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Highly structured homolog pairing reflects
functional organization of the Drosophila genome
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Trans-homolog interactions have been studied extensively in Drosophila, where homologs are
paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of
pairing and its functional impact have not been thoroughly investigated. Accordingly, we
generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C,
showing that homologs pair with varying precision genome-wide, in addition to establishing
trans-homolog domains and compartments. We also elucidate the structure of pairing with
unprecedented detail, observing significant variation across the genome and revealing at least
two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing,
consisting of single larger domains. Strikingly, active genomic regions (A-type compartments,
active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a
functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we
show that disruption of pairing-promoting factors results in global changes in pairing,
including the disruption of some interaction peaks.
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ajor hallmarks of chromatin organization include

chromosome territories!, compartments of active

(A-type) and inactive (B-type) chromatin as delineated
by the conformation capture technology of Hi-C, as well as
chromosomal domains variably known as contact domains or
topologically associating domains (TADs)2~7. These layers of
organization encompass countless cis and trans interactions that
determine the 3D organization of the genome. Among trans
interactions, an important class includes those occurring between
homologous (trans-homolog) as versus heterologous (trans-het-
erolog) chromosomes. Although long considered relevant only to
meiosis, trans-homolog interactions are now widely recognized
for their capacity to affect gene function in Drosophila, where
homologs are paired in somatic cells throughout nearly all of
development (reviewed by refs. 3-12). What remains unclear is the
global impact of such interactions and our ability to compre-
hensively understand the structure of paired chromosomes. To
tackle this issue, we examine genome-wide maps of trans-
homolog interactions in a newly established Drosophila hybrid
cell line (PnM, XY diploid). In particular, by taking advantage of
the parent-specific single nucleotide variants (SNVs) in this cell
line, we provide a global assessment of different properties of
homolog pairing, including how tightly apposed homologous
chromosomes are and whether pairing is uniform across the
genome. Furthermore, due to the sensitivity SNVs afforded our
study, we assess how homolog proximity correlates with precision
of alignment and with genome function.

Drosophila is the first organism in which trans-homolog
interactions were implicated in gene regulation, as it is here that
somatic pairing was discovered!?® and subsequently found to
impact intragenic complementation (ref. 4 and reviewed by
refs. 8-12). Somatic pairing has now been associated with
numerous biological phenomena across many species, including
mammals, where pairing has been implicated in DNA repair,
X-inactivation, imprinting, V(D)J recombination, and the estab-
lishment of cell fate (reviewed by refs. ®11). Pairing-dependent
gene regulation, a well-recognized form of transvection, is among
the best understood of biological phenomena associated with
pairing (reviewed by refs. 8-12). In Drosophila, transvection has
been observed at many loci, suggesting that pairing may even
function as a regulatory mechanism genome-wide!>~1°, Recently,
this view has been supported by computational simulations of
homolog pairing in Drosophila®0. Thus, the question as to whe-
ther pairing can serve as a global mechanism for regulating and
coordinating function, possibly facilitating transvection genome-
wide, is drawing increasing attention.

For many decades, foundational studies documenting the
impact of trans-homolog interactions on genome function have
relied heavily on genetic approaches to infer pairing (reviewed
by refs. 8-12). Recent studies have also used live imaging?! as well
as fluorescent in situ hybridization (FISH) achieving super-
resolution to visualize pairing of genomic regions as small as a
few kilobases to as large as megabases, wherein a single signal
in a nucleus was interpreted as the paired state and two as
the unpaired state??~2°>. Chromosome conformation capture
technologies, such as Hi-C, have also been implemented in
investigations of pairing in yeast?®. A recent study used read pairs
representing interactions between identical Hi-C restriction
fragments in a Drosophila cell line (Kc;4; cells, XXXX tetraploid)
to tease out allelic interactions, such as between two
homologs and between two sister chromatids?’. This study
reported an enhancement of allelic pairing in active
genomic regions as well as an involvement of architectural pro-
teins. In addition, consistent with the Cap-H2 component of
condensin II being an anti-pairing factor?® and Slmb being a
negative regulator of Cap-H228-30, this study reported increased

and decreased allelic interactions, respectively, in the absence of
these factors.

Here, we describe our work in examining the detailed archi-
tecture of pairing, using haplotype-resolved Hi-C to specifically
target the pairing that occurs between homologous chromosomes.
Haplotype-resolved Hi-C has been used to investigate cis inter-
actions within mammalian genomes3!-32 (see Erceg AlHaj Abed,
Goloborodko et al.33 for additional references), and diploid
homolog pairing in yeast?® and, in our companion paper (Erceg,
AlHaj Abed, Goloborodko et al3%), we developed a general
methodology, called Ohm (Oversight of homolog misassign-
ment), for applying this approach that ensures minimal mis-
assignment of reads and high stringency in the detection of
pairing. Applied to mammalian and Drosophila embryos, this
approach demonstrated pairing in the latter to be genome-wide
and also provided a framework in which to consider pairing in
terms of precision, proximity, and continuity. We further
revealed a potential connection between pairing and the
maternal-to-zygotic transition in early embryogenesis.

In the current study, we shift our focus to the fine structure of
somatically paired homologs and, to that end, take advantage of
the greater homogeneity and higher pairing levels of Drosophila
cell culture. In particular, we generate a diploid cell line from a
hybrid cross and then apply haplotype-resolved Hi-C, allowing us
to achieve a high-resolution map of homolog pairing. This
approach reveals frans-homolog domains, interaction peaks, and
compartments as well as variation in the structure and precision
of pairing, documenting an extensive interspersion of tightly
paired regions with loosely paired regions across the genome.
Excitingly, we also find a strong association between pairing and
active chromatin, compartments, and gene expression. Our
findings demonstrate a comprehensive and detailed view of the
structure of homolog pairing and resolve the long-standing
question of whether pairing can bear a genome-wide relationship
to gene expression.

Results

PnM cells are diploid and hybrid with high levels of pairing.
We began our study by crossing two strains of the Drosophila
Genetic Reference Panel lines (057 and 439) that differ by
~5 SNVs per kilobase (kb) (Supplementary Table 1, ref. 33) to
generate 2—-14 h old embryos that were homogenized to start a cell
culture, which spontaneously immortalized and then was serially
diluted to generate clonal cell lines (Fig. la; “Methods”). The
clonal line used in this study, Pat and Mat (PnM), homo-
geneously expresses myocyte enhancer factor 2, suggesting it to be
of mesodermal origin (Supplementary Fig. 1a, b). Karyotyping, in
combination with homolog-specific FISH proved PnM cells to be
male, diploid, and hybrid, with only chromosome 4 showing
irregularities (Fig. 1b, ¢; “Methods”). This was promising, given
that many cell lines are often aneuploid or polyploid. Finally,
FISH analyses targeting two heterochromatic and three euchro-
matic loci confirmed high levels of pairing (Fig. 1d).

Homolog pairing in PnM cells is highly structured. We next
performed haplotype-resolved Hi-C on PnM cells, an approach
which separates, in silico, the read pairs into five categories: cis-
maternal, cis-paternal, trans-homolog, trans-heterolog, and
unresolvable by haplotypes. In this form of Hi-C, each of the two
fragments of genomic DNA that are ligated together by virtue of
their proximity in situ are assigned a parental origin based on the
SNVs they carry, thus permitting researchers to distinguish Hi-C
read pairs that represent cis-maternal, cis-paternal, trans-homolog
(thom), and trans-heterolog (thet) interactions. By selecting only
those read pairs with at least one SNV per side, we obtained
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Fig. 1 PnM cell line characterization. a Generation of the cell line. b Karyotyping demonstrates PnM cells to be male and diploid (N =50). ¢ Homolog-
specific probes (HOPs) distinguishing 057-derived (magenta) from 439-drived (green) homologs for chromosomes (Chr) 2 and 3 on metaphase spreads
for PnM and control (non-hybrid) clone8 cells confirmed PnM to be hybrid. Scale bar =5 pm. d Left: Locations of heterochromatic (light blue) and
euchromatic (dark blue) chromosomal regions targeted by FISH. Oval, centromere. Right: Levels of pairing in PnM cells quantified as percent of nuclei in
which FISH signals, representing allelic regions, co-localized (center-to-center distance between signals < 0.8 um; error bars, s.d. for two biological
replicates; N >100 nuclei/replicate). Source data are provided as a Source Data file

75.4 million mappable read pairs, producing a 4kb resolution
haplotype-resolved map of the mappable portion of the genome
(e.g., excluding repetitive regions), wherein less than 0.4% of thom
read pairs are expected to have resulted from read misassignment
(“Methods”; Supplementary Fig. 2a, b Supplementary Table 2).
This gave us great confidence in our ability to select haplotype-
specific reads, and then map them to the hybrid PnM genome.
As shown in Fig. 2a, homologs are aligned genome-wide,
comparable to the global thom signature detected in early
Drosophila embryos®. In addition, trans-heterolog interactions
are detected globally and include sub-telomeric clustering (e.g., 2R
to 3R)34-36, Strikingly, however, thom read pairs were ~7.8 times
more abundant in PnM cells than in Drosophila embryos
(Supplementary Fig. 2b). In addition, when considering thom
contacts as a function of the separation of loci along the genome
(genomic separation), we found them to be more abundant at all
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genomic separations (Supplementary Fig. 2c, d). These observa-
tions are not surprising as they agree with the higher levels of
pairing observed by FISH in PnM cells (Fig. 1d) as compared to
developing embryos where pairing is just initiating3>37, possibly
due to a greater percentage of cells with paired homologs, an
increased fraction of the genome exhibiting pairing, and/or a
smaller proportion of dividing cells in the PnM cell line
(Supplementary Fig. 3). Importantly, the greater abundance of
thom contacts argued that an analysis of pairing in PnM cells
would yield new insights into the structure of paired homologs.

Homolog pairing can achieve high precision genome-wide. We
began by comparing the probability with which a locus will
interact with another locus in cis as versus in thom at varying
genomic separations (within a few kilobases and up to tens of
megabases). We reasoned that, if pairing were maximally precise,

3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12208-3

a b
I 0
_ 10 —
) e
Q| N
5 = 10 TN
= 9 ' \
3 > H
o 10 1
Qo |
5 .
151 3 || = cis
_ -g 10
S e} thom
107 ul
1.0
Pinom (8)
5 05 —
cis (S)
k]
= 1kb 10kb 100kb 1Mb 10 Mb
Genomic separation, s
i il
i2
- Pat
& sipr====""" " Mat
iy i
o PE—
= s<~100 kb s> ~100 kb
=== Pus (s=1i—j)) Pavom (8 = lir—=jy1)
Log,, contact frequency
c e f gt g
% 3 (2] e
= 3 ¥ | Pairin:
§ £ 15 9
B e e g 1.0
'3 K 5 05 L
3 ) sl
% | g S 0.0 = -
o hol =]
5 3 g
S € E Cis
8 = B 1.5
$ % £ 10
| v S b = J
£ g 5} E 05 w== < 4 kb from boundary |
_g f s - > 28 kb from boundary [ X
t 0.0 -
o -4.0 -3.0 2.0 -1.0 0.0 1.0
1 Score
w ° g
o ® £
g S = h Tightly paired regions  Loosely paired regions
£ S 10°
6.5 70 60 6.5 e i
= . i ;
2L, Mb g 107 ; \\ TN
g ! ! \
d = g : |
cis thom Qo ' '
=, : :
E 10 !
£ — cis — cis ;
114 61 8 == thom == thom |!
/ 3 . .
y 10 )
= Pon (5) —]
Py (s
e Log,, contact frequency eis (8) 83
-3.75 C— —1.75 e ' /
S 2 P S (% -1.0 ‘
00 [
thom 1 10 30 100 3001 10 30 100 300
Genomic separation, s (kb)
> b ) i b o I3 Mt
al
Pat Pat ’
cs S pat %}(}_M@t o
PS U . Yo-ad  Pat
-2 by s Ji h Ji
-4 s<~10-30 kb s =~30-300 kb s =~30-300 kb
15.0 16.0 17.0 16.0 19.0

2L, Mb

tight, and continuous (‘railroad track’), our use of SNVs would
reveal that any two loci would interact in thom nearly as often as
they interact in cis regardless of genomic separation. In contrast,
in the case of imprecise, loose, discontinuous pairing, the relative

frequencies of cis and thom contacts could differ quite sub-
stantially. Note that this railroad track pairing does not preclude
long-range thom interactions as paired chromosomes can fold
back onto themselves, behaving as a single fiber.
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Fig. 2 Homolog pairing is highly structured, encompassing tightly and loosely paired regions. a Contact map for the left (L) and right (R) arms of
chromosomes 2 and 3. b, i. Top, cis and thom contact frequencies, P(s), plotted against genomic separation, s, normalized to cis frequency at s =1kb.
Dotted line: thom contacts at s =1 were as frequent as cis at s = 8 kb. Bottom, Pipom(s)/P.is(s). Cis and thom contact frequencies differed noticeably at s <
homologs, compared to Ps(s) for loci iy and j; separated by s = |i-j;] on one homolog. Left, P(s) at s <~100 kb. Right, P(s) at s > ~100 kb, shaded. ¢ 1.5 Mb
region on 2 L: Cis contact maps were concordant with each other and with the thom contact map. Bottom, thom,/cis map showed concordance of thom with
cis maps, apart from a depletion of contacts in some domains (blue). d Overlap of domain boundaries as defined by cis and thom contacts. e 4 Mb region of
2 L: Top, thom domains, and insulating boundaries. Bottom, pairing score (PS, green) and cis score (CS, gray). f Examples of tight and loose pairing with
schematics of possible structures. g Distributions of PS and CS near (<4 kb, grey), or far from (>28 kb, orange) boundaries revealed higher pairing near
boundaries. h Top, cis and thom contact frequencies, P(s), plotted against genomic separation, s, within tightly and loosely paired regions (normalized as in
Fig. 2b). Middle, Pinom(s)/P.is(s); bottom, slopes. Tightly paired regions showed two modes of decay, shallow (dark blue box) and steep (light blue box),
while loosely paired regions showed one shallow mode (orange box). Dashed lines: thom contacts at s =1kb were as frequent as cis contacts at s =~5 kb
and ~30 kb in tightly and loosely paired region, respectively. Schematics illustrate differences in the organization of tightly and loosely paired regions

To explore this line of reasoning, we calculated the genome-
wide average contact frequencies for cis as well as thom contacts
between pairs of loci, i and j (with i and j being on different
homologs for thom) as a function of genomic separation (s = |i-j|)
measured in base pairs (Fig. 2bi top): Pgom(s) and P(s)
(“Methods™). In fact, when the Py, (s), is plotted as a function of
genomic separation, it is clear that thom contacts can occur at all
genomic separations. Remarkably, Py,om(s) peaks at the smallest
genomic separation (s=1kb) in near perfect registration, with
thom contacts being as frequent as contacts in cis at s =8kb.
Moreover, the ratio Pyom(s)/Peis(s) is as high as 0.5-0.7 for
genomic separations of 1-10 kb and only gets higher, approach-
ing 1.0, with increasing genomic separation (Fig. 2bi, bottom).
This high ratio indicates that a locus on one chromosome
interacts with another locus nearly as often in thom as it does in
cis, especially for s >~100kb (Fig. 2bi, iii, shaded). The simplest
interpretation of this observation is that, overall, homologs are
aligned in good register genome-wide, almost as a railroad track.
We note, however, three caveats. First, our analysis only captured
thom interactions that were accessible by Hi-C technology; for
example, the repetitive regions of the genome were not mapped
by Hi-C in either thom or cis. Second, our studies assume that cis
and thom interactions are equally tractable. Third, as our Hi-C
studies are a population assay, we cannot rule out cellular
heterogeneity in the degree of pairing.

Paired homologs form thom domains and compartments.
Besides the general distance-dependent decay of cis and thom
contact frequency, our Hi-C maps also revealed a rich structure of
thom interactions, including well-defined thom domains, at
genomic separations as small as tens of kilobases, loops or
interaction peaks, as well as plaid patterns of contacts far off the
diagonal, at genomic separations as large as tens of megabases
and corresponding to compartments (Supplementary Fig. 4a,
Supplementary Fig. 5a). Consistent with railroad track pairing, we
found strong concordance between the thom, cis-maternal, and
cis-paternal Hi-C maps in terms of the positions and sizes of
domains and loops (Fig. 2¢, with Hi-C diagonal positioned hor-
izontally; Supplementary Fig. 4b, d, Supplementary Fig. 5a),
although with some exceptions (Supplementary Fig. 5b). In
addition, 81.5% and 89.1% of the domain boundaries in the cis
and thom maps appeared in the thom and cis maps, respectively
(Fig. 2d). Overall, the strong concordance between thom, cis-
maternal, and cis-paternal Hi-C maps indicated a high level of
registration between paired homologs.

Homolog pairing includes tightly and loosely paired regions.
Looking more closely at our thom, cis-maternal, and cis-paternal
Hi-C maps, we discovered that some thom domains lacked a

prominent signal along the diagonal (Fig. 2c, bottom panel
showing subtraction Hi-C map; Supplementary Fig. 4d), sug-
gesting an overall looser pairing. This absence of the diagonal
contributed to the lower values of Pyom(s)/Peis(s) at genomic
separations of s<~100kb (Fig. 2bi, ii unshaded) and clearly
demonstrated that pairing was not uniform across the genome.
We quantified this variation of pairing via a pairing score (PS),
defined as the log, average thom contact frequency near the
diagonal, where both reads of a read pair lie within a £12kb
window around a given 4 kb bin, and compared that score to an
analogous score for cis contacts (CS) (Fig. 2e; “Methods”). Thus,
as Hi-C data reflect the frequency with which interacting genomic
regions colocalize, the PS served as a proxy in our analyses for the
relative tightness or looseness of pairing across a chromosomal
region. Figure 2e illustrates how dramatically the PS can vary
along the chromosome, dipping most noticeably when the thom
diagonal is lacking from the central region of a domain. In line
with this and compared to scores for cis contacts, PS values for
loci within 4 kb (one bin) of domain boundaries are overall much
higher than those for loci greater than 28 kb from the nearest
boundary, consistent with the lack of diagonals coinciding with
the central regions of domains (Fig. 2g) and pointing to tighter
pairing at domain boundaries. Lack of a diagonal may reflect
any number of structures, including imprecise and/or loose
pairing or even the side-by-side alignment of homologous, yet
distinguishable, domains. In contrast, domains retaining the
structure and diagonal observed in corresponding cis domains
may represent railroad pairing throughout the domains (Fig. 2f,
schematics below).

To better understand genome-wide variation in pairing, we
examined the PS distribution (Supplementary Fig. 6a) and noted
that it could be approximated by two normal distributions that
were reproducible for each replicate (Supplementary Fig. 6b, d).
These distributions suggested two classes of loci, one consisting of
more tightly paired (higher PS) loci and the other consisting of
more loosely paired (lower PS) loci, defined using only a single
cut-off (PS=—0.71) (Supplementary Fig. 6b). While such a
deconvolution likely oversimplifies the reality of pairing we
nevertheless used it to bootstrap our investigation forward.
Specifically, we divided the Hi-C amenable portion of the whole
genome into regions of tight and loose pairing by first classifying
each domain as either tightly or loosely paired based on its PS,
and then merging consecutive domains of the same pairing type
into one region (see “Methods”). According to this classification
procedure, ~34% of the genome is loosely paired, and ~66% is
tightly paired (Supplementary Fig. 6¢, d).

Tightly and loosely paired regions vary in organization. To
better understand chromosome organization within tightly and
loosely paired regions, we selected those spanning distances large
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enough for us to conduct our studies (200-400 kb or 100-200 kb;
“Methods”, Supplementary Fig. 7) and calculated Py,om(s) and
Ps(s). Tightly and loosely paired regions differed in the decay of
cis and thom contact frequencies. Within the 200-400 kb tightly
paired regions (Fig. 2h), thom contacts at the highest registration
(smallest genomic separation, s =1kb) appeared as frequent as
cis contacts at s = ~5kb. In loose regions, the frequency of such
thom contacts matched that of cis contacts at s = ~30 kb (Fig. 2h,
marked on graph). This indicated that, in loose regions, homologs
were aligned less precisely. Interestingly, we found that regions of
tight and loose pairing also differed in their internal organization.
This was evident from the different shapes of their P (s) curves
—in tight regions, the P (s) curve had two modes (Fig. 2h, left),
a shallow mode at s<~30kb and a steep mode at s>~30kb,
while in loosely paired regions, we observed only a shallow
mode (Fig. 2h, right). Drawing from other Hi-C studies, where
the presence of a shallow mode followed by steep mode is a
signature of domains3®3°, we then further interpreted our cis
data. In particular, the transition of P(s) at ~10-30 kb within
200-400 kb tightly paired regions, suggested that they consisted
of a series of relatively small domains, within which pairing may
reflect primarily the constraints imposed by tight pairing at the
boundaries. In contrast, we did not see a similar transition of
P;s(s) within these 200-400 kb loosely paired regions, suggesting
that each of these regions constituted a single domain. This dis-
tinction between tight and loose regions is also evident from
visual inspection of the data (Fig. 2f).

The association of higher pairing scores with domain
boundaries (Fig. 2g) was particularly intriguing, given that
domain boundaries are enriched in insulator and architectural
proteins (refs. >40 and reviewed by ref. 41), the observation that
some insulator proteins and insulator elements promote
transvection (refs. 10194243 and reviewed by ref. 44), and the
enrichment of architectural proteins at genomic sites involved in
allelic interactions?’. Indeed, despite a few discrepancies among
different published ChIP-seq datasets, many insulator proteins
were enriched at PnM boundaries, with strong correlations
between the ChIP-seq peaks and PS for some (e.g., Nup98, with
the highest correlation coefficient) and a weak anti-correlation for
others (e.g., Su(Hw), with the weakest correlation coefficient)
(Supplementary Table 3). This analysis indicates a potential
structural and functional regulatory role for some of these
proteins on a genome-wide scale, such that, they would form
insulated thom and cis domains and contribute to pairing.

Pairing types associate differentially with gene expression.
Having elucidated the structure of paired homologs and its var-
iation, we next addressed the question of whether homolog
pairing may bear a genome-wide relationship to genome func-
tion. In particular, we conducted three genome-wide analyses,
assessing whether pairing correlates with specific epigenetically
defined types of chromatin, A- or B-type compartments, and/or
gene expression. With respect to chromatin types, we turned to
the five defined by Filion et al.>, in Drosophila, wherein Poly-
comb group (PcG) repressed chromatin (H3K27me3 enriched) is
dubbed blue, inactive chromatin (lacking epigenetic marks) is
dubbed black, heterochromatin (HP1 associated and H3K9me3
enriched) is dubbed green, and active chromatin within
enhancers/promoters (H3K36me3 depleted) and gene bodies
(H3K36me3 enriched) are dubbed red and yellow, respectively.
By comparing the coordinates for chromatin types identified in
Kcyg7 cells to the PS track, we found that even a localized survey
of 1.5 megabase (Mb) of the genome revealed that low PS regions
coincide with inactive (black) and repressed (blue) chromatin
types, while active chromatin (yellow and red) is present in

regions of high PS (Fig. 3a). Excitingly, some of these trends were
confirmed globally, with active regions enriched for high PS,
heterochromatin (green) showing a bimodal distribution, and
repressed (blue) and inactive (black) chromatin containing
regions of both high and low PS (Fig. 3b).

Next, we examined the relationship between pairing and the
3D spatial compartmentalization of active and inactive chroma-
tin2. Here, we observed a strong correlation between high PS
values and the cis eigenvector track (a measure of compartments
as determined from Hi-C maps) in individual genomic regions
(Supplementary Fig. 8) as well as genome-wide (Spearman’s
correlation coefficient (r,) =0.71, p<10~1% Fig. 3c). Regions
with high PS values and thus likely to be tightly paired were in
predominantly active A-type compartments (54.4% of mappable
genome) as versus inactive B-type compartments (12.6%).
Conversely, regions with lower PS values and thus likely to be
loosely paired were more often in B-type (25.2%) as versus A-type
(7.9%) compartments (Fig. 3c). In short, homolog pairing was
correlated with compartmentalization of the genome, and active
A-type compartments were more likely to be tightly paired. As
compartmentalization of the genome into active and inactive
compartments may be independent of TAD formation in
mammals38, our observations may suggest that, pairing may be
more related to compartments, gene expression, and the
epigenetic states governing them. Taken together with the recent
report on the major role of compartmentalization in Drosophila
cis genome architecture®9, these observations put compartmenta-
lization as the main force behind formation of both cis and thom
genome architecture.

Finally, we performed RNA-seq to assess gene expression in
PnM cells and found that pairing correlates with gene expression
in individual genomic regions (Supplementary Fig. 8) as well as
genome-wide (r,=0.40, p<10710; Fig. 3d); regions that are
expressed are predominantly tightly paired and have high values
of PS (31.9% mappable genome), with only a small percentage
(4.8%) of expressed loci being loosely paired (Fig. 3d). On the
other hand, lack of expression is not predictive of the degree of
pairing; lowly-expressed regions can be associated with either
high or low PS values (36.1% and 27.3%, respectively). These
analyses indicated that most active regions (A compartments or
regions of high expression) are tightly paired, while repressed and
inactive regions demonstrated a variable degree of pairing. In
brief, all three approaches argue strongly that pairing bears a
genome-wide relationship to genome function.

As many loci in Drosophila have been documented to support
transvection, we categorized the commonly recognized autosomal
loci with respect to whether they resided in tightly or loosely
paired regions in the PnM genome. Fifteen of the seventeen loci
for which transvection or related pairing-related phenomena have
been reported are associated with tight pairing (with two also
associated with loose pairing) and, thus, fall in the upper
quadrants of Fig. 3d (Supplementary Table 4). Excitingly, this list
includes the Antennapedia and Bithorax complexes (ANT-C and
BX-C), which include HOX genes critical for body segmentation
in Drosophila*’. While these loci are known to interact’*8, our
data explicitly reveal their interaction in thom (Supplementary
Fig. 9) and show their co-localization within the same
compartment.

Knock-down of pairing factors disrupts pairing globally. Our
final goal was to determine the potential of PnM cells to develop
into a robust system for interrogating the mechanism of pairing.
We aimed to determine, first, whether PnM cells are responsive
to dsRNA, second, whether knockdown of genes involved in
pairing! 1,28-30:49-51 yould affect pairing and, third, whether
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Fig. 3 Pairing in PnM cells is correlated with active genomic regions and can be disrupted by RNAi. a 1.5 Mb region of 2 L: Pairing scores (PS) and cis scores
(CS) shown in a genome browser as compared to chromatin types identified in Kc;q5 cells#> and with SNVs in PnM cells. b Normalized distributions of PS
within regions of different chromatin types. Dashed line shows the threshold between tight and loose pairing. *p <1719, Mood's test against yellow
chromatin. ¢ Distribution of PS values relative to the eigenvector shows that pairing is correlated with compartmentalization, A-type compartments being
almost exclusively tightly paired, Spearman'’s correlation coefficient (r) = 0.706, p <10~10. d Distribution of PS values relative to gene expression in PnM
cells shows that expressed genes are almost exclusively tightly paired, Spearman’s correlation coefficient (r;) = 0.397, p<10-10. e Levels of pairing
(quantified and displayed as in Fig. 1d, in PnM cells after SImb and Topll knockdown showed a reduction as compared to the control (mock) at all loci
(*P<=0.05, unpaired t-test) except for the AACAC satellite repeat and, in the case of Topll knockdown, at BX-C (ns, non-significant; error bars, s.d for
three biological replicates; for N >100 nuclei/replicate). Source data are provided as a Source Data file. f After SImb and Topll knockdown, the aggregated
pairing score (APS) values were reduced by 0.203% and 0.201%, respectively, as compared to untreated sample (p <0.001) and 0.141% and 0.139%,
respectively, as compared to mock (p <0.001). The 0.062% reduction in mock as compared to untreated samples was also significant (p <0.001).
p-values determined using bootstrapping (Methods)

disruptions of pairing as detected by FISH would be detectable via ~ studies often consider two loci to be paired when the center to

Hi-C. These issues were key. While previous studies had suc-
cessfully disrupted pairing in Drosophila cell lines, under no
circumstance had the pairing in diploid cells been disrupted
beyond ~50%2%°0 due probably at least to the incomplete nature
of RNAi-directed knockdown and perdurance of gene products. It
is also possible that pairing, once established, is not easily dis-
rupted3”-°0. Finally, disruptions of pairing might affect primarily
those forms that are not amenable to detection by Hi-C; as FISH

center distances of the corresponding FISH signals are as far apart
0.5 to 1.0 pm, it is possible that some changes in pairing cannot be
captured by Hi-C.

Excitingly, using RNAI to target two ?enes known to promote
pairing, SImb (component of SCFSImb  complex28-30) and
Topoisomerase I ((TopII*Y), we reduced the corresponding
mRNA levels in PnM cells by 75.2+2.8% and 82.5+5.0%,
respectively (Supplementary Fig. 10a). Importantly, we observed a
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concomitant 14.1-18.5% reduction of pairing as assayed by FISH
(Fig. 3e; Supplementary Table 5). While this reduction was less
than previously reported?®0, it was significant as compared to
mock RNAI trials (p <0.05, unpaired t-test) (Fig. 3e). We also
attempted a stronger disruption of pairing by overexpressing
Cap-H228°2, but found that levels of pairing were not affected
significantly at those loci (Supplementary Fig. 11). Since knock-
down experiments were more disruptive of pairing, we generated
Hi-C maps for the knockdown and mock experiments, each with
about 20 million haplotyped mappable reads (Supplementary
Table 2) and found a reduction in Py,om(s)/Pgs(s) for both SImb
and TopII RNAi samples at all separations as compared to mock
and untreated sample (Supplementary Fig. 10b; error bars for
each sample fall within lines). Note that, the values of Py,om(s)/
P.s(s) for the mock samples veer below those for untreated
controls at genomic separations greater than 100 kb. While this
reduction suggests that the knockdown treatment may perturb
thom and/or cis interactions and thus may be interesting in and of
itself, our focus has been on the even greater reduction in
Pihom(s)/Pgs(s) for both RNAi-treated samples (Supplementary
Fig. 10b). SImb and ToplI knockdowns also produced a change in
PS. To quantify this change, we computed the aggregated pairing
score (APS) as the mode of (PS-CS) distribution, which
summarizes the degree of pairing with a single value (“Methods”).
As shown in Fig. 3f, APS dropped after knockdown of Slmb or
Topll, as compared to mock, and the untreated sample. These
observations were consistent across replicates (Supplementary
Fig. 10c) and across tight and loose regions (Supplementary
Fig. 12; “Methods”). In addition, some thom interaction peaks in
Slmb and TopIl RNAi samples were depleted as compared to
Mock sample (Supplementary Fig. 13). In summary, not only
were PnM cells amenable to RNAI, but Hi-C could detect global
changes in pairing as a result of the knockdown of pairing factors.

Discussion

In conclusion, we established a hybrid, fully phased PnM cell line,
which allowed us to use haplotype-resolved Hi-C to distinguish
cis and thom interactions, revealing great detail in the structure of
homolog pairing (Fig. 4a, b), in addition to uncovering a genome-
wide correlation between pairing and gene expression. Using
SNVs and our haplotype-resolved approach, we find that pairing
is extensive, spanning a wide range of genomic distances, from as
small as few kilobases to as large as tens of megabases, and
includes thom domains, loops, and compartments. Furthermore,
we observed two forms of pairing (Fig. 4b): a tighter, more precise
form that can encompass many contiguous small domains paired
at their boundaries and a looser, less precise form often corre-
sponding to single domains flanked by tight pairing at the
boundaries. The relationship between loose pairing and domains
is consistent with both a transgene-based study?> as well as super-
resolution images of juxtaposed domains?3.

We also examined the relationship between pairing and gen-
ome function, discovering that tight pairing can be correlated
with either expressed or repressed regions, while loose pairing is
correlated primarily with repression or inactive chromatin. While
this finding may suggest that gene activity can, but does not
always, promote tight pairing, it is also possible that tight pairing
facilitates the formation of microenvironments that can, but do
not always, favor transcription. Such microenvironments may
promote the entangling of R-loops (Fig. 4bi) or enrichment of
RNA polymerase, transcription factors?!>4%>, and/or insulator
elements and associated proteins at domain bound-
aries®>21,27:56,57 In brief, a pairing-mediated microenvironment
may result in a more robust level of either expression or
repression (Fig. 4bi, ii) (Supplementary Table 4), consistent with

the association of transvection with both gene activation and gene
repression (reviewed by refs. 8-12). Tt is also possible that the
different types of pairing promote or antagonize allele-specific
expression; further investigation of these scenarios will require
single-cell analyses. Note that our findings differ from predictions
of a study?0 that, in the absence of haplotype-resolved data, was
nevertheless able to simulate pairing via the computational inte-
gration of Hi-C and lamina-DamID data representing embryos’
and Kcjg; cells®®, respectively. Contrary to our findings, the
simulations predicted correlations between active regions and
loose or tight pairing, and between inactive regions and tight
pairing. One possible explanation is that these two studies suggest
an as yet unexplored mechanism of pairing.

Loosely paired regions are equally interesting. First, unlike
tightly paired domains, which are associated with both active as
well as repressed regions, loosely paired domains show a pre-
ference for repressed genomic regions, with just a small percen-
tage of the genome being both loosely paired and expressed
(Fig. 3c). While these observations may suggest that inactive
genomic regions lead to loose pairing, it is also possible that loose
pairing is inherently not permissive of transcription. If the latter
were true, and speculating broadly, then it may be that achieving
tight pairing could be a first step in becoming susceptible to
regulation at some loci.

Loosely paired regions are also interesting because they lack a
thom diagonal, indicating lack of railroad track pairing within
some thom domains (Fig. 2f, schematics below). Importantly, the
boundaries of these loosely paired regions are tightly paired,
supporting a model that integrates pairing, loop formation, and
chromosome compaction via a mechanism wherein chromo-
somes are looped (buckled out) by anti-pairing between regions
of pairing?®. In these loosely paired regions, homologs (and,
perhaps, sister chromatids) could be extruded or formed via some
other mechanism® and/or anti-paired between tightly paired
regions but still interact by virtue of remaining tightly paired at
their loop bases. In this scenario, tightly paired regions could
behave as extrusion barriers and become boundaries (Fig. 4c).
Interestingly, RNA polymerase and insulator proteins have been
proposed to behave as barriers to extrusion and thus may be in
play in this scenario (ref. °%; Supplementary Table 3). Lack of a
diagonal has also been observed for polytenized chromo-
somes®%61, where it may reflect an outnumbering of cis contacts
by an abundance of trans contacts. These observations raise the
possibility that, under some circumstances, there may be com-
petitive relationships between short-range cis and thom con-
tacts!:02 and/or between short-range and long-range thom
contacts.

Finally, we turn to our observation that loci interacted with a
second locus in thom nearly as often as they did in cis.
Researchers have long speculated about the consequences of
providing regulatory regions with a cis-trans choice (reviewed by
refs. ®11), wherein pairing could enhance the co-regulation of
allelic regions or enable transcriptional states to be transferred
from one chromosome to another!463:64 Indeed, as interactions
in cis may preclude interactions in tramns, the cis-trans choice
recalls a hypothesis wherein regulation of a genomic region may
require a balance, perhaps even a dynamic interplay, between
pairing and unpairing, such as in a model counterbalancing
pairing (linear locking)®? with unpairing (looping or buckling
out) (Fig. 4c). In other words, finely regulated genomic regions
may need to be poised to pair or unpair on a moment’s notice. A
capacity to transition easily between different states of pairing and
unpairing may even promote or antagonize allele-specific
expression, where the unpaired state may facilitate allele-specific
expression, especially in mammals (reviewed by refs. %11).
Homolog pairing may even accomplish what compartments do in
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facilitate a variety of transcriptional states, including i. active or ii. repressive environments. ¢ Left: Homologous loops between tightly paired regions may
form by extrusion (black arrows), anti-pairing (blue arrows), or a combination of both. Right: Here, loops could result in thom domains that are either
loosely paired (top), or railroad-track paired throughout if they fold back on each other, (bottom), with cis-maternal and cis-paternal domain boundaries
concordant in both scenarios. Note, loop extrusion in mammalian systems is proposed to involve a cohesin ring”%80 (green oval) through which a single
chromosome passes, suggesting that extrusion in the context of pairing may involve the passage of each homolog separately (shown) or two homologs
simultaneously (not shown), the outcome of which could be either loosely or tightly paired domains. In a nonexclusive alternative, loops are formed by anti-
pairing29, where pairing might be counterbalanced with unpairing via anti-pairing factors such as Cap-H2. Interestingly, extrusion and/or anti-pairing could
bring enhancers and promoters together at the base of the loops (indicated by *), activating transcription, such as might happen in tightly paired regions. In
the context of anti-pairing, this could explain the curious co-localization of Cap-H2 with regions of tight pairing (Supplementary Table 3; also ref. 27)

both cis and trans, and what domains do in cis, co-localizing
genomic regions to achieve an “economy of control®*”. How
structurally and functionally independent these processes are,
remains to be explored.

Methods

Fly stocks and crosses. Highly divergent parental fly lines from the Drosophila

Genetic Reference Panel were selected®, and a cross was set up between DGRP-057
virgin females and DGRP-439 males3. Primary cultures were established from an
overnight embryo collection aged for 2h (2-14 h AEL).

Establishing primary culture PnM and clonal cell line. Primary cell line was
generated as described previously®®. Embryos produced from a cross between
divergent parents, about 2-14 h after egg lay, were collected overnight at 25 °C on
agar juice plates covered with killed yeast paste. After the embryos were rinsed
from the plates and collected in a 50 ml sieve basket they were washed using TXN
wash buffer (0.7% NaCl, 0.02% Triton X-100). The TXN was replaced with 50%
bleach in water for 5 min to dechorionate and surface sterilize the embryos. The
embryos were washed extensively with TXN, sprayed with 70% ethanol, and
transferred to a sterile tissue culture hood, where they were rinsed once in water
and placed in 3 ml medium for 5 min (unsupplemented M3 Insect Media (Sigma)).
Around 100 pl embryos or more were transferred to a homogenizer (Wheaton 5
ml) and homogenized in 5 ml M3 Insect medium with a loose pestle 3/4 of the way
until embryos were homogenized, then 5x with a loose pestle all the way, followed
by 5x with a tight pestle. The homogenate was transferred to a 15 ml conical tube,

and cell debris was pelleted at 500 rpm. The supernatant was transferred to a new
tube and cells were pelleted by centrifugation at 1200 rpm, resuspended in fresh
media and counted. About 8 million cells were plated in 25 cm? T-flasks and grown
at 22 °C with 5 ml of supplemented M3 media (M3 Insect Media, 10% Fetal Bovine
Serum (JRH), 2.5% Fly Extract (DGRC), 0.5 mgml~! Insulin (Sigma), 1:100
Pen-Strep (Gibco)). After a couple of weeks, the media was replaced with condi-
tioned supplemented M3 media (0.2 um filter-sterilized used media) and was then
changed every couple of weeks for a few months. With continued passaging the
cells became stable and immortalized spontaneously. Then, as they divided more
regularly, they were trypsinized with TrypLE 1 x (ThermoSci) and split at 1:5 into
supplemented M3 media every 2-3 days. Establishing a clonal cell line was done
using a serial dilution single cell cloning protocol http://www.level.com.tw/html/
ezcatfiles/vipweb20/img/img/34963/3-2Single_cell_cloning protocol.pdf. One of
the clonal lines isolated, Pat and Mat line #A1 (PnMAL1), is used in this study and is
referred to as PnM.

Cell culture. Kc,¢; (stock #1), and clone8 (cl.8+) (stock #151) cells were
obtained from the Drosophila Genome Resource Center and cultured according to
standard protocols at 22 °C (see www.flyrnai.org for more details). Hybrid PnM
cells were cultured as cl.8+ cells with supplemented M3 media (supplemented M3
media (M3 Insect Media, 10% Fetal Bovine Serum (JRH), 2.5% Fly Extract
(DGRC), 0.5 mg ml~! Insulin (Sigma), 1:100 Pen-Strep (Gibco)), according to
standard protocols at 25 °C in small culture dishes (100 x 20 mm), with the fol-
lowing modifications: the cells were trypsinized and split at 1:5, or 1:10 every other
day, and the media was replaced every day after they are washed with 1x PBS. To
ensure the cells were in log phase for any experiment, they were split 12-18 h
earlier.
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Genomic DNA extraction and PnM genome sequencing. One to two million
PnM cells were used to isolate Genomic DNA using Qiagen DNeasy Blood &
Tissue Kit, and ~0.5 pg genomic DNA was used for the generation of an Illumina
TruSeq Nano DNA Library. The library was 150 base pair paired-end sequenced
using Illumina HiSeq2500 at TUCF Genomics core.

FACS. Cells were split a day prior and then 1-3 million cells were harvested and
fixed with 95% ethanol, washed with 1x PBS and stained using FxCycle PI/RNase
staining solution (Life Technologies) for 30 min at room temperature. Cell popu-
lations were assayed based on DNA content to determine their cell cycle profile
using an LSR II Analyzer at the HMS Immunology flow cytometry core.

Preparing metaphase spreads and karyotyping. Metaphase cells were prepared
using protocols adapted from published methods®’. Hundred and fifty micro-
litersof colchicine was added to 5ml cells in culture at a concentration of 30 pM
for 45 min prior to fixation and spread preparation. Cells were spun down at
1200 rpm, washed with 1x PBS and resuspended in 10 ml 1% sodium citrate slowly,
while vortexing regularly. The cells were incubated at room temperature for

30 min. Then 1 ml of cold fixative was added (3:1 methanol: glacial acetic acid
solution) while vortexing gently, cells were spun down, and washed three more
times in 10 ml of the same fixative. Finally, cells were resuspended in 1 ml of the
fixative and dropped at a height of 5 inches or more onto a glass slide under
humidified conditions. The slide was allowed to dry in a humidified chamber and
then washed in 70, 90, and 100% ethanol successively. For long-term used they
were stored at 4 °C, in 1x PBS. In order to examine the karyotype, slides were
mounted with Slowfade Gold Antifade with DAPI (Invitrogen). The spreads were
then examined with a Nikon Eclipse Ti at 60x. The karyotype was examined for
PnM cells for N =50 from two different metaphase spread preparations, and
showed the cell line to be male and diploid, apart from chromosome four. The
fourth chromosome was 7% diploid, since it was either monosomic (~71%) or
trisomic (~22%). Given its ploidy, and that it is largely heterochromatic, with an
average 1 SNV per kb (compared 5 SNVs per kb for the second or third, Sup-
plementary Table 1), it was not included in the haplotype-resolved Hi-C mapping
and analysis. Karyotyping, in combination with homolog-specific FISH proved
PnM cells to be male, diploid, and hybrid.

FISH probes. Heterochromatic repeat regions were assayed using previously
described FISH probe sequences, and used to assay FISH loci localization as shown
previously??>0, The probes used were synthesized by Integrated DNA Technologies
(IDT) as follows: Alexa647-359-X: /5Alex647N/-GGGATCGTTAGCACTGGTAA
TTAGCTGC, Atto565-AACAC-II: /5Atto565N/ AACACAACACAACACAACA
CAACACAACACAACAGC, and Alexa488-dodeca-III: /5Alex488N/-ACGGGACC
AGTACGG. The euchromatic Oligopaints FISH probes used in this study, 16E,
69C and 28B as well as HOPs probes were described previously>%-08:69 and were
generated using the T7 method”?. The Oligopaint libraries used as template DNA
are described in Supplementary Table 6 and are amplified using the primers shown
in Supplementary Table 7. Secondary probe binding sites were added to Oigo-
paints’ mainstreets, and T7 sequences to backstreets by touch-up PCR. For
detecting the euchromatic Oligopaints, a secondary fluor-tagged probe sequence
complementary to the mainstreet, was co-hybridized with the primary probe.
Homolog-specific Oligopaints (HOPs) probes include at least one SNV location per
Oligopaint and are used to distinguish either 2L or 3L homologs in the hybrid line
by targetting a 2 Mb sub-telomeric region on either chromosome 2, and chro-
mosome 3. The secondary, dual labeled probes used for detection of euchromatic
targets are ordered from IDT and are as follows: Secondaryl: /5Alex488N/CACA
CGCTCTTCCGTTCTATGCGACGTCGGTGagatgttt/3AlexF488N/, secondarys:
/5Att0565N/ACACCCTTGCACGTCGTGGACCTCCTGCGCTA/3Atto565N/,
and secondary6: /5Alex647N/TGATCGACCACGGCCAAGACGGAGAGCGT
GTGagatgttt/3AlexF647N/.

Metaphase FISH. Metaphase FISH was done as described previously®”. Slides from
the metaphase spread preparation were rehydrated in 1x PBS for 5 min and
denatured in 67% formamide/2x SSCT at 80 °C for 90 s, followed by washes in ice-
cold 70, 90 and 100% ethanol. 20 pmol of HOPs were co-hybridized with 40 pmol
of secondaries without any additional denaturation at 42 °C overnight. The
remainder of the protocol is the same as the interphase FISH protocol.

Interphase FISH. Fluorescence in situ hybridization was done as in described
previously”?. A cell suspension of 0.5-1 million cells per ml was allowed to settle on
poly-l-lysine coated slides for a few hours, washed with 1x PBS, then fixed in 4%
paraforlamdehyde and washed in 1x PBS again. The slides were either used for
FISH immediately or stored in 1x PBS at 4 °C. Just before FISH, the cells were
permeabilized by incubating in 0.5% PBST for 15 min, and 10 min in 0.1 M HCL
The slides are then washed in 2x SSCT for 5 min (0.3 M sodium chloride, 0.03 M
sodium citrate, 0.1% Tween-20), and (50% formamide, 2x SSCT). FISH slides were
incubated in (50% formamide, 2x SSCT) 60 °C for 20 min. FISH probes were added
in a hybridization solution of (10% dextran sulfate, 2x SSCT, 50% formamide) and
100 pmol of heterochromatic, or 50 pmol euchromatic probes, 16E, 28B, 69C and
BX-C per hybridization. The slides were then denatured by placing them on a heat

block at 80 °C for 3 min and allowed to co-hybridize overnight at 42 °C with

40 pmol of secondary probe. Following hybridization, slides were washed in 2x
SSCT at 60 °C for 20 min, 2x SSCT at room temperature for 5 min, and 0.2x SSC at
room temperature for 10 min before being mounted using Slowfade Gold Antifade
with DAPI (Invitrogen) and imaged. To quantify level of pairing for the second and
third chromosomes at the same time, probes were co-hybridized for 28B-II, 69C-III
FISH probes or AACAC-II, and dodeca-III. Since the cell line is male, to score cells
that are non-replicating, we used probes targeting the X chromosomes in our co-
hybridization reactions, using either euchromatic target 16E or heterochromatic
target, 359, and consider the pairing only in cells with one X-specific FISH signal
per nuclei.

Image acquisition and analysis. All images were obtained using Nikon Eclipse Ti
microscope with a 60X oil objective and Nikon ND acquisition software. The raw
TIFF files obtained were analyzed using custom-written MATLAB scripts®® and
later adapted®” for measuring different properties such as the number of FISH dots
per nucleus. All uniquely identifiable foci of fluorescent signal (above background)
were counted as FISH signals. The number of FISH foci were also counted
manually to confirm consistency and determine the degree of localization of FISH
foci in 3D. Homologous loci were considered paired if FISH signals targeting the
loci co-localized (i.e., gave a single signal) or exhibited a center-to-center distance
of <0.8 pm.

Immunostaining to determine cell type and mitotic index. PnM cells were fixed
with 4% formaldehyde for 20 min, following previously published protocols®’. In
order to determine the mitotic index for the PnM hybrid clone, a primary antibody
against phosphohistone H3 (P-H3; rabbit used at 1:100; Epitomics) was used for
immunofluorescence in a 1x PBS buffer. A Cy3-conjugated anti-rabbit secondary
antibody (Jackson ImmunoResearch Laboratories) was used at 1:100. Mitotic index
for PnM cells was determined to be 2.48% + 0.78, N = 1300.

In order to determine cell type as described previously’!, PnM were
immunostained using rabbit anti-dMef2 antibody, which was a gift from Bruce
Paterson’2. The antibody was used at 1:1000, with a Cy3-conjugated anti-rabbit
secondary antibody at 1:100 (Jackson immunoresearch). The cells expressed dMef2
exclusively, and are most likely of mesodermal origin, as they tested negative for
other cell type markers including an epithelial cell marker; D-E-Cadherin, ((Rat)-
anti E-Cadherin 1:5 (Hybridoma Bank, Iowa), a fat cell marker; Nile red solution,
(Sigma; 1% stock in DMSO diluted to 1:5000), and a nerve cell marker; horse
Radish peroxidase (HRP) (Jackson immunoresearch (Rhodamine conjugated)
1:200).

dsRNA synthesis and RNAi treatment. Synthesis of dsRNA was carried out
according to standard protocols (see www.flyrnai.org for more details). Control
cells were treated with blank dionized water. Primers used for dsRNA synthesis are
listed in Supplementary Table 8. The dsRNA was administered to the cells using a
calcium phosphate transfection kit (Invitrogen) in 60-mm well plates. Kcq; cells
were seeded at 2 million cells per ml and treated with 15 ug dsRNA and harvested
after 3 days. PnM cells were seeded at 1 million cells per ml and treated with 30 ug
dsRNA on the first and third day, and then harvested on the fourth. Cells from the
knockdowns were counted and an aliquot was taken for RNA isolation, and once
knockdown of mRNA was confirmed cells were split to be fixed for Hi-C, and for
FISH. Two biological replicates were processed for each treatment. Knockdowns in
Kc7 cells were used as a control for the quantification of knocking down mRNA
but were not processed for Hi-C experiments.

Cap-H2 overexpression. Wild-type Cap-H2 was gateway cloned into Actin-dri-
ven, venus-tagged vector (Avw-Cap-H2). Cells were transiently transfected using a
calcium phosphate transfection kit (Invitrogen) in 60-mm well (at 1 million cells
per ml), according to manufacturing recommendations, apart from adding a
booster transfection at day 4 and harvesting cells at day 6. Cells were fixed and
prepared for FISH as described previously.

qPCR. Quantitative PCR was used to assay efficiency of RNAi knockdowns
according to standard techniques. Total RNA was isolated from cells using a
Qiagen RNeasy Plus kit and then converted to cDNA using SuperScript VILO
cDNA synthesis kit (Invitrogen) for RT-PCR. Primers for qPCR were designed
using Primer3 website (http://bioinfo.ut.ee/primer3-0.4.0/) and are listed in Sup-
plementary Table 9. Reactions were set up according to recommended protocol
using iQ SYBR Green Supermix (BioRad) and run on BioRad CFX Connect Real-
Time System at an annealing temperature of 58 °C. BioRad software determined
CT values for qPCR reactions, and the level of knockdown is determined using the
2(~44CT) method”3. The level of knockdown was determined for two biological
replicates and normalized to two controls; Act5c, and RP49. Cells that shows a
significant drop in mRNA levels were later processed for Hi-C experiments.

In situ Hi-C protocol. This protocol was adapted from a previously published
protocol®2 with modifications. Unless otherwise specified, 75 T flasks of PnM cells
were cultured to 70% confluency, then washed with FBS-free Schneider’s medium,
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and crosslinked with 1% formaldehyde for 10 min at room temperature. Fixation
was quenched with 1 M glycine solution, and the cells were scraped gently off the
flask, spun down at 1200 rpm, and washed once more with 1x PBS. Supernatant
was removed, and cells were resuspended in 1x PBS and then ~2.5 million cells
were counted to be used for the rest of the protocol. Nuclei were permeabilized
with ice cold lysis buffer (10 mM Tris-HCI pH 8.0, 10 mM NaCl, 0. 2% Igepal
supplemented with 5X Complete, EDTA-free Protease inhibitors (Roche). DNA
was digested with 500 units of Dpnll, and the ends of restriction fragments were
labeled using biotinylated nucleotides and ligated in a small volume. After reversal
of crosslinks, ligated DNA was purified and sheared to a length of ~700 base pairs
with QSonica sonicator (30% power, 30 s on, 30 off for 20 min, at which point
ligation junctions were pulled down with Dynabeads MyOne Streptavidin beads
(Invitrogen) and prepped for Illumina sequencing. Aliquots at different steps were
taken to measure the concentration with Qubit dsDNA HS assay kit and run on a
2% agarose gel with SYBR Gold nucleic acid gel stain (1:10000) to ensure quality of
the sample prepared, and efficient digest, ligation, and binding to the beads. For
library preparation, we used BioNEXTFLEX barcode-6 (Bioo Scientific) and fol-
lowed manufacturer recommendations, amplified our final library with Q5 HIFI
Hot Start High Fidelity PCR and Biooscientific primer mix for six cycles on the
beads. The final product was then diluted to 250 pl with 1 mM Tris-HCI, and
separated on a magnet, then transferred the supernatant to a new tube and purified
with 0.7x AMPure XP bead (Beckman Coulter). Incubation times are extended to
15 min to maximize library recovery. To remove traces of short products, we
resuspend beads in 100 pl of 1x Tris buffer and add another 70 ul of AMPure XP
beads. Mix by pipetting 20x and incubated at room temperature for 15 min, and
separated for another 15 min, and continue with the washes and drying as pre-
viously described. Once the beads are dry, we resuspended in 20 uL 1x Tris-HCI,
incubated for 15 min, then separated for another 15 min on the magnet and
transferred the final library to a fresh tube. Two replicates were prepared per
sample. The library quality was assessed using the High Sensitivity DNA assay on a
2100 Bioanalyzer system (Agilent Technologies). Then were 150 base pair paired-
end sequenced using Illumina HiSeq2500 at TUCF Genomics core. PnM untreated
samples (two replicates) were sequenced in four lanes, while each of the RNAi
treatments (two replicates) was sequenced in one lane.

RNA isolation and library preparation. Total PnM RNA was purified from ~8
million cells per replicate using TRIzol (Life Technologies), followed by chloroform
extraction, DNase treatment with RNase free DNase I recombinant (Roche), and
clean up with RNeasy Mini kit (Qiagen). The quality of total RNA was determined
using Agilent RNA 6000 Pico assay on a 2100 Bioanalyzer system (Agilent
Technologies). RNA-Seq libraries were prepared using NEBNext Poly(A) mRNA
Magnetic Isolation Module and NEBNext Ultra Directional RNA Library Prep Kit
for Mllumina according to the manufacturer’s instructions. Poly(A) + RNA was
enriched from 1 pug of total RNA, fragmented for 10 min at 94 °C, and reverse
transcribed in the first strand cDNA synthesis with random primers. After adaptor
ligation, cDNA was size selected between 400-600 base pairs with Agencourt
AMPure XP beads, and amplified for 12 PCR cycles. The library quality was
assessed using the High Sensitivity DNA assay on a 2100 Bioanalyzer system
(Agilent Technologies). RNA-Seq libraries corresponding to three biological
replicates were 150 base pair paired-end sequenced with Illumina HiSeq2500 at
TUCF Genomics core.

Western blot. Whole cell extracts were prepared after 6 days of transient trans-
fections and their protein levels were analyzed according to standard protocols. Blots
were probed using a rabbit anti-GFP antibody (ab290, 1:1000) to detect levels of
Venus-Cap-H2-WT, and a mouse HRP-conjugated anti-a-tubulin antibody
(ab40742; 1:5000) was used as a loading control. Probing with anti-GFP was
followed by a rabbit secondary antibody conjugated to HRP (at 1:5000:). Blots
were stained using Pierce ECL Western Blotting Substrate (ThermoFisher Scientific).

The construction of diploid PnM fly genome. We generated the diploid genome
(hybrid PnM genome) using (i) the homozygous autosomal PnM SNV, (ii) the
heterozygous phased autosomal PnM SNVs and (iii) the homozygous chrX

PnM SNVs.

After sequencing the F1 PnM cell line at the average coverage of 396 reads per
base pair [https://www.ncbi.nlm.nih.gov/pubmed/29096012], we used beftools to
detect the sequence variation of this library. We obtained high-quality normalized
sequence variants using the following:

1. ‘seqtk trimfq’ to trim low-quality sequences, BWA mem, to align whole
genome paired-end reads against the reference dm3 genome, and
‘samtools-rmdup’ to remove aligned PCR duplicates

2. ‘beftools pileup-min-MQ 20-min-BQ 20’ to pile alignments along the

reference genome.

‘beftools call’” to call raw sequence variants from the pileups.

‘beftools norm’ to normalize raw sequence variants.

5. ‘beftools filter INFO/DP >80 & QUAL > 200 & (TYPE = “SNV” | IDV > 1)’
to select only high-coverage high-quality normalized sequence variants
using.

Ll

The two inbred parental fly lines (057 and 439) were sequenced at the average
coverage of 118, and 117 reads per base pair, respectively, and treated similarly to
detect sequence variation in their libraries as described in our companion paper?3.
Using the variants from PnM, and the two paternal lines, we then phased
heterozygous PnM variants using ‘bcftools isec’. Then, we picked high-confidence
variants on the maternal autosomes by selecting heterozygous PnM variants that
were present among maternal 057 variants and absent among paternal
439 sequence variants (both homo- and heterozygous); the high-confidence
paternal variants phasing was selected in an opposite manner. Since PnM is a male
line, for chrX, we considered only homozygous, high-quality variants detected in
the PnM cell line. To reconstruct the consensus sequence of the paternal copy of
chrX, we kept only homozygous variants detected in the paternal 439 fly line.
Finally, we reconstructed the sequence of the PnM cell line with ‘samtools
consensus’, using (a) the homozygous autosomal PnM SNVs, (b) the heterozygous
phased autosomal PnM SNVs and (iii) the homozygous chrX PnM SNVs.

The number of reads from the hybrid genome, and parental lines used for
phasing are summarized in Supplementary Table 10. Overall, WGS confirmed
PnM cell line hybrid status, apart from uncovering a 24.6 Mb partial uniparental
disomy of the right arm of chromosome 3 (chr3R). We adjusted our downstream
analyses to take that into consideration (described in more detail later).

Mapping and parsing. Using the standard mode of seqtk trimfq v.1.2-r94 [https://
github.com/Ih3/seqtk], we trimmed low-quality base pairs at both ends of each side
of sequenced of Hi-C molecules. This was followed by mapping the trimmed
sequences to either, the reference dm3 genome, or the newly constructed dm3-
based diploid genome (hybrid PnM genome) using bwa mem v.0.7.15 [https://
arxiv.org/abs/1303.3997] with flags -SP.

We then used the pairtools parse command line tool (https://github.com/
mirnylab/pairtools), to extract the coordinates of Hi-C contacts, kept read pairs
that mapped uniquely to one of the two homologs, and used the standard mode of
the pairtools dedup command line tool to remove PCR duplicates. Breakdown
of the total number of reads recovered after the mapping and filtering process are
summarized in Supplementary Table 2, and a summary of cis and thom reads
recovered at different genomic separations is found in Supplementary Table 11.

Detailed methods estimating the percent of homolog misassignment was
discussed in our companion paper33.

Contact probability P(s) curves. To calculate the functions of contact frequency
P(s) against genomic separation (s), we used unique Hi-C pairs, and grouped
genomic distances between (10 base pairs and 10 megabases) into ranges of
exponentially increasing widths, with eight ranges per order of magnitude. We
found the number of observed cis or trans-homolog (thom) interactions, within this
range of separations, and divided it by the total number of all loci pairs separated
by such distances.

Pairing score. We introduced a genome-wide track called pairing score (PS), to
measure the strength of the diagonal and to characterize the degree of pairing
between homologous loci across the whole genome. The PS of a genomic bin is log,
of average trans-homolog (thom) Iteratively Corrected (IC) contact frequency (CF)
between all pairs of bins within a window of +-W bins. For each genomic bin i, its
PS with window size W is defined as:

PSW(i) = log,<CF,, >, averaged over bins m and n between i—W-th and i+W-
th genomic bins on different homologs of the same chromosome.

As a control measure, we complemented the PS with a cis score (CS), which is
calculated the same way as the PS, but over the cis contact map. Comparing the PS
and CS value in a given bin reveals if the local variability in the PS is due to a
change in homologous pairing in 3D (which affects the PS but does not affect the
CS) or due to a theoretically possible local deviation from the equal visibility
assumption of IC (which would affect both PS and CS equally). Using this
definition, the PS quantifies only contacts between homologous loci and their close
neighbors and not non-homologous loci on homologous chromosomes. We chose
the window size W to be a balance between specificity and sensitivity. Increasing
the window size increases sensitivity, accumulating contacts across more loci pairs,
while smaller windows favors specificity, allowing to see smaller-scale variation of
homologous pairing. For our contact maps with a 4 kb resolution, using a 7 x 7 bin
window (W = 3) provided a balance between specificity and sensitivity. We
interpreted the obtained PS tracks using a simple assumption: if a genomic locus
was paired with its counterpart on the homologous chromosome in 100% of cells,
the frequency of the thom contacts (i.e., PS) around the locus should be equal to the
frequency of corresponding short-distance cis contacts (i.e., CS).

Insulation scores. Using the package cooltools diamond_insulation (https://github.
com/mirnylab/cooltools) we calculated the tracks of contact insulation score. The
method used is based on the algorithm described in (https://doi.org/10.1038/

nature14450) and adjusted in (https://doi.org/10.1016/j.cell.2017.05.004). We cal-
culated the insulation score as the total number of normalized and filtered contacts
formed across that bin by pairs of bins located on the either side, up to 5 bins away,
for each bin in our contact map binned at 4 kb resolution. Then we normalized the
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score by its genome-wide median. To find insulating boundaries, we detected all
local minima and maxima in the log,-transformed and then distinguish them by
their prominence (Billauer E. peakdet: Peak detection using MATLAB, http://
billauer.co.il/peakdet.html). The insulating boundaries were the detected minima in
the insulation score, corresponding to a local depletion of contacts across the
genomic bin. We empirically found that the distribution of log-prominence of
boundaries has a bimodal shape. Based on that, we selected all boundaries in the
high-prominence mode above a prominence cutoff of 0.1 for Hi-C mapped to the
reference dm3 map, and a cutoff of 0.3 for allele-resolved Hi-C maps. We called the
insulating boundaries in thom contact maps using the same approach and
requiring a minimal prominence of 0.3. Finally, we removed boundaries that are
adjacent to the genomic bins that were masked out during IC. We evaluated the
similarity of insulating boundaries that were detected in the cis and thom contact
maps by calculating the number of overlapping boundaries and allowing for a
mismatch of up to four genomic 4 kb bins (16 kb total) between overlapping
boundaries to account for the drift caused by the stochasticity of contact maps.

Detecting tightly and loosely paired genomic bins. We used the genome-wide
PS track to classify each genomic bin as either tightly or loosely paired. We noticed
that the genome-wide distribution of PS (Supplementary Fig. 6a, b) showed a well-
pronounced peak at higher values of PS and a tail extending into the lower values
of PS. We interpreted this distribution with a model, where each bin can be either
tightly or loosely paired with a homologous locus on the second chromosome. In
this model, tightly paired loci showed high PS values, producing the peak on the
genome-wide distribution of PS, while loosely paired loci had lower PS values,
giving rise to the tail of the PS distribution. We separated the peak from the tail of
the distribution by fitting it with a sum of two Gaussians (Supplementary Fig. 6b);
to stabilize the fitting procedure, we also clipped PS values below —3. The prob-
ability densities of the two Gaussians become the same at PS = —0.71. Thus, we
classified all genomic bins with PS < —0.71 as loosely paired (since they are more
likely to belong to the low-PS Gaussian) and the bins with PS> —0.71 as tightly
paired.

Determining tight and loose paired regions in the PnM genome. A close
examination of the PS track revealed two important features: (i) the fly genome is
divided into regions that demonstrate consistently high, relatively similar, values of
PS, followed by extended regions where PS dips into lower values, (ii) switching
between high- and low-PS regions seemed to occur often around insulating
boundaries.

We used the PS and insulating boundaries to determine the precision of pairing
in the genome, and examine the variation of pairing more closely, in addition to the
internal organization of tight and loose pairing. First, we divided the genome into
regions between pairs of consecutive boundaries (as detected in reference-mapped,
i.e.,, not allele-resolved Hi-C data). Second, we classified each of these regions as
either tight or loosely paired, depending on the number loosely paired bins in that
region. Because the dips in the PS track tend to be gradual, with PS being
noticeably low only further away from the boundaries, we considered the cutoff of
25% of loosely paired bins per region to be sufficient to call the whole region as
loosely paired. Finally, we noticed that this method occasionally split single loosely
paired regions into a few smaller ones, presumably due to false positive boundary
calls. To mitigate this issue, we merged consecutive loosely and tightly paired
regions into larger ones if the boundary bin between them was classified the same
way. We then used the detected regions of loose and tight pairing to calculate
scaling curves P ;(s)1005¢, P (s)8NE, Py o (s)1005€, and Py,om(s)ti8ht. We calculated
these curves using the same method as for the genome-wide P(s) and Py,om(s),
but only considering pairs of loci within the same region. See supplementary
Note 1 for a detailed discussion.

Quantifying genome-wide changes in pairing in knockdowns. In order to
quantify the genome-wide changes in pairing observed in knockdowns, we
developed a metric that summarized the degree of pairing in each sample, and
quantified the genome-wide changes in pairing observed in knockdowns, called
Aggregated Pairing Score (APS):

APS = Mode (PS-CS), i.e., the most probable value of PS-CS genome-wide.

We reasoned that APS makes a good estimate for the degree of pairing exhibited
by cells genome-wide for two reasons. First, APS has a simple interpretation—since
the PS and CS quantify the log, intensity of the main diagonal, APS thus describes
the most probable log, ratio of short-distance thom contact frequency to short-
distance cis. Second, APS is stable, since the most probable value in a distribution is
not affected by the presence of heavy tails.

For a given pair of conditions, the statistical significance of the difference
between their APS was determined with bootstrapping. Specifically, we tested the
null hypothesis that the (PS-CS) distributions for both conditions were drawn from
the same underlying distribution (i.e., if PS-CS for each condition has a similar
distribution). We merged (PS-CS) distributions for both conditions, and then drew
1000x pairs of random samples and calculated the difference of their APS. Finally,
we calculated a p-value as a fraction of random sample pairs that had a larger
difference of APS than the one observed in our data.

Eigenvectors. We quantified the compartment structure using of Hi-C maps with
eigenvectors of observed/expected Hi-C maps, using a modified procedure from
Imakaev et al.”4 We performed eigenvector decomposition of the observed/
expected 4 kb contacts maps subtracting 1.0 from each pixel. Finally, for each
chromosome, we selected the eigenvector showing the highest correlation with the
track of the number of genes overlapping each genomic bin. This method for
eigenvector detection is available in cooltools.

Loop quantitation. The contact frequency at each loop was calculated as the sum
of the Iteratively Corrected Contact Frequency in a 120 kb x 120 kb window sur-
rounding the loop.

ChlIP-seq overlap with boundaries and Correlation with PS. We mapped the
publicly available raw ChIP-seq data following the procedure used by the ENCODE
consortium”?, (https://github.com/ENCODE-DCC/chip-seq-pipeline). We used
architectural protein ChIP datasets described in Supplementary Table 3.

After mapping ChIP-seq datasets to the reference genome, we called TF binding
peaks using MACS2 with a maximal p-value cutoff of 0.01 and a minimal peak
score cutoff of 200. Then, for each data set, we calculated (a) the percent of
insulating boundaries in PnM cells overlapping ChIP-seq peaks using bedtools’®,
and (b) the Spearman’s rank correlation coefficient between the pairing score and
the enrichment of the ChIP-seq signal over the input at 4kb resolution.

Determining cis and thom contact map resolution. The estimated 4 kb resolution
is based on ~75.4 million mappable pairs, with minor differences in the resolution
for cis and thom contact maps. One of the key factors defining the resolution of a
Hi-C dataset is the sequencing depth. If we pick a resolution too high (i.e., bin size
is too small) for a given sequencing depth, we end up with many empty pixels (zero
pixels), and overall, read counts would be distributed over many more pixels and
thus would be more prone to sampling noise. In addition, because the mean
number of read counts decays with distance, more distant diagonals will have more
empty pixels. Thus, to address the difficulty of determining the optimal resolution
across an entire contact map, we try different bin sizes and determine the number
of empty pixels along each diagonal. The optimal resolution would be the one
where there are only a few empty pixels at diagonals-of-interest—i.e., diagonals
containing TADs (<~100 kb). In the case of untreated PnM cells, we looked at four
resolutions: 1, 2, 4, and 10 kb and plotted the fraction of non-zero pixels in
diagonals as a function of the genomic separation or distance (Supplementary
Fig. 14). To interpret these curves, we set a criterion wherein the best resolution
was the finest resolution at which we still had more than 50% non-zero pixels at
100 kb separation (relative average TAD scale). By this criterion, a 4 kb resolution
emerged as optimal for both cis and thom contact maps.

Detecting chr3R disomy. During the analyses of the WGS and Hi-C reads, we
noticed that the maternal homolog (057) of chromosome 3R had consistently
higher sequencing coverage than the paternal one (439), from 3.24 Mb and to the
telomere. This difference in sequencing coverage was particularly noticeable at the
level of the IC balancing weights, which were on average 1.44X higher in this region
for the paternal homolog (thus, compensating for lower coverage) comparing to
the maternal homolog. Such pattern can be explained by a partial maternal disomy
in a fraction of cells. A disomy in a fraction x of cells leads to r= (1 + x)/(1—x)
times higher sequencing coverage of the maternal homolog. Conversely, the
observed ratio r of sequencing coverage of the two homologs can be explained by
partial uniparental disomy in x = (r—1)/(r + 1) fraction of cells. Using this
approach, we estimate that the chr3R partial disomy is found in 17.9% cells of the
untreated Hi-C sample, 20.6% cells of the mock-depleted sample, 21.5% of the
Slmb-depleted sample and 19.6% of the ToplI-depleted sample.

RNA-Seq. We mapped the raw RNA-seq data using STAR [https://academic.oup.
com/bioinformatics/article/29/1/15/272537] following the same procedure as used
by the ENCODE consortium [https://github.com/ENCODE-DCC/long-rna-seq-
pipeline/tree/master/dnanexus].

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The source data underlying Fig. 1d, Fig. 3e, and Supplementary Fig. 11a, and b are
provided as a Source Data file. All raw sequencing data and extracted Hi-C contacts have
been deposited in the Gene Expression Omnibus (GEO) repository under accession
number GSE121256. Hi-C data obtained in this study is available for browsing using the
HiGlass web browser’’. Publicly available ChIP-seq datasets used in this study are listed
in Supplementary Table 3.

Code availability
All custom data analyses were performed in Jupyter Notebooks’® using matplotlib
[Hunter, John D. “Matplotlib: A 2D graphics environment.” Computing in science &
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engineering 9.3 (2007): 90-95.], numpy [Walt, Stéfan van der, S. Chris Colbert, and Gael
Varoquaux. “The NumPy array: a structure for efficient numerical computation.”
Computing in Science ¢ Engineering 13.2 (2011): 22-30.] and pandas [McKinney, Wes.
“pandas: a foundational Python library for data analysis and statistics.” Python for High
Performance and Scientific Computing (2011): 1-9.] packages. We automated data
analyses in command line interface using GNU Parallel [Tange, Ole. “Gnu parallel-the
command-line power tool.” The USENIX Magazine 36.1 (2011): 42-47.]. The software
used in this study is available at https://github.com/mirnylab/.
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