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Abstract

Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin

(Stx) can be a threat to human health, with cattle being an important natural reservoir. In

many countries the most severe pathology is associated with enterohaemorrhagic E. coli

(EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT)

21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC

infections and this phage type commonly encodes both Stx2a and Stx2c toxin types.

PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which

is significant for inter-animal transmission and human infection as demonstrated using

modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+

PT21/28 strains induced with mitomycin C and this is associated with more rapid induction

of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-

encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were

demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction

when toxin production was not induced or prevented by mutation. Isogenic strains that dif-

fered in their capacity to produce Stx2a were selected for experimental oral colonisation

of calves to assess the significance of Stx2a for both super-shedding and transmission

between animals. Restoration of Stx2a expression in a PT21/28 background significantly

increased animal-to-animal transmission and the number of sentinel animals that became

super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration

of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared

to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates

in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157
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colonisation of in-contact animals by restricting regeneration and turnover of the colonised

gastrointestinal epithelium.

Author summary

Enterohaemorrhagic E. coli (EHEC) O157 strains are found in cattle where they are

asymptomatic, while human exposure can lead to severe symptoms including bloody diar-

rhoea and kidney damage due to the activity of Shiga toxin (Stx). The most serious symp-

toms in humans are associated with isolates that encode Stx subtype 2a. The advantage of

these toxins in the animal reservoir is still not clear, however there is experimental evi-

dence implicating Stx with increased bacterial adherence, immune modulation and sup-

pression of predatory protozoa. In this study, the hypothesis that Stx2a is important for

super-shedding and calf-to-calf transmission was tested by comparing excretion and

transmission dynamics of E. coli O157 strains with and without Stx2a. While Stx2a did

not alter excretion levels when calfs were orally challenge, it enabled colonisation of more

in contact ‘sentinel’ animals in our transmission model. We show that Stx2a is generally

induced more rapidly than Stx2c, resulting in increased levels of Stx2a expression. Both

Stx2a and Stx2c were able to restrict cellular proliferation of epithelial cells in cultured

bovine enteroids. Taken together, we propose that rapid production of Stx2a and its role

in establishing E. coli O157 colonisation in the bovine gastrointestinal tract facilitate effec-

tive transmission and have led to its expansion in the cattle E. coli O157 population.

Introduction

Enterohaemorrhagic Escherichia coli (EHEC) causes life-threatening infections in humans

including bloody diarrhoea and kidney failure [1, 2]. O157:H7 is the dominant serotype

responsible annually for>15,000 and 1000 human EHEC infections in North America and the

United Kingdom respectively [3]. Ruminant livestock, particularly cattle, are the primary res-

ervoir host for EHEC O157:H7 with incidental human infection arising from exposure to con-

taminated water, meat or vegetables, direct animal and person-to-person contact [4].

The pathogenicity of EHEC O157:H7 is attributed to a Type Three Secretion System (T3SS)

encoded by the Locus of Enterocyte Effacement (LEE) pathogenicity island and the production

of Shiga toxins (Stx) encoded by lysogenic lambdoid bacteriophage (F). Expression of the LEE

T3SS is essential for gut colonisation and the formation of attaching and effacing lesions while

Stx activity results in the severe life-threatening pathology associated with EHEC infection

such as haemorrhagic colitis and haemolytic uremic syndrome (HUS) [1, 5]. Based on protein

sequence similarity Stx toxins have been classified into two major groups Stx1 and Stx2, with

Stx2 toxins further divided into subtypes Stx2a –g [6, 7]. Disease severity in humans has been

strongly correlated with Stx subtype, variant copy number and level of stx expression. Strains

encoding subtype Stx2a are more likely to cause systemic sequelae [8–10] and this subtype was

shown to be a pre-requisite to the development of HUS in a recent analysis of clinical cases in

the UK [10]. A recent phylogenomic study has provided evidence that Stx2a was introduced

into the UK E. coli O157 cattle population ~50 years ago, while before this Stx2c had been the

main type of Stx2 [10]. The emergence of EHEC O157 as a life-threatening zoonosis is associ-

ated with this introduction of the Stx2a subtype. In cytotoxic killing assays Stx2a is 1000 times

more toxic to human renal endothelial cells than Stx1 [11, 12]. This toxicity however was

Stx2a potentiates E. coli O157 transmission between animals
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significantly reduced in a murine survival model by Stx1 when administered orally with Stx2a,

indicating toxin competition for target receptors [13]. Stx toxin genes are encoded in the

phage late gene region and are expressed during the phage (F) lytic cycle that culminates in

host cell lysis and toxin release. Expression can be induced using DNA damaging agents such

as mitomycin C and requires the phage-encoded anti-terminators Cro and N (early gene

expression) and Q (late gene expression). Induced stx2a has been shown to be expressed at sig-

nificantly higher levels than stx2c or other stx2 variants from single Stx2a-encoding prophage

(Fstx2a) or double Fstx2a Fstx2c lysogens [14–16]. Ogura et al (2015) characterised 6 sub-

types of Fstx2a according to their replication proteins each producing distinct levels of Stx2a.

Importantly strains conferring the highest Stx2a production clustered with hyper-virulent

clade 8 strains [17].

In cattle, colonisation by EHEC O157:H7 is considered asymptomatic and whether and

how Stx may confer a selective advantage in cattle is still not clear. Stx has been shown in cell

culture and mice to alter the expression and localisation of receptors for the bacteria that

include nucleolin and integrin [18, 19], and these can facilitate E. coli O157 colonisation; how-

ever evidence in cattle is lacking. Stx1 and Stx2 have been shown to suppress host innate and

adaptive immune responses during colonisation although whether this leads to increased bac-

terial excretion or promotes colonisation has not been demonstrated [18, 20–24]. It has also

been proposed that Stx may be important for killing of grazing protozoa that predate on E. coli
in the rumen, although there is conflicting data to support this interesting ecological concept

[25, 26]. Importantly certain Stx subtypes, in particular Stx2a, have an epidemiological associa-

tion with increased excretion levels of E. coli O157 from cattle, also known as super-shedding

[27–30]. Cattle excreting E. coli O157:H7 at levels > 103 cfu/g faeces have been termed super-

shedders and significantly affect prevalence levels on-farm and transmission probabilities

between animals [31, 32]. In a recent analysis of faecal pat and clinical isolates of E. coli O157

collected in Scotland from 2002–2004, Matthews et al (2013) deduced that the Stx2a variant,

alone or in combination with Stx2c, was a critical factor for super-shedding and that it

increased the risk of human infection. Previous prevalence studies have estimated that 9–20%

of animals within an E. coli O157 positive herd are super-shedders, however these few high

shedding animals can account for > 90% of the total E. coli O157 present in feed-lot pens and

are predicted to account for 80% of animal-to-animal transmission [32–38].

In the UK, E. coli O157 strains are subtyped according to their sensitivity to a panel of 16

bacteriophages [10]. Over the last decade Lineage I (Lineage Ic) strains of phage type (PT) 21/

28 have been associated with both severe human disease and super-shedding in cattle, particu-

larly in Scotland which has one of the highest rates of EHEC O157 incidence in the world [10,

32, 39, 40]. Analyses of faecal pat prevalence data on Scottish farms from two major surveys

(SEERAD 1998–2000, IPRAVE 2002–2004) determined PT21/28 strains were more likely to

be associated with super-shedding, a higher rate of animal-to-animal transmission and an

increased risk of severe disease in humans compared with PT32 strains, a PT found in 10% of

Scottish cattle [27, 36, 38]. Critically, toxin subtype Stx2a was encoded by the majority of

PT21/28 strains, either alone or in combination with Stx2c, compared with the Scottish PT32

cattle strains which tended to encode stx2c only [28].

A recent phylogenetic study of E. coli O157 in the UK concluded that PT32 was a direct

ancestor of PT21/28 strains [10] and in fact integration of Fstx2a into a PT32 Fstx2c back-

ground can result in PT conversion from PT32 to PT21/28 [41]. PT21/28 has therefore evolved

from PT32 in part by acquisition of Fstx2a. In the present study we have set out to investigate

the biology of Stx2a in PT21/28 strains, including, (1) understanding toxin expression when

both Stx2a and Stx2c can be produced; (2) testing directly the impact of Stx2a on both the

super-shedding phenotype and transmission between animals. We provide evidence that while

Stx2a potentiates E. coli O157 transmission between animals

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008003 October 3, 2019 3 / 26

https://doi.org/10.1371/journal.ppat.1008003


both Stx2a & 2c can inhibit epithelial cell regeneration, Stx2a is induced to higher levels and

more rapidly than Stx2c in PT21/28 strains. In a series of controlled cattle trials we show that

calves orally dosed with a PT21/28 strain shed at significantly higher levels than those dosed

with a PT32 strain. In transmission experiments, functional Stx2a was shown to be important

for establishing a super-shedding phenotype in sentinel calves. We propose a model for how

Stx2a and its carrier prophage combine in E. coli O157 PT21/28 strains to promote colonisa-

tion and transmission in cattle.

Results

Stx2a-producing PT21/28 strains produce more Stx2 than strains of other

phage types producing Stx2c alone

Epidemiological studies provide evidence that PT21/28 Stx2a+ strains are associated with

super-shedding and serious disease in humans compared to other PTs producing Stx2c only

[10, 28]. We wanted to determine if carrying FStx2a leads to increased Stx production com-

pared to FStx2c. Stx toxin levels of sixteen PT21/28 Fstx2a+ isolates were compared with ten

isolates encoding only Fstx2c (details of the strains used are provided in Table 1). The Stx type

of all selected isolates was determined previously by PCR or illumina sequencing [28, 42, 43].

Selected PT21/28 isolates encoded either Fstx2a alone or in combination with Fstx2c. Isolates

encoding only Fstx2c comprised a mixture of PT32 (n = 7), PT34 (n = 2) and PT49 (n = 1). As

determined using a commercial Stx2 ELISA, the PT21/28 Fstx2a+ isolates produced signifi-

cantly higher (p< 0.0001) levels of Stx2 toxin compared with isolates carrying only Fstx2c

(Fig 1A). To be within the limits of detection for the toxin assay, samples from Fstx2a+ isolates

were diluted 1 x 10−4 while Fstx2c only samples were used at 1 x 10−3; therefore PT21/28 iso-

lates encoding Fstx2a produced>10-fold more Stx2 than strains with just Fstx2c. There was

no evidence of a cumulative effect of possessing both Fstx2a and Fstx2c phage, in fact PT21/

28 isolates with Fstx2a alone produced significantly (p = 0.0019) more Stx2 than isolates with

both phage (Fig 1A).

The best characterised route to Stx2 release is phage-mediated lysis of the host bacterium.

To examine if lysis kinetics were distinct for isolates containing the different Stx2-encoding

prophages, the timing of lysis following induction with mitomycin C (MMC, 2 μg/ml) was

determined for each isolate. All PT21/28 isolates with Fstx2a had a rapid lysis phenotype com-

pared to those with only Fstx2c (Fig 1B). Lysis began after 90 min and complete lysis was

observed for every strain tested at 180–210 min post-induction. Lysis of isolates with only

Fstx2c was more variable but in general all strains had a similar lysis phenotype with cessation

of growth occurring after 120 min followed by a gradual decline in culture OD up to 300 min

(Fig 1B). Complete lysis was observed for all strains after 24 h. These results indicate that

Fstx2a have a rapid lysis phenotype when induced and produce more Stx2 than Fstx2c alone

in the phage types tested.

Rapid activation of Fstx2a gene expression leads to dominant Stx2a production. The

above results indicate that Fstx2a may be the main source of Stx2 toxin in strains with both

Stx2a and Stx2c prophages. To investigate this further, we selected and generated a series of

strains which vary in their Stx phage repertoire and capacity to produce Stx2a. As we intended

to compare excretion and transmission of strains with and without Stx2a, we chose strains iso-

lated from cattle as part of a national survey [40]. PT21/28 strain 9000 was associated with a

high single pat count (6.9 x 105 cfu/g) and was positive for both stx2a and stx2c toxin gene vari-

ants by PCR and PT32 strain 10671 which was only detected by enrichment in a faecal pat

(<50 cfu/g) and was positive for only stx2c by PCR. Following long-read sequencing of strain

9000 we identified that the stx2A subunit gene contained an ISEc8 insertion sequence (IS)

Stx2a potentiates E. coli O157 transmission between animals
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element at position +594 relative to ATG (S1 Fig). This strain therefore served as a natural

Stx2a null mutant. We precisely removed the ISEc8 from the stx2A gene by allelic replacement

to generate a ‘repaired’ 9000 variant termed 9000R. These three strains: 9000 (stx2a::ISEc8 and

stx2c+), 9000R (ΔISEc8 stx2a+ and stx2c+) and 10671 (stx2c+) along with isogenic derivatives

in which either Stx bacteriophage Fstx2a or Fstx2c or respective toxin genes, stx2a or stx2c,
were deleted (Table 1) were compared for Stx2 toxin production, lysis and Fstx2a/c gene

expression.

Table 1. Details of bacterial strains used in this study.

Strain Shiga Toxin gene (s) Phage Type Origin Modification Source/Reference

9000 stx2a, stx2c PT21/28 Cattle faeces None [40]

10671a stx2c PT32 Cattle faeces None [40]

9000R stx2a, stx2c PT21/28 Strain 9000 ΔISEc8 stx2a This study

ZAP1380 stx2a, stx2c PT21/28 Strain 9000 NalR [76]

ZAP1381 stx2c PT32 Strain 10671 NalR [76]

ZAP1723 stx2a, stx2c PT21/28 Strain 9000R NalR This study

ZAP1460 stx2c PT32 Strain 9000 ΔFstx2a [41]

ZAP1452 stx2a PT21/28 Strain 9000 ΔFstx2c [41]

ZAP1463 None NT Strain 10671 ΔFstx2c [41]

ZAP1465 None NT Strain 9000 ΔFstx2a/ΔFstx2c [41]

ZAP563a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP564a stx2a PT21/28 Cattle faeces None [40]

ZAP859a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP882a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP885a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP903a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP909a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP1478a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP1504a stx2a, stx2c PT21/28 Cattle faeces None [40]

ZAP1625a,b stx2a, stx2c PT21/28 Human None [40]

ZAP1626a,b stx2a, stx2c PT21/28 Human None [40]

ZAP1634a,c stx2a PT21/28 Human None

ZAP1635a,c stx2a PT21/28 Human None

ZAP1823a,b stx2a PT21/28 Human None

ZAP1824a,b stx2a PT21/28 Bovine None

ZAP1831a,b stx2a PT21/28 Bovine None

ZAP858a stx2c PT32 Cattle faeces None [40]

ZAP875a stx2c PT32 Cattle faeces None [40]

ZAP877a stx2c PT32 Cattle faeces None [40]

ZAP881a stx2c PT32 Cattle faeces None [40]

ZAP884a stx2c PT32 Cattle faeces None [40]

ZAP895a stx2c PT32 Cattle faeces None [40]

ZAP1493a stx2c PT34 Cattle faeces None [40]

ZAP1494a stx2c PT34 Cattle faeces None [40]

ZAP1549a stx2c PT49 Cattle faeces None [40]

aIsolate used for PT21/28 and PT32 lysis and toxin comparisons;
bStrain provided by Scottish E. coli Reference Laboratory (SERL);
cStrain provided by Public Health England (PHE) NT = not tested; NalR = nalidixic acid resistant.

https://doi.org/10.1371/journal.ppat.1008003.t001
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Upon removal of ISEc8 from the Stx2a A subunit gene in strain 9000R, pan-Stx2 toxin

production was now >10-fold higher than strains 10671 or 9000, confirming that the ISEc8

had prevented Stx2a production in strain 9000 (Fig 2A). Comparable toxin levels were

observed for both 9000R and 9000R Δstx2c indicating that repair of stx2a was responsible for

the significant increase in toxin levels relative to 9000 and 10671 and that Stx2a is the pri-

mary toxin produced by 9000R (Fig 2A). The ΔFstx2a 9000 derivative produced equivalent

Stx2 levels to 9000 confirming that all toxin produced by the WT strain 9000 was Stx2c and

that stx2a was inactivated by ISEc8. The strain 9000 ΔFstx2a ΔFstx2c double deletion pro-

duced no Stx compared to a Lysogeny broth (LB) control as was the case for strain 10671

ΔFstx2c (Fig 2A).

Lysis of wildtype strains 9000 (Fstx2a+ Fstx2c+), 9000R (Fstx2a+ Fstx2c+), 10671

(Fstx2c+) and isogenic derivatives was monitored after induction with MMC (2 μg/ml) (Fig

2B). Without induction (no MMC) all strains grew comparably. When induced lysis of

strains 9000 and 9000R began after 90 min and complete lysis occurred 180–210 min post-

induction. Fstx2c did not influence this lysis phenotype as strain 9000 ΔFstx2c had an

equivalent lysis curve. In contrast when Fstx2a was deleted lysis of strain 9000 ΔFstx2a was

comparable to strain 10671 which carries Fstx2c+ but not Fstx2a+. Growth of both strains

stopped at 120 mins post-induction but no cellular lysis occurred as no drop in culture OD

was recorded for the duration of the experiment (Fig 2B). Lysis of a double Fstx2 phage dele-

tion strain, 9000 ΔFstx2a ΔFstx2c, was also monitored which revealed a slow lysis pheno-

type. Lysis of strain 9000 ΔFstx2a ΔFstx2c began after 90 min post-induction and proceeded

at steady rate thereafter (-0.23 OD600nm /30 min). It should be noted that complete lysis of

strains 9000 ΔFstx2a, 9000 ΔFstx2a ΔFstx2c and 10671 (Fstx2c+) was observed after over-

night incubation for 24 h.

As demonstrated in Fig 2A, Stx2 levels produced from Fstx2a in PT21/28 strain 9000R

were significantly higher than levels of Stx2c produced from Fstx2c. To test if this higher level

of toxin production results from increased stx2a expression relative to stx2c, expression of the

Fig 1. Comparison of Stx2 toxin levels and lysis for PT21/28Fstx2a+ andFstx2c encoding strains. (A) Total Stx2

toxin produced by PT21/28Fstx2a+ Fstx2c+ (n = 10), PT21/28Fstx2a+ (n = 6) andFstx2c (n = 10) carrying strains

measured by ELISA assay after 24 hrs induction with MMC. Values are expressed relative to a Stx positive control used

in each assay. The individual strain values and mean ± SEM are shown. 10−4 and 10−3 indicate the dilution factor for

the samples used for the Stx2 toxin ELISA assay. (B) Lysis of PT21/28Fstx2a+ Fstx2c+ (n = 10) (black circles), PT21/28

Fstx2a+ (n = 6) (grey triangle) andFstx2c (n = 10) (grey square) encoding strains was measured

spectrophotometrically as a drop in culture OD600nm. The mean OD600nm values ± SEM are plotted.

https://doi.org/10.1371/journal.ppat.1008003.g001
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stx2 B subunit gene was measured in strains 9000 and 9000R after induction of phage replica-

tion (MMC, 2 μg/ml) (Fig 2C). Expression of the early gene regulators cro (Fig 2D) and N
(Fig 2E) were also determined from Fstx2a (cro2a, N2a) and Fstx2c (cro2c, N2c). At 30 min

post-induction the expression of N2a and cro2a in both 9000 and 9000R, increased 6–8-fold

and expression of stx2a, encoded within the late gene region, increased 2–4-fold. In contrast,

basal levels of expression of stx2c, N2c and cro2c (0.2–2.5-fold change) were observed at this

same time point. A plateau in the expression of both Fstx2a- and Fstx2c-located genes

occurred 60–90 min post-induction however all Fstx2a-located genes (stx2a, N2a and cro2a)

were expressed at significantly higher levels (p< 0.05) than their Fstx2c-encoded analogues at

every time point in both strain 9000 and strain 9000R. As cro and N control early phage gene

expression during replication these results indicate that Fstx2a initiates replication faster than

Fstx2c and once started significantly more Stx2a is produced. Consequentially the strains car-

rying Fstx2a produce higher levels of Stx2 toxin relative toFstx2c.

Fig 2. Stx2 toxin production, lysis andFstx2 gene expression. (A) Pan Stx2 toxin production from PT21/28 strains

9000, 9000R, PT32 strain 10671 and genetic derivatives was measured by ELISA 24 h post induction with MMC.

Values are expressed relative to an inactivated Stx toxin control used in each assay. The mean ± SEM from four

biological replicates (n = 4) are shown for each strain. Samples were first diluted either 10−4 or 10−3 to be within the

assay limits of detection. LB = Lysogeny Broth without bacteria. (B) Lysis of strains 9000, 9000R, 10671 and genetic

derivatives was measured spectrophotometrically as a drop in culture OD600nm. Mean OD600nm values ± SEM from

four biological replicates (n = 4) are shown. No MMC = growth of strain 9000 without MMC. Expression of the late

gene stx2B (C) and early gene regulators cro (D) and N (E) was monitored from bothFstx2a andFstx2c in strains

9000 and 9000R after induction with MMC. The mean ± SEM from four biological replicates (n = 4) is shown. Data for

stx2, N and cro genes is expressed relative to theFstx2a encoded analogues (stx2a, N2a, cro2a) at time (t) = 0,

respectively.

https://doi.org/10.1371/journal.ppat.1008003.g002

Stx2a potentiates E. coli O157 transmission between animals

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008003 October 3, 2019 7 / 26

https://doi.org/10.1371/journal.ppat.1008003.g002
https://doi.org/10.1371/journal.ppat.1008003


Stx2a and Stx2c inhibit budding of bovine ileal organoids

The established receptor for Stx subtypes is Gb3/CD77 [44, 45]. We have previously shown

that the Stx toxin receptor, Gb3, is expressed within bovine ileal crypts and demonstrated Stx1

toxin binding in the basal region of isolated crypts [46, 47]. We hypothesized that Stx2a/c may

also target these cells and impact on epithelial function and homeostasis to the advantage of

the bacterium. Therefore, any differences in Stx2 production by E. coli O157 strains in vivo
may lead to differential effects on such a phenotype. To investigate the activities of Stx2-con-

taining supernatants, the budding phenotype of bovine ileal organoids (‘miniguts’) was

assessed. These organoids consist of a central internal lumen lined with a single layer of polar-

ised enterocytes including intestinal stem cells analogous to those within ileal crypts, and form

new ‘buds’ as a result of intestinal stem cell proliferation [48].

Organoid cultures were treated with toxin-containing supernatants derived from strain

9000 (stx2c+ stx2a::ISEc8) and 9000R (stx2c+ stx2a+) after induction with MMC and organoid

size/budding was quantified after 7-days (Fig 3). Treatments occurred during passage of the

organoids, when mechanical disruption of organoid exposes the internal luminal surface.

Toxin-containing supernatants from both 9000 and 9000R significantly inhibited organoid

budding (p< 0.0001) compared to untreated control organoids (Fig 3). There was evidence

that supernatants from strain 9000R (stx2c+ stx2a+) inhibited budding to a greater extent than

organoids treated with supernatants from strain 9000 (stx2c+ stx2a::ISEc8) (p = 0.0001). Simi-

larly, inhibition of budding by supernatants containing Stx2a only (9000R Δstx2c) was compa-

rable to 9000R. All inhibition of budding was toxin dependent as treatment with supernatants

derived from a toxin negative control strain, 9000 Δstx2aΔstx2c, did not inhibit budding rela-

tive to untreated organoids. To test if treatment with Stx induced apoptosis/cell death, orga-

noids treated with toxin-containing supernatants from strains 9000, 9000R and untreated

control organoids were stained for dead cells after 7-days (S2 Fig). In both control and Stx

treated organoids dead cells were found to accumulate within the organoid lumen, with no evi-

dence of any dead cells in the periphery of either treated or untreated organoids. Furthermore

upon passage without toxin, budding of Stx treated organoids was recovered to levels (~72–

74% budding) comparable with untreated controls. These results indicate that both Stx2a and

Stx2c can restrict normal cellular proliferation within bovine crypts independent of cell death/

apoptosis with evidence of increased activity in the presence of Stx2a.

Increased shedding and animal-to-animal transmission associated with

functional Stx2a

To assess the contribution that acquisition of Fstx2a by PT21/28 strains had on ‘super shed-

ding’ and animal-to-animal transmission, three separate animal trials were conducted in

which calves were challenged with NalR derivative strains of PT32 10671 (trial 1), PT21/28

9000 (trial 2) or PT21/28 9000R (trial 3). For each trial animals were housed in each of three

rooms (C1, C2 and C3) as detailed in S3 Fig. On day 0 all animals in C1 were orally challenged

with�1x109 cfu/ml of the inoculum strain and bacterial shedding was monitored by faecal

counts (cfu/g) for all challenged animals over a 25-day period (S4 Fig). On Day 5, when peak

shedding was observed, one high shedding challenged animal was moved into C2 and another

into C3, each room housing five naïve sentinel calves. All transmission events between chal-

lenged and sentinel animals were monitored by faecal counts (cfu/g) over an 18-day period (S4

Fig). Environmental levels of each challenge strain were also monitored in rooms C1 –C3 for

the duration of each trial. It is noteworthy that environmental levels mirrored that of the high-

est shedding animal in each room (S4 Fig) indicating that the environment did not act as a sig-

nificant reservoir of infection under these experimental conditions.
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Shedding analysis for challenged animals. Faecal samples from animals challenged with

strains 10671 (n = 6), 9000 (n = 4) and 9000R (n = 7) were collected daily for 18-days post

challenge and on alternate days thereafter and the mean daily cfu/g faeces enumerated from

triplicate plate counts (Fig 4A). Mean cfu/g counts over time were modelled using a Poisson

generalised linear mixed model (GLMM) to determine strain specific differences. Statistically

significant differences in mean cfu/g over time were observed between strains with mean

counts for PT32 strain 10671 predicted to diverge from strains 9000 and 9000R (Fig 4B). Pair-

wise testing of the differences in mean cfu/g between strains further confirmed that calves

challenged with PT32 strain 10671 had significantly lower daily mean bacterial shedding

compared with calves challenged with either PT21/28 strain 9000 or 9000R (p = 0.012 and

p = 0.018, respectively). No statistically significant differences in shedding between strain 9000

and 9000R was observed (p = 0.454). Total bacterial excretion over the duration of the trial

was calculated by Area under the Curve (AUC) analysis and a negative binomial GLM was

used for strain comparison. No statistically significant differences in mean were observed

between the three strains (p = 0.108) (Fig 4C). Thus in our high dose oral challenge model the

ability to produce active Stx2a toxin had no significant effect on shedding as strains 9000 and

9000R had equivalent predicted mean shedding curves.

Animal-to-animal transmission. Transmission of strains 10671, 9000 and 9000R

between experimentally infected and sentinel animals was monitored by enumerating cfu/g

faeces from all sentinel animals in rooms C2 (n = 5) and C3 (n = 5) (S4 Fig). The mean daily

cfu/g faeces from animals colonized by each strain over the 18-day trial period are plotted in

Fig 4D. Both PT21/28 strains 9000 and 9000R were transmitted to 9/10 and 10/10 sentinel ani-

mals, respectively. Furthermore 6/10 animals colonised by strain 9000R became super-shed-

ders, many of which excreted > 1 x 103 cfu/g for several consecutive days (S4 Fig). In contrast

detection of strain 9000 was sporadic and generally required sample enrichment with the

exception of one super-shedding event lasting just 2-days (S4 Fig). PT32 strain 10671 did not

transmit to any sentinel animals and so was excluded from any further analysis. As above,

Fig 3. Stx2 inhibition of ileal organoid budding. Mean organoid size (A) and representative images of Stx2 treated or untreated

organoids (B) are shown. Organoids were treated with supernatants derived from strains 9000 (n = 3784), 9000R (n = 4005), 9000R

Δstx2c (n = 964), 9000 Δstx2aΔstx2c (n = 1540) or untreated (n = 1409). Organoid size was determined from organoids treated with a

range of toxin supernatant dilutions (1/200–1/500) used in each experimental replicate. Mean organoid size ± SEM is shown for four

experimental replicates (n = 4).

https://doi.org/10.1371/journal.ppat.1008003.g003
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statistical modelling was used to determine strain specific differences between strains 9000 and

9000R. Significantly higher mean cfu/g counts over time were predicted for strain 9000R com-

pared to stain 9000 (p< 0.001, Fig 4E) with the difference in mean cfu/g counts between

9000R and 9000 predicted to increase 0.43 log cfu/g per day. The mean total cfu/g faeces

Fig 4. Analysis of shedding and transmission from experimentally challenged and sentinel calves. Shedding data

and analysis is shown for experimentally infected calves (A–C) and naïve in-contact sentinel calves (D–F). (A)

Mean ± SEM daily cfu/g faeces from animals challenged with strains 10671 (n = 4) (red), 9000R (n = 7) (green) and

9000 (n = 6) (blue). (B) Strain specific differences in mean cfu/g over time were determined using a Poisson GLMM.

Predicted mean cfu/g values ± 95% confidence interval (CI) bands (in log-link scale) are shown for 10671 (red), 9000R

(green) and 9000 (blue). (C) Predicted total shedding for each strain was calculated by AUC analysis. Mean

AUC ± 95% CI (in log-link scale) are shown. Equivalent analysis for all sentinel animals infected with strains 10671,

9000R and 9000 by transmission was performed. (D) Mean daily ± SEM cfu/g faeces (in log scale), (E) GLMM

predicted mean daily cfu/g ± 95% CI bands (in log-link scale) and (F) negative binomial GLM predicted mean

AUC ± 95% CI (in log-link scale) for sentinel animals are shown.

https://doi.org/10.1371/journal.ppat.1008003.g004
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(AUC) for strain 9000R was also estimated to be ~ 50 fold greater than strain 9000 (p< 0.001)

(Fig 4F).

Stx2a does not suppress immune recognition. Stx2 was previously shown to suppress

adaptive immune responses in cattle [22]. We hypothesized that Stx2a mediated suppression

of E. coli O157-specific adaptive immune responses by 9000R within the intestinal mucosa

may increase colonisation of the bovine intestinal tract and account for the enhanced trans-

mission phenotype. To test this we characterised the circulating and mucosal E. coli O157-spe-

cific antibody responses in calves orally challenged with 9000, 9000R and 10671 during the

above challenge trials.

Weekly serum antibody responses to four E. coli O157 antigens: H7, EspA, Intimin and

Tir, involved in protective immunity to E. coli O157 [49, 50], are shown in S5 Fig. Challenge

with all three strains induced a significant increase in serum H7-specific IgA (p< 0.01). An

increase in serum levels of H7-specific IgG1 was also seen in calves challenged with strain

9000R only (p = 0.029). A small but significant increase in Tir and EspA-specific IgG1 was

also observed in calves challenged with strain 10671 (p = 0.045 & 0.023 for Tir and EspA,

respectively) but not the 9000 or 9000R strains. As the predominant colonisation site of E.

coli O157 in cattle is the terminal rectum [51], Antibody Secreting Cell (ASC) probes [52]

were generated from rectal lymph nodes collected at post-mortem from challenge and

unchallenged control calves to quantify antibody responses local to the site of colonisation.

ASC probes from calves challenged with strain 9000R had significantly higher levels of H7,

Tir, EspA and Intimin-specific IgA (p = 0.003, 0.018, 0.011 and 0.018, respectively), and

H7-specific IgG1 (p = 0.003) compared to their unchallenged controls, whereas challenge

with strains 9000 and 10671 resulted in no detectable increase in antibodies to any of the

four E. coli O157 antigens tested (Fig 5). This indicates that local E. coli O157-specific anti-

body responses were greatest following challenge with strain 9000R and Stx2a-enhanced

transmission of the PT21/28 strain is unlikely to be due to suppression of E. coli O157-spe-

cific immune responses at the site of colonisation.

Discussion

Within different geographical regions such as North and South America, the UK and Sweden,

different E. coli O157 subtypes are present in the cattle population that encode the Stx2a sub-

type and these are associated with serious pathology in humans [40, 53, 54]. Stx2a has emerged

in the last 50 years in the cattle population with the prophage inserting into strain backgrounds

often already containing Stx2c [10, 55]. In the UK, this has led to the emergence of Stx2a+2c+

PT21/28 isolates which have been the most significant O157 subtype associated with life-

threatening human infections in the UK over the last 15 years [10]. In the current study, our

analysis of phage induction kinetics and toxin production in E. coli O157 PT21/28 back-

grounds demonstrated that Stx2a-encoding prophage are generally induced more rapidly than

those encoding Stx2c. The more rapid induction and lysis kinetics means that Stx2a becomes

the dominant Stx2 subtype produced by these isolate populations, thus reducing any selection

pressure that would have been applied by production of Stx2c. Studies have shown that Stx2c

phage (F) have undergone significant gene loss over time particularly in genes required for

lysis, replication and repair [41, 56]. We also identified an IS element inserted in the excisio-

nase (xis) gene of FStx2c in strain 9000 that prevented precise excision [41]. Such targeted

gene loss and IS interruptions preventing precise excision may account for the observed slow

lysis phenotype in the absence of FStx2a. In contrast phage producing Stx2a are diverse and

six FStx2a sub-types have recently been classified based upon differences within phage regula-

tory regions which, in part, correlate with different levels of toxin production [16, 17, 41].
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Fig 5. Enhanced rectal antibody responses to E. coli O157 antigens following challenge with a Stx2a+ E. coli O157

strain. Antibody Secreting Cell (ASC) probes were generated from rectal lymph node cells isolated at post-mortem

from calves orally challenged with ~109 cfu of E. coli O157 strains 9000, 9000R, and 10671 and from unchallenged

control calves. Levels of (A) H7-specific; (B) Tir-specific; (C) EspA-specific and (D) Intimin-specific IgA, IgG1 and

IgG2 within ASC probes quantified by ELISA. Each symbol represents an individual animal and medians and

interquartile ranges are presented. Mann Whitney U-tests were used to compare antibody levels between challenged

and unchallenged controls for each E. coli O157 strain and associated p-values are indicated.

https://doi.org/10.1371/journal.ppat.1008003.g005
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Based on our findings, it is likely that Stx2a is also the main toxin subtype produced by

PT21/28 strains following induction in the bovine host. There is an epidemiological associa-

tion between encoding stx2a and higher levels of excretion from cattle (super-shedding)[27–

30] and a primary aim of the current study was to experimentally investigate the role of Stx2a

in shedding and transmission dynamics of E. coli O157 within the primary bovine reservoir. A

key finding was that restoring the capacity to produce Stx2a in PT21/28 strain 9000 signifi-

cantly increased excretion from sentinel calves co-housed with a shedding animal. Despite the

fact that such experiments were logistically difficult to arrange under restrictions in the UK on

working with Stx+ isolates, a successful protocol was established in which experimentally-colo-

nized Trojan calves were introduced into groups of naïve sentinels (S3 Fig). While there was

evidence of transfer of the original PT21/28 strain 9000 (stx2a::ISEc8) isolate from the Trojan

calves to the sentinels, only 1/10 super-shedding animal was established. By contrast after

restoring Stx2a production in this PT21/28 strain (9000R) it was successfully transmitted to

10/10 sentinel animals of which 6/10 became super-shedders. On analysis the sentinel animals

therefore excreted significantly higher levels of the Stx2a+ restored strain. A critical point is

that when excretion levels for the two PT21/28 strains was compared for animals orally dosed

with high levels of the bacteria (109), then all animals became colonized at super-shedding lev-

els and there was no significant difference in overall excretion level. As a consequence, we con-

sider that the advantage conferred by stx2a is more evident and relevant during our

transmission experiments which potentially reflect more natural, lower dose, exposure condi-

tions with respect to the sentinel animals.

The oral challenge experiments also demonstrated that both PT21/28 strains 9000 and

9000R were excreted at significantly higher levels than the selected PT32 (strain 10671) iso-

late. It is therefore evident that Stx2a alone cannot account for the increased excretion phe-

notype of PT21/28 strains compared with PT32 strain 10671 when the infection dose is

high. Alignment of the PacBio sequences for strains PT21/28 strain 9000 and PT32 strain

10671 examined in this study indicates that while a primary difference is the integrated

FStx2a (S6 Fig), other differences in prophage regions, 2829 SNP differences and a total

of 315 and 188 genes unique to strains 9000 and 10671 (S1 Table), respectively, were also

detected. We have previously shown how protein regulators and sRNAs from the Stx2a

encoding prophage can impact on other chromosomal loci, including type III secretion [42,

57]. Other FStx2a encoded genes and/or regulators therefore cannot be excluded from hav-

ing a role in establishing a super-shedding phenotype. Future work will assess deletion of

specific FStx2a and non-FStx2a regions in vitro before confirmatory experiments could be

justified in cattle.

A definitive role for Stx in ruminants has been elusive with evidence for multiple pheno-

types including adherence, immune modulation and killing of protozoa that predate on E. coli
[19, 22, 23, 58]. In the present study we found no evidence to support a role for immune sup-

pression [23] in the increased excretion of the Stx2a+ isolate by sentinel calves and in fact the

strain with the reinstated stx2a generally exhibited higher responses to key antigens commen-

surate with higher excretion levels from these animals. Our research has demonstrated another

potential role for Stx in the bovine host as supernatants containing Stx2a and Stx2c restricted

the budding activity of bovine ileal organoid cultures. These cultures were set up to allow

stem-like cells in the epithelial crypts to proliferate in vitro producing new epithelium which

buds out from the seeded organoid [59]. Proliferation was determined by measuring an

increase in the size of individual organoids and was restricted by cultures containing either

Stx2a or Stx2c (or both) but there was no inhibition from induced culture supernatants in

which no Stx toxin was present. This indicates that both Stx2a and Stx2c subtypes can prevent

regeneration of the epithelium and provides evidence for an important phenotype that would
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have obvious benefits for bacteria that colonise by tight attachment to epithelial cells, as is the

case for E. coli O157 at the terminal rectum of cattle [60].

Fig 6 illustrates a model for this Stx activity in which cell turnover is restricted in the intesti-

nal epithelium by Stx2, presumably by activity on stem cells that drive epithelial expansion.

This specific activity now needs to be determined but our previous research indicates that a

subset of cells in bovine intestinal crypts are Gb3/CD77 positive (the receptor for Stx subtypes)

and these may be stem-like cells [46, 47]. However, our previous work had indicated that puri-

fied Stx1 interaction with these receptors led to retrograde transport of the toxin out of the cell

[47] and so it remains to be determined whether Stx2-subtypes have a different interaction or

if Stx toxins are delivered in a different way, for example in outer membrane vesicles (OMVs)

[61–63], they may avoid such retrograde trafficking. As proposed by others, it is also possible

that Stx-subtypes can enhance colonisation by up-regulation of receptors for intimin such as

Fig 6. Stx2 mediated inhibition of bovine intestinal epithelial proliferation. Normal intestinal epithelial proliferation and differentiation (left) is

driven by active stem cells located at the base of crypts. Stem cells continuously generate proliferating progeny that differentiate into the various cell

lineages of mature intestinal villi and migrate up the crypt toward the villus tip. Continuous generation of new intestinal epithelial cells is balanced by

apoptosis of older cells at the luminal surface resulting in the rapid turnover of intestinal epithelial cells. Expression and release of Stx2 into the

intestinal crypt (right) by colonising Stx2+ EHEC O157 is proposed to inhibit normal stem cell driven proliferation. Inhibition may be direct by Stx2

binding to and inactivating Gb3+ stem cells or indirect inhibition of stem cells by interaction of Stx2 with as yet unidentified Gb3+ cells in the base of

the crypt. E. coli O157 colonises at the luminal surface and further inhibits local epithelial turnover by type 3 secretion system-mediated delivery of

specific effectors that can inhibit apoptosis.

https://doi.org/10.1371/journal.ppat.1008003.g006
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nucleolin and integrin, although this would need a delivery mechanism, such as OMVs, into

differentiated epithelial cells which are Gb3- in cattle [18, 19, 64].

The proposed inhibition of proliferation by Stx could work in conjunction with effector

proteins that inhibit apoptosis as together they would help stabilise the colonised epithelium

[65–67] (Fig 6). Of note the cycle-inhibiting factor (Cif) effector protein, produced by some

specific sub-clusters of enteropathogenic E. coli (EPEC) and non-O157 EHEC, has been

shown to cause cell cycle arrest and delays apoptosis when translocated into host cells [68, 69].

For Shigella, secreted effector proteins also act to stabilize the epithelium either by inhibiting

cell proliferation (IpaB) [70] or cell removal (OspE) [71] to enable persistence of the colonising

bacteria.

Predictive modelling previously concluded that Stx2a was likely to be a critical factor in the

development of super-shedding and the occurrence of clinical human EHEC O157 isolates

[28]. Furthermore super-shedding of EHEC O157 from cattle was predicted to significantly

enhance the risk of infection in humans [28]. We have experimentally confirmed that Stx2a

has a critical role in the development of a super-shedding phenotype and transmission of

PT21/28 isolates. Although the exact mechanism by which Stx2a mediates a super-shedding

phenotype remains unclear we propose that this is, in part, due to Stx2a being the dominant

toxin produced by PT21/28 Stx2a+/stx2c+ strains in the GI tract of cattle and therefore has

greater activity than Stx2c on the epithelium. Factors driving toxin production in vivo however

are unknown and recent work has highlighted the complexity of Stx toxin production dynam-

ics in vivo [72] including the possibility that phage induction does not require lysis for Stx

release. Further work is therefore required to understand the expression and lysis dynamics of

Stx2 phage and determine the relative levels of Stx2 subtypes produced during colonisation of

hosts. It is also evident that super-shedding is multi-factorial, enabled by both Stx2a and the

genetic background of the strain. Identifying PT21/28 specific genes or gene variants, in addi-

tion to stx2a, that are involved in super-shedding is essential to understanding this important

phenotype.

Recent evidence indicates a subset of PT21/28 isolates associated with severe disease that

have now lost the Stx2c prophage and consequently produce only the Stx2a toxin [10]. Our

data demonstrates that such strains produce higher levels of Stx2a than strains encoding

both Stx2a and Stx2c with increased activity for strain 9000RΔstx2c on organoid budding. It

remains a concern that as these bacteria evolve ways to increase the activity of Shiga toxins in
vivo then such strains may represent more of a threat to human health. As a counter argument,

detection of insertion sequence elements in stx genes is relatively common [73] therefore bac-

teria must encounter conditions where preventing expression of the toxin is a selective advan-

tage. Inactivation of stx2a by three separate IS elements (IS1203v, IS629 and ISEc8) has now

been reported [41, 73, 74] and selection against stx-encoding genes has been observed at farm-

wide level [56]. Taken together, research in this area highlights the value of understanding Stx

activity and drivers for its selection and maintenance in the animal reservoir as these should

inform strategies that can reduce the threat to human health.

Materials and methods

Bacterial strains, culture conditions and inocula

Bacterial strains and primers used in this study are listed in Table 1 and S2 Table, respectively.

Strain 9000R was constructed by removal of ISEc8 from stx2a in two steps by allelic exchange

as described previously [75]. Primer pairs No stx2a/Ni stx2a and Co stx2a/Ci stx2a were used

to generate PCR products of the 5’ and 3’ stx2a flanking regions, respectively. Products were

cloned into pTOF25 and a KanR cassette was inserted between the stx2a flanking regions. This
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construct was used as an allelic exchange vector for deletion of stx2a. A wildtype stx2a gene

with flanking regions was then generated by overlap extension PCR using primer pairs No

stx2a/NiOE stx2a and Co stx2a/CiOE stx2a. The wildtype stx2a gene PCR product was cloned

into pTOF25 and used as an allelic exchange vector to replace the KanR cassette with wildtype

stx2a on the strain 9000 chromosome. Strain 9000 derivatives spontaneously cured of Fstx2a

orFstx2c lysogens were generated previously using an in-house selection method [41]. Dele-

tion of ISEc8 and loss Fstx2a or Fstx2c were confirmed by PCR and sequencing. NalR deriva-

tive strains used in animal studies were naturally derived. All strains were cultured in lysogeny

broth (LB) at 37 ˚C with shaking (200 r.p.m) unless otherwise stated. To prepare animal chal-

lenge inocula, NalR derivatives of strains 9000, 9000R or 10671 were resuscitated from freezer

stocks on LB-agar plates and incubated at 37 ˚C overnight. Four 5 ml LB starter cultures were

inoculated with single colonies (2 colonies per starter culture) and grown for 6 h (37 ˚C, 180 r.

p.m.). After 6 h, starter cultures were pooled and used to inoculate (1/1000) 50 ml LB final

inocula cultures. Final inocula cultures were grown for 18 h (37 ˚C, 200 r.p.m) before being

used in animal studies.

Ethics statement

All animal challenge experiments were performed at the Moredun Research Institute (MRI)

under Home Office Licence 70/7914 granted by the UK Home Office under the Animal (Sci-

entific Procedures) Act 1986. Ethical approval was obtained from the MRI Animal Experi-

ments and Ethical Review Committee.

Animal experiments

Transmission studies: Calves used were conventionally reared male Holstein-Friesian dairy

cows with an average age of 12 ± 2 weeks at the time of challenge. Calves were fully weaned

and fed hay and calf concentrate for 3-weeks prior to challenge, allowing for the establishment

of ruminal flora. For each trial calves were randomly assigned to three rooms (C1 –C3) at the

MRI High Security Unit (HSU). All calves were screened weekly and confirmed negative for

EHEC O157:H7 by immunomagnetic separation (IMS) (anti-EHEC O157 Dynabeads; Ther-

moFisher) and qPCR (below) for four weeks prior to trial start. The experimental study design

is shown in Supplementary S3 Fig. Calves housed in C1 were orally challenged on Day 0 by

orogastric intubation with 500 ml PBS containing 10 ml of NalR final inocula cultures (Trial 1:

Strain 10671, Trial 2: Strain 9000, Trial 3: Strain 9000R). At peak shedding (Day 5 post chal-

lenge) a high shedding calf (> 104 cfu/g faeces) was moved into room C2 and C3 each housing

naïve sentinel animals. Faecal shedding was monitored in all challenged and sentinel animals

over a 25-day and 18-day period, respectively. 10 g faeces taken directly from the rectum was

suspended in 90 ml PBS. Tenfold serial dilutions were made in PBS and 100 μl from three dilu-

tions across a 1000-fold range was plated in triplicate on cefixime-tellurite sorbitol MacConkey

(CT-SMAC) agar supplemented with Nalidixic acid (20 μg/ml). Re-suspended faeces were

stored at 4 ˚C. Plates were incubated overnight at 37 ˚C and colonies enumerated at an appro-

priate dilution. Five to 10 colonies from each plate were confirmed O157 positive using E. coli
O157 Latex Test kit (ThermoFisher). Where no colonies were observed, samples were enriched

by adding 1 ml of re-suspended feces to 9 ml Tryptone Soya Broth (TSB; Oxoid). Samples

were incubated at 37 ˚C overnight without shaking and plated onto CT-SMAC plates supple-

mented with Nalidixic acid (20 μg/ml). Bacterial growth was tested for the presence of O157

by latex agglutination. Faeces negative by direct plating but positive after enrichment were

assigned an arbitrary value of 10 cfu/g.
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For each of the three trials, a control group of age, sex and breed matched EHEC O157 nega-

tive calves (n = 5 per trial) was included to provide negative control material (serum, lymph node

cells) for subsequent immunological assays. To monitor EHEC O157 shedding in these control

calves, faecal samples were collected every second day for the duration of each trial. Samples were

diluted 1:10 in PBS then plated out directly onto CT-SMAC plates and incubated overnight at 37

˚C. No EHEC O157 colonies were detected in any of the control faecal samples tested.

Quantitation of E. coli O157-specific antibody responses

Levels of E. coli O157-specific IgA, IgG1 and IgG2 were quantified in serum samples collected

weekly from orally challenged or unchallenged control calves, or within antibody secreting cell

(ASC) probes generated from rectal lymph node collected at post-mortem. These ASC probes

represent spontaneous antibody production of antibodies from B cells within the rectal lymph

nodes [52] and were generated as follows: rectal lymph nodes were collected and placed in

transport medium (Hanks Balanced Salt Solution (HBSS) without calcium and magnesium,

2% heat inactivated foetal calf serum (Hi-FCS), 10 mg/ml gentamycin (Sigma-Aldrich), 200

IU/ml penicillin and 200 μg/ml streptomycin) prior to processing. Lymph nodes were washed

twice in transport medium then cut into small (~0.5 cm2) pieces prior to being homogenized

in a stomacher (Colwarth Stomacher 870, Seward Ltd, UK) for 30 s. The homogenized lymph

node was then filtered through a 70 μm filter (Thermo-Fisher) before being under-laid with

Ficoll-paque Plus (GE Healthcare) and centrifuged for 30 min at 800 × g. The mononuclear

cell layer was washed twice with PBS, re-suspended in complete culture medium (RPMI 1640

(Gibco), 10% Hi-FCS, 200 mM L-glutamine, 50 μM β-mercaptoethanol, 200 IU/ml penicillin

and 200 μg/ml streptomycin). Cells were then seeded into 24-well plates at a density of 5 x 106

cells per well and incubated at 37˚C and 5% CO2. After 5 d, supernatants containing spontane-

ously released antibody were collected and stored at -20˚C prior to analysis.

Levels of IgA, IgG1 and IgG2 to four E. coli O157 antigens (H7, Tir, EspA and Intimin) were

quantified by indirect ELISA as previously described [50] with results expressed as optical den-

sity at 492 nm (OD492). Optimal serum dilutions were determined following serial dilution of

serum to ensure that the OD492 was on the linear part of the curve. Serum dilutions of 1:10 and

1:50 were used for IgA and IgG2 ELISAs respectively. For IgG1 ELISAs serum was diluted

1:100 for H7 and Intimin-specific ELISAs, 1:50 for EspA-specific ELISAs, and 1:250 for Tir-

specific ELISAs. All ASC probes were analysed neat.

Phage lysis curves and Stx toxin ELISA

3 ml LB was inoculated directly from glycerol stocks and grown overnight at 37 ˚C. 6 ml LB

was inoculated 1/100 from overnight cultures and grown to an OD600nm = 0.6–0.8 (t = 0). Cul-

tures were split 1:1 and phage lysis was induced in one half by the addition of Mitomycin C

(MMC, 2 μg/ml). Subsequent growth/lysis in induced and un-induced cultures was monitored

spectrophotometrically at OD600nm. For Stx toxin ELISA assays cultures were grown as above

and growth/lysis allowed to proceed for 24 h. After 24 h, 1 ml culture was taken and live cells

and cell debris removed by centrifugation (13,000 r.p.m, room temperature (RT)). Stx toxin

containing supernatants were further sterilized by syringe filtering (0.22 μm; Milipore). The

level of Stx toxin in each sample was assayed using the RIDASCREEN Verotoxin ELISA kit

(R-Biopharm) according to manufacturer guidelines.

Culture of bovine ileal organoids

Bovine ileal organoids were derived previously from small intestinal crypts [48]. For toxin sen-

sitivity assays� 1,000 intestinal crypts in 100 μl advanced DMEM/F12 DMEM/F12 containing
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1X B27 supplement minus vitamin A (ThermoFisher Scientifc), 25 μg/mL gentamicin and 100

U/ mL penicillin/streptomycin were added to 150 μl BD Growth Factor Reduced Matrigel

Matrix (BD Biosciences, UK). 50 μl of Matrigel containing crypts were plated into the wells of

a pre-warmed 24-well plate (NUNC, Thermo-Fisher) and incubated at 37 ˚C in a 5% CO2/air

atmosphere for 10 min to allow the Matrigel to solidify. Once solidified 650 μl of pre-warmed

IntestiCult Organoid Growth Medium (Mouse) (STEMCELL Technologies, UK) containing

50 μg/mL gentamicin and supplemented with 10 μM ROCK inhibitor (Y-27632, Cambridge

Bioscience, UK), 500 nM TGF-β receptor kinase type 1 inhibitor (LY2157299, Cambridge Bio-

science) and 10 μM p38 MAP kinase inhibitor (SB202190,Enzo Life Sciences, UK) was added.

Stx toxin containing supernatants, derived as per ELISA assay, were added to organoids at a

final dilution of 1/200 and organoids were maintained at 37 ˚C in a 5% CO2/air atmosphere

replacing growth media every 2–3 days. 3D-organoids were imaged after 7-days using a Zeiss

StereoLumar V12 Fluorescent Stereomicroscope (0.8x Objective Lens, 28x Zoom) and orga-

noid size (in pixels) was determined using OrganSeg software with default settings [77].

For fluorescent cell imaging organoids were stained sequentially with Propidium Iodide

(eBioscience) (dead cells) or Hoescht 33342 (all cells) at 7-days post treatment. Organoids

were incubated first with 10 μl of propidium iodide added directly to the culture medium for

10 min, washed (2 x 650 μl of warm PBS) and then incubated with Hoescht 33342 diluted 1/

1000 in 650 μl PBS for 10 min before fixation with freshly-prepared 1% paraformaldehyde

(PFA). Stained organoids were imaged using a Zeiss Axiovert 25 inverted fluorescent micro-

scope. Organoids were routinely passaged after 7-days by removing growth media followed by

resuspension of Matrigel in 1 ml ice-cold advanced DMEM/F12 containing 1X B27 supple-

ment minus vitamin A (ThermoFisher Scientifc), 25 μg/mL gentamicin and 100 U/mL penicil-

lin/streptomycin by pipetting. Resulting suspensions were transfer to a Pyrex FACS tube

(Corning, Wycombe, UK) and organoids were allowed to settle. The supernatant was

removed, organoids were re-suspended in 1 ml advanced DMEM/F12 and then mechanically

disrupted by pipetting using a 200 μl pipette tip. The number of crypts was counted and orga-

noid cultures were established as above.

Multiplex qPCR screening and RT-qPCR

All calves were pre-screened for the presence of EHEC O157:H7 by qPCR on a weekly basis

for four weeks prior to trial start. 1 g of faeces, taken directly from the rectum, was suspended

in 10 ml EC broth (Oxoid) supplemented with Novobiocin (15 μg/ml) and incubated statically

at 37 ˚C for 6 h. After 6 h, 100 μL of enriched culture was suspended in 900 μl PBS, cells har-

vested by centrifugation (13,000 r.p.m, 5 min, RT) and total DNA isolated using InstaGene

Matrix (Bio-Rad) according to manufacturer guidelines. Isolated DNA was screened for the

presence of the EHEC O157:H7 rfb gene and Stx toxin variants stx1 and stx2 by multiplex

qPCR using primer probe pairs (IDT DNA) specific for each gene (S2 Table). All reactions

were carried out using a QuantiTect Probe PCR kit (Qiagen) according to manufacturer

guidelines under the following conditions: 95 ˚C for 15 min (1 cycle), 95 ˚C, 15 sec; 60 ˚C, 1

min (45 cycles). Expression of N, cro and stx from Fstx2a and Fstx2c was monitored by RT-

qPCR during lysis. Cultures were grown as per lysis curves and 0.2 OD600nm culture units were

harvested at t = 0, 30, 60, 90 and 120 min by centrifugation. Total RNA was extracted from cell

pellets using a RNeasy Mini kit (Qiagen) according to manufacturer guidelines. Extracted

RNA was quantified and 2 μg of each samples was DNase treated using TURBO DNA-free kit.

200 ng of DNase treated RNA was then converted to cDNA using iScript Reverse Transcrip-

tion Supermix (Bio-Rad) according to manufacturer guidelines. All qPCR reactions were car-

ried out using iQ Syber Green supermix (Bio-Rad) and gene specific primers (IDT-DNA)
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under the following conditions: 95 ˚C for 15 s (1 cycle), 95 ˚C for 15 s; 60 ˚C for 1 min (40

cycles). Gene expression was quantified relative to a standard curve generated from 9000R

genomic DNA.

Genomic sequence comparison

Whole genome chromosomal sequences of strains 9000 and 10671 were obtained from NCBI

(accession numbers: CP018252.1, and CP018250.1) as full Genbank files, and complete nucleo-

tide sequence FASTA files. FASTA files were used to make a ProgressiveMauve alignment

[78], and the SNPs were extracted using the export SNPs option. FASTA files were also used in

conjunction with the prophage sequences of strain 9000 [41], to produce a BLAST Ring Image

Generator (BRIG) diagram [79] displaying the content of strain 9000 absent, or different in

strain 10671 (blast+ version 2.2.31+) (S3 Fig). Genbank files were converted to GFF3 files

using the BioPerl [80] script genbank2gff3 and input into Roary [81] to obtain the core and

shell genes for each strain. The gene presence and absence file was then amended with gene

loci to show bona fide gene content differences between strains 9000 and 10671 (S1 Table).

Statistical analysis

Analysis of daily shedding measured in cfu/g from challenged and sentinel animals was con-

ducted by fitting separate Poisson generalised linear mixed models (GLMM) by the maximum

likelihood method, using logarithmic link function and Laplace approximations to calculate

log-likelihoods. The models included the logarithm of the corresponding dilution factor as an

offset variable. The fixed effects part of the models consisted of bacterial strain, post-challenge

day (centred at the mean day, 11.69 and 9.3 for challenged and sentinel animals respectively)

and a term accounting for the interaction both. The relationship between repeated measure-

ments from the same animal was accounted for by including animal as a random effect. Ran-

dom effects of pen and of the interaction between animal and day were included in the model

along with a random effect at observation level to account for data over-dispersion. Total shed-

ding over the course of the experiment was estimated for each animal by the area under the

curve (AUC) using the composite trapezoid rule. Differences in mean AUCs per strain were

statistically tested by fitting negative binomial generalised linear models (GLM) by iteratively

reweighted least squares (IWLS) using a logarithm link function. This way we considered an

extra parameter to model over-dispersion in AUC. For sentinels, all animals were negative to

strain 10671 and, hence, only those positive to strains 9000 and 9000R were considered in the

modelling. For challenged animals, pairwise tests of differences in mean between strains were

conducted based on the predicted marginal means from the GLMM and GLM estimates. The

corresponding p-values were adjusted for multiplicity using the false discovery rate (FDR)

approach [82]. Note that only data from day 1 were considered for fitting the models as the val-

ues were all zero at day 0.

PCR data were log transformed and differences in mean gene expression between genes

encoded byFStx2a and FStx2c analogues were statistically assessed at each time-point using

t-tests. The corresponding p-values were corrected for multiplicity using the FDR approach

[82]. Stx2 production data was analysed by ordinary one-way ANOVA with multiple compari-

sons testing. Differences in mean organoid size were statistically assessed by ordinary one-way

ANOVA multiple comparisons tests in which mean organoid size for each supernatant treat-

ment was compared with strain 9000 or untreated controls. The corresponding p-values were

corrected for multiplicity using the FDR approach [82].

Antibody data was analysed as follows: non-parametric Mann-Whitney U tests were used

to compare antibody levels within ASC probes. Generalised additive mixed models with
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identity link function and Gaussian errors were fitted by REML to investigate the effects of

challenge strain on serum antibody responses over time. The antibody responses were (log +

1) transformed to normalise the data. The models included challenge strain as a fixed effect

and spline-based smooth terms (one per strain) to account for potential non-linear relation-

ships of the response with time, and animal added as a random effect. Heterogeneous vari-

ances by group were allowed.

Statistical modelling of bacterial shedding, antibody data over time and transmission data

was conducted on the R system for statistical computing version 3.2 [83]. PCR data, Stx2 pro-

duction data and ASC antibody data were analysed using GraphPad Prism version 6.05 for

Windows (GraphPad Software, La Jolla California USA, www.graphpad.com). In all cases sta-

tistical test significance was assessed at the 5% significance level.

Supporting information

S1 Fig. Genomic context of stx2A gene in strains 9000 and 9000R. Adapted alignment of

strains 9000 and 9000R sequences shows the respective presence and absence of ISEc8 in the

stx2a A subunit. Genomes (black lines), named genes (coloured blocks) and regions of homol-

ogy (indigo lines) are shown.

(TIF)

S2 Fig. Viability staining of bovine ileal organoids following treatment with Stx2.

Untreated organoids and organoids treated with Stx2-containing supernatants from E. coli
O157 strains 9000 (stx2c+ stx2a::ISEc8) and 9000R (stx2c+ stx2a) were fluorescently stained

for all cells (blue) and dead cells (green) using Hoescht 33342 and Propidium Iodide, respec-

tively. Representative paired phase contrast and fluorescence images of organoids are shown

in triplicate for each treatment.

(TIF)

S3 Fig. Experimental design for E. coli O157 transmission studies. (A) Uninfected naïve

calves (n = 5 per room) were housed in rooms C1, C2 and C3. (B) On day 0 all calves in room

C1 were experimentally infected with ~109 CFU of E. coli O157 by orogastric intubation. (C)

At five days post-challenge a calf shedding >104 cfu/g faeces was moved into rooms C2 and

C3, respectively. Faecal bacterial shedding (cfu/g) and environmental levels were monitored

daily for a further 18-day period.

(PDF)

S4 Fig. Shedding curves for animals colonized with E. coli O157 strains 10671, 9000 and

9000R. Shedding (cfu/g faeces) of PT32 strain 10671 and PT21/28 strains 9000 and 9000R was

monitored from experimentally infected animals (Room C1) and sentinel animals (Rooms C2

and C3). Environmental bacterial levels within each room (blue) and shedding from colonised

Trojan animals (red) in rooms C2 and C3 are also shown. The average cfu/g faeces (for indi-

vidual calves) or cfu/g environmental material from three replicate plate counts are plotted.

(TIF)

S5 Fig. Weekly serum antibody responses to strains 9000, 9000R and 10671. Serum levels of

(A) H7-specific; (B) Tir-specific; (C) EspA-specific and (D) Intimin-specific serum antibody

levels in E. coli O157 challenged and unchallenged control calves. Levels of antigen-specific

IgA, IgG1 and IgG2 in weekly serum samples collected from calves orally challenged with ~109

CFU E. coli O157 strains 9000, 9000R or 10671, or from unchallenged control calves were

determined by indirect ELISA. Data represents the mean value ± SEM.

(PDF)
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S6 Fig. BRIG plot comparing E. coli O157 strains 9000 and 10671. The genome of PT32

strain 10671 (red) was compared against reference PT21/28 strain 9000 (blue) for gene pres-

ence/absence. Annotated prophage (grey) and their loci, including Stx2aF centred at 3,200

kbp, are shown for strain 9000.

(TIF)

S1 Table. List of genes unique to E. coli O157 strains 9000 and 10671.

(XLSX)

S2 Table. Details of PCR primers used in this study.

(DOCX)
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