–50 cluster 

medoids, and share the label to every member segments within each cluster.

C. Rapid Seizure and IIC Annotation

As shown in Fig.4, a MATLAB-based graphical user interface (GUI) was developed to 

enable interactive rapid labelling by EEG experts. The idea is to label the cluster medoids, 

then apply the label given to the medoid to all segments belonging to the same cluster. The 

different EEG patterns that we aimed to distinguish were “Seizure”, and the most common 

IIC patterns “LPD”, “GPD”, “LRDA” and “GRDA”. An “Other” class was added as well to 

cover any other conditions such as baseline/background EEG, and artifacts.

In our GUI, 14 seconds of EEG from 24 hours recording is shown at a time in the window 

on the right, displayed in groups of electrodes from the left and right lateral (LL, RL), left 

and right parasagittal (LP, RP), and central regions. The regional average (LL, RL, LP, RP) 

spectrograms containing this EEG time point (as marked by the dash lines) are displayed on 

the left, with the changepoint detection results at the bottom. The unsupervised clustering 

membership assignment is illustrated by the horizontal color bar below the CPD panel, as 

determined by the CPD-BoW-AP steps. The colors given in the horizontal bar are assigned 
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based on the average total power from all members in that cluster. The higher the power 

values (usually correlates with severity of the EEG patterns), the darker the color is.

Above the spectrograms is a 2D embedding map computed using t-SNE [15] for data 

visualization and exploration. Each scattered point in this map corresponds to a 596-

dimensional feature vector extracted from a 2 second EEG interval. The embedding map 

retains the intrinsic structure/relationship of samples in feature space; points that are close to 

each other in this embedding map are very likely to be similar patterns in feature space.

III. Experiments and results

We investigated whether the labeling of prolonged cEEG could be done with minimal effort, 

and assessed how fast the proposed method could facilitate annotation. We have carried out 

annotation tasks in which 3 EEG experts applied the proposed GUI to label 369 cEEG 

recordings (more precisely, the first 24 hours of each recording). Results of the annotation 

experiments are shown in Fig. 5, and Table II.

As can be seen in Table II, the median time taken by the 3 experts to label 24 hours of EEG 

data ranges from 2–9 minutes, with an overall median time of approximately 3 minutes. In 

comparison, conventional review consists of serially reviewing 10–15 second EEG intervals 

of the 24 hours of EEG, which requires visual inspection of between 5,760–8,640 individual 

intervals. Annotating 24 hours of EEG at a temporal resolution of one label per 2 seconds, 

which is the resolution obtained by the proposed annotation scheme, requires applying 

43,200 labels per EEG. In practice, some time saving is often possible by “drawing boxes” 

around events of interest and labeling the entire events at once. Nevertheless, even done this 

way, manual annotation generally takes 2–4 hours per 24 hours of EEG (unpublished 

observations of author MBW), and is thus not scalable. Using 3 hours as a conservative 

lower bound for unaided manual annotation, we estimate that our method provides a 

speedup of at least 60 times.

IV. Conclusion

This research supports the idea that cEEG data can be validly clustered into a small number 

of distinct patterns. Our results suggest that long EEG recordings can be rapidly annotated 

by experts at least 60 times faster than unaided manual review. Using our system we are 

currently in the process of labeling >30TB of EEG data from 2,000 ICU subjects. We are 

also conducting the inter-rater study to evaluate the clustering performance. The resulting 

EEG data will provide sufficient data to train deep neural network models to automatically 

detect NCS and IIC patterns. This rich data will also allow us to gain a deeper understanding 

of the clinical consequences of NCS and IIC events, and how the consequences depend on 

the attributes of different NCs and IIC patterns.
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Fig. 1. 
Comprehensive EEG knowledge from (a) temporal, (b) spatial, and (c) spectral domains.
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Fig. 2. 
CPD-BoW based unsupervised clustering model.
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Fig. 3. 
Learn a local dictionary of 100 words from reduced feature space.
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Fig. 4. 
The graphical user interface for rapid annotation.
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Fig. 5. 
Validation on rapid annotation using the proposed method: (a) the overall histogram of time, 

and (b) the boxplots of time for each expert.
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TABLE I

EEG Features.

Temporal Features Feature Calculation

Line length

Kurtosis

Shannon entropy Absolute value

Nonlinear energy operator Mean and SD

Spectral Features

δ, θ, α, and β Kurtosis

Relative δ, θ, α, and β power Mean, min, SD, the 95th percentil

δ/θ, δ/α, and θ/α ratios Mean, min, SD, the 95th percentil
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TABLE II

Annotation experiment on time cost (in minutes).

N Mean±std Range Median IQR

Expert 1 249 3.13±3.74 0.32-28.25 2.13 1.55-3.08

Expert 2 100 8.87±3.30 1.50-17.55 8.49 6.74-11.42

Expert 3 20 3.95±2.14 1.05-9.43 3.90 2.39-5.05

Overall 369 4.73±4.36 0.32-28.25 2.97 1.81-6.28

N: the number of cEEG recordings labeled by each expert

IQR: inter quartile range
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