- | Systems Biology
P) and Applications

ARTICLE OPEN

www.nature.com/npjsba

There are amendments to this paper

Genetic interaction networks mediate individual statin drug
response 1n Saccharomyces cerevisiae

Bede P. Busby ("%, Eliatan Niktab@', Christina A. Roberts', Jeffrey P. Sheridan’, Namal V. Coorey', Dinindu S. Senanayake',

Lisa M. Connor’', Andrew B. Munkacsi' and Paul H. Atkinson

1%

Eukaryotic genetic interaction networks (GINs) are extensively described in the Saccharomyces cerevisiae S288C model using
deletion libraries, yet being limited to this one genetic background, not informative to individual drug response. Here we created
deletion libraries in three additional genetic backgrounds. Statin response was probed with five queries against four genetic
backgrounds. The 20 resultant GINs representing drug-gene and gene-gene interactions were not conserved by functional
enrichment, hierarchical clustering, and topology-based community partitioning. An unfolded protein response (UPR) community
exhibited genetic background variation including different betweenness genes that were network bottlenecks, and we
experimentally validated this UPR community via measurements of the UPR that were differentially activated and regulated in
statin-resistant strains relative to the statin-sensitive $288C background. These network analyses by topology and function provide
insight into the complexity of drug response influenced by genetic background.
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INTRODUCTION

Understanding phenotypes that are genetically complex requires
analysis of multiple genes contributing to phenotypes. Classical
genetic studies have long investigated the additive functions of
genes in polygenic or quantitative traits,'> the effects of
modifying alleles,** genetic capacitators,” “missing heritability”,®
the epistatic contribution to phenotype,” as well as both additive
and epistatic effects.® In an advance, using systems biology, gene
functions have also been implied in genetic interaction networks
(GINs) comprising overlapping synthetic lethal genetic interactions
(Gls) between pairs of non-essential gene deletions identified in
high throughput by synthetic genetic array (SGA) technology.’
Epistasis occurs because some gene pairs have functional
commonality and, logically, specific GINs of overlapping epistatic
gene pairs can also be considered functional.'®”'? We thus address
the questions: are there specific functional GINs that are
conserved or do these GINs vary in individuals?

The debate is open''* as the conservation and effects of
perturbation of these GINs remain largely predictive'® via
comparisons of specific synthetic lethal Gls in human and yeast,'®
Gls in the distantly related yeasts and Caenorhabditis elegans,'”"'®
essential genes in two strains of Saccharomyces cerevisiae,* and
protein—protein interactions in Schizosaccharomyces pombe and S.
cerevisiae.'® There is broad concurrence that specific genes of GINs
are not well conserved but that some Gls and network topological
features are conserved.'' However, GINs have not been well-
studied with respect to individual drug response in different
genetic backgrounds. Statins target HMIG-CoA-reductase®® and are
amongst the most prescribed of all therapeutic drugs.?' Statins
inhibit the mevalonate pathway in its four main branches that
besides cholesterol reduction also affect dolichol synthesis,
ubiquinones and isoprenoids.*>?*> Therefore, statin effects are
quite diverse with significant side-effects in some individuals such
as muscular myopathies*** and individual variation in clinical
efficacy.?® Atorvastatin and cerivastatin are two cholesterol-
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lowering drugs that have the same target in the mevalonate
pathway, HMG-CoA reductase (encoded by HMGCR in humans and
the orthologous paralogues HMGI1 and HMG2 in yeast), but
cerivastatin is no longer FDA-approved owing to adverse side
effects,? suggesting that comparison of GINs in response to these
drugs in different individual genetic backgrounds could be helpful
in fully understanding the mechanisms of these drugs. The statin
drug target and sterol pathways are conserved from yeast to
humans,”” the HMG1/2 deletion has been used as a genetic mimic
of statin treatment,®*?* chemical genomic analyses in yeast
elucidated the cellular response to statins,® and genome-wide
analyses in yeast identified Gls with the HMGI1/2 statin drug
target.'?

Deletion libraries in the yeast S288C background used in SGA
and chemical genetic analyses have provided much of what is
known about GINs in eukaryotes.”'>?*3° In this paper, we
extended this knowledge by creating three new deletion libraries
in three additional yeast strains of different genetic backgrounds.
We identified Gls with atorvastatin, cerivastatin, the statin target
HMGT, its functional paralog HMG2, and the sterol homoeostatic
ARV1 in four genetic backgrounds that generated 20 GINs.
Although atorvastatin and cerivastatin share the same drug
target, we show here that the statins had highly variable GINs in
individual strains by multiple criteria including functional,
topological and clustering comparisons. Notably, the unfolded
protein response (UPR) was identified as a significant response of
the network topology to statins, and we functionally translated
this result with experiments showing that activation of the UPR
was variable depending on the statin drug and the genetic
background. Network topological analysis of genes related to the
UPR showed their importance particularly in community parti-
tions. Overall, our results provide functional insight derived from
topological analyses of GINs that model the complexity of GINs
underlying individual drug response.
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RESULTS

Selection of statin-resistant strains

We obtained 36 haploid derivatives (Supplementary Table S1)
from the fully sequenced wild-type strains in the Saccharomyces
Genome Resequencing Project (SGRP) collection®' and evaluated
growth (growth was used as an end point fitness measurement
unless stated otherwise) via serial spot dilutions on agar plates
containing increasing concentrations of atorvastatin or cerivasta-
tin. There was a large range of phenotypic diversity observed for
these strains with some being ~10-fold more sensitive and others
~10-fold more resistant relative to BY4742 (the wild-type strain in
the S288C background). Three strains (Y55, UWOPS87-2421 and
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YPS606) exhibited normal growth at 400 uM atorvastatin in
contrast to 50 uM atorvastatin that was lethal to S288C (Fig. 1a).
Likewise, growth of these strains at 80 pM cerivastatin was
comparable with growth of $288C at 50 uM cerivastatin (Fig. 1b).
These strains were chosen for further investigation.

Construction and validation of three new strain deletion mutant
arrays

To investigate GINs underlying resistance of these strains to
statins, we constructed new strain-specific genome-wide deletion
libraries for the three statin-resistant strains (Y55, UWOPS87-2421
and YPS606) for subsequent use in chemical genetic and SGA
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Statin resistance of SGRP strains and backcross methodology to construct ssDMA libraries that represent genome-wide deletion

libraries of these SGRP strains. a, b Serial dilutions of three SGRP strains (Y55, UWOPS87-2421 and YPS606) resistant to a atorvastatin and b
cerivastatin relative to BY4742 in the $288C background. ¢ Outline of marker switch method used to introduce the URA3 marker into the SGRP
strains. d Outline of the method used to cross and backcross the SGRP strains with the S288C deletion library (DMA) to produce the ssDMA

libraries
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analyses. First, we used a marker-switching strategy to introduce
ura3-A and his3-A into the SGRP strains (Fig. 1c, Supplementary
Table S1). Then we used selection markers within the SGA
methodology>° to cross and backcross these strains six times with
the 5288C deletion library (Fig. 1d). The SGRP strains for making
these libraries had sporulation rates of 70-80% compared to only
3% in S288C, hence greatly facilitating the sporulation step in
SGAs with the new deletion libraries. We named the new deletion
libraries SGRP strain deletion mutant arrays (ssDMAs), which
retained the statin-resistant phenotype (Supplementary Fig. S1).
Whole-genome sequencing of the new strains was performed
from 384 pooled colonies of a specific plate (plate 10) from each
of the three ssDMAs and the $288C deletion library, which were
further compared with the S288C haploid derivative BY4742.
Each ssDMA sequence had a 0.2-0.4% higher alignment score to
its SGRP parental strain than to the BY4742 parental strain
(Supplementary Table S2). Furthermore, each ssDMA sequence
had more regions with perfect (100%) alignment with its
UWOPS87-2421, Y55 and YPS606 SGRP parent strains than the
S288C parent (Supplementary Figs. S2-S4), confirming that the
background of each ssDMA closely resembled its SGRP parent.
Synteny analysis showed that there were not any major
structural rearrangements in the ssDMA or parental SGRP strains
(Supplementary Figs. S5-S7). Synteny with S288C was also
supported with the recovery of the expected linkage groups
surrounding the three query genes in the SGAs later described
(Supplementary Table S3). Analysis of the sequencing coverage
indicated that each ssDMA was euploid, consistent with the
controls (Supplementary Fig. S8). Genetic variation between the
strains was also evident revealed by 5.9, 5.4 and 5.9 SNPs/kb in
Y55, UWOPS87-2421 and YPS606, respectively, a finding that
generally exceeded the SNP density among ethnically distinct
human populations,®? thus indicating there is extensive genetic
diversity in our yeast backgrounds to investigate genetic
background effects on GINs.

Chemical genetic and Gl profiles differ between yeast strain strains

The central tenet of chemical genetics®® is that a drug binds
specifically to a gene product, alters or ablates its function, and
mimics a mutation. Thus, a drug can be paired with a deletion
mutation to screen for hypersensitive epistatic interaction profiles
en masse in deletion libraries to provide information on the target
and buffering mechanisms of the drug.?® We obtained chemical
genetic profiles of our four deletion libraries via growth
measurements in the presence and absence of statin treatment
(25 uM atorvastatin and 10 uM cerivastatin for the S288C DMA,
100 uM atorvastatin and 50 uM cerivastatin for the statin-resistant
ssDMAs). These concentrations inhibited the susceptible and
resistant strain growth to approximately the same amount (Fig.
1a). The chemical genetic profiles for atorvastatin (Fig. 2a) and
cerivastatin (Fig. 2b) were substantially different in the four strains.
In the profile of 288 gene deletions hypersensitive to atorvastatin,
only four deletions (HMG1, MID1, MID2, PDRT) were common to all
four strains. In the profile of 283 gene deletions hypersensitive to
cerivastatin, only three gene deletions (HMG1, HMS2, MID2) were
common in all four strains. There was a requirement for SPF1 in
the resistant strains YPS606 and Y55 in the presence of
atorvastatin and cerivastatin, but not in S288C. Interestingly,
SPF1 is an endoplasmic reticulum (ER) ATPase ion transporter that
requlates HMG2 degradation®® and interacts with the UPR
regulators HACT and IRE1,*® implicating buffering by the ER UPR
system in the statin drug response.

The overall profiles were distinct in the different strains because
most of the hypersensitive gene deletions were unique to one
strain (Supplementary Table S4). Only one interaction for
atorvastatin was common to the three resistant strains and not
$288C; this was SLT2, a MAP kinase regulator of proteasome
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abundance that has Gls with the major protein folding sensors
IRET and HAC1?* as well as with CWH41, a glycosylation processing
glucosidase critical to sensing protein folding in the ER.>® In yeast,
the major mediator of the UPR is IRET, which upon ER unfolded
protein stress, is released from the Hsp70 chaperone KAR2 in the
ER whence it oligomerises and activates the UPR pathway.?” The
ire1-A strain was hypersensitive to atorvastatin and cerivastatin in
Y55 and YPS606 (Fig. 2a, b). In contrast, IRET was not required in
S288C to buffer the effect of atorvastatin or cerivastatin.

We next performed strain-specific SGAs utilising the query
strains hmg1-A, hmg2-A and arvi4, since all three genes are
fundamental to sterol homoeostasis in the ER, synthetic lethal with
IRET*®*° or involved in glycosylphosphatidylinositol (GPI) bio-
synthesis, which is one of the major branches of the mevalonate
pathway. The 12 SGA procedures generated 50,400 unique double
deletion mutants, of which 37,800 have not been previously
constructed. The negative Gls (synthetic lethal and synthetic sick
interactions) for each background were scored as double deletion
strains (Z-score >2.0, P-value <0.05) with significant growth
defects in the double mutants relative to the single deletion
mutants. Genes in the linkage groups of the hmg1-4A, hmg2-A and
arvi-A queries were excluded as Gls (Supplementary Table S3).
Across the four genetic backgrounds, 339 Gls were identified with
the hmgi-A query, 181 Gls with the hmg2-A query and 425 Gls
with the arvi-A query (Supplementary Table S4; Supplementary
Figs. S9-S11). Overall, there was only limited overlap of Gls for
each query strain across the four genetic backgrounds. Specifi-
cally, the hmgi-A query gene exhibited overlapping Gls with
hmg2-A in all backgrounds (Supplementary Fig. S9), Gls unique to
the resistant strains (e.g., SEC66, HTZ1, NUM1, YML102C, SHE4 and
IRET) were common to two resistant strains Y55 and UWOPS87-
2421, and Gls shared by sensitive and resistant backgrounds
(SAC1, SPF1 and GIM5) were common to the sensitive S288C as
well as the resistant Y55 and UWOPS87-2421. For the hmg2-A
query, only HMGT was a common Gl to all four strains
(Supplementary Fig. S10) and the helicase YRF1-6 was common
to two resistant strains (Y55, UWOPS87-2421). The arvi-A query
gene exhibited Gls only with SLT2, CDC73, CHS3, CHS7 and IRET in
all four strains, while Gls shared by only the resistant strains were
with LEOT, YBLO62W, RPS8A, SKT5 and HMG1 (Supplementary Fig.
S11). The various Gls arising from the statin chemical genetic
profiles and the SGA queries indicated, among other processes, a
clear involvement of early secretory pathway processes.

SAFE analysis reveals functional heterogeneity of gene usage
among yeast strains

We performed spatial analysis of functional enrichment (SAFE)
analysis'®'? to elucidate the functional properties of the GINs.
SAFE is a Gene Ontology (GO) functional depiction analysis with
network topology constrained graph distance similarities that
represents statistically and quantitatively localised enrichments of
genes in specific cellular processes.'® The atorvastatin treatment
shows a concentration of Gls enriched in the early secretory
pathway related Region 2 (glycosylation/protein folding) and
Region 7 (multivesicular body (MVB) sorting) in all four strains (Fig.
2¢; Supplementary Table S5). Notably different to the other strains,
the resistant strain YPS606 was also significantly enriched in
Region 14 (vesicle trafficking). In contrast, the cerivastatin
treatment showed a concentration of Gls enriched in Region 2
(glycosylation/protein folding) and Region 7 (MVB sorting) only in
S288C and Y55, compared to Region 15 (cell polarity and
morphogenesis) only in S288C. These results show that not only
do the strains differ functionally but that the cerivastatin response
is markedly different to atorvastatin. Consistent with the SAFE
chemical genetic profiles, SAFE analyses of Gls with the query
genes HMG1, HMG2 and ARV1 also showed extensive hetero-
geneity of gene usage across the four genetic backgrounds. The
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Fig. 2 Primary genetic interaction networks and functional annotation illustrates variation across genetic backgrounds. a, b Chemical genetic
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Gls with ARV1 were enriched only in Region 7 (MVB sorting) in all
four strains, while there was enrichment in Region 2 (glycosyla-
tion/protein folding) and Region 14 (vesicle trafficking) in two
resistant strains (YPS606 and UWOPS87-2421). In contrast, the
statin-sensitive $288C Gls were concentrated in Region 14 (vesicle
trafficking). Unique to YPS606 was an enrichment in Region 13
(transcription, chromatin organisation). The Gls with HMGT and
HMG2 were enriched in Region 3 (ribosome biogenesis) in only
two strains (5288C and UWOPS87-2421) with a strikingly unique
signature in Region 8 (MRNA processing) in the UWOPS87-2421
strain.
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Functional hierarchical clustering shows extensive strain variation
We next elucidated functional similarities among chemical genetic
and Gl profiles by employing agglomerative and k-means
hierarchical clustering®’ based on Z-scores. We distinguished
three major clades (Fig. 3a). The first clade had five Gl profiles;
these were Gl profiles only in the S288C and YPS606 strains (Gls
with HMGT and HMG2 in YPS606 as well as Gls with HMG1, HMG2
and ARVT in S288C). The second clade comprised six chemical
genetic profiles (particularly the atorvastatin chemical genetic
profile in all four backgrounds but only the cerivastatin chemical
genetic profile in UWOPS87-2421 and YPS606) and six Gl profiles
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(Gls with ARVT in Y55 and YPS606, Gls with HMGT in Y55 and
UWOPS87-2421, and Gls with HMG2 in Y55 and UWOPS87-2421).
The third clade comprised two chemical genetic profiles
(cerivastatin in S288C and Y55) and the GIs with ARVI in
UWOPS87-2421. These results indicate that $288C is functionally
more closely related to YPS606, and Y55 is more closely related to
UWOPS87-2421, while Y55 and UWOPS87-2421 were markedly
different. We narrowed the focus of Fig. 3a to ten contiguous
genes re-clustering around [/RET the major mediator of UPR.
Consistent with clustering of the whole genome, there was clear
evidence of strain-dependent clustering of genes such as clusters
focussed around IRET (Fig. 3b) from the hmg2-A query in S288C,
Y55 and UWOPS87-2421 strains that were distinct from the hmg2-A
query in YPS606 (Fig. 3b). IRET clustered closely with SPFT across
all backgrounds (Fig. 3b), reiterating the primordial association of
sterol/lipid homoeostasis and the UPR. SPFT is an ER membrane
protein regulated by the UPR*? that is synthetic lethal with BTS7, a
major branch point in the mevalonate pathway. SPF1 is required
for regulating Hmg2p degradation,?*?? it is involved in membrane
sterol homoeostasis,"> and is an important functional hub
interacting with many genes of the ER folding pathways, the
mevalonate pathway and the early secretory pathway.

In a second focussed clustering analysis around the statin target
HMGT, strain-dependency was again detected. HMGT clustered
strongly with CSG2 (an ER protein involved in sphingolipid
mannosylation that has Gl with HMGT) in the S288C/hmg2-4,
$288C/hmg1-4, Y55/arvi-A queries and to a lesser extent in S88C
+ atorvastatin S288C + cerivastatin (Fig. 3c).

A third focussed clustering analysis was based on relationship
to a panel of genes curated from the mevalonate pathway and
three main branches namely the ergosterol branch, dolichol N-
glycan synthesis branch, and the all-trans GGPP isoprenoid branch
of protein prenylation (Supplementary Table S4). In these clusters
(Fig. 3d), one clade contained Gls with ARV in the background of
UWOPS87-2421 and HMGT in the background of YPS606, similarly
to that seen in Fig. 3a. For the query genes hmg1-4, hmg2-A and
arvl-A in the S288C genetic background, there was a cluster
containing Gls with STET4 (ER protein mediating processing of
alpha-factor and RAS proteins), RAM1 (subunit of the CAAX

farnesyltransferase in the protein prenylation branch) and STE2
(alpha-factor pheromone receptor G-protein). These three genes
are directly related to the isoprenoid branch of the mevalonate
pathway.®> Thus, this small cluster identifies a significant
dependence on the isoprenoid enzyme CAAX-farnesyltransferase
after deletion of HMGI, HMG2 and ARV1 only in the $288C
background.

Topology of GINs partitioned by community analysis identifies
functional modules

Biological gene networks are generally modular to achieve cellular
function and may be defined by communities, such as partitioning
of network topology based on density of node linkage patterns
into modules that may reveal functional information that is not
otherwise obvious.**** To perform community analysis, we
augmented our primary GINs to include adjacent genes, including
some essential genes, from a comprehensive yeast GIN'? to give
greater coverage of interactions (Supplementary Table S6). We
then used the Louvain®® community detection method, estab-
lished for social networks*” and identified 200 communities overall
in our five probe (atorvastatin, cerivastatin, hmg1-4 hmg2-A and
arvi-4) by four genetic background (5288C, UWOPS87-2421, Y55,
YPS606) dataset. The 20 panels showed marked differences in
number and density of communities dependent on genetic
background (Fig. 4; Supplementary Tables S7, S8).

In the community clustering method used, a particular gene is
found in only one community per GIN. If the function of the gene
is known, it helps to define community function. More generally, a
set of known genes in a community can be evaluated for
enrichment of particular GO-terms establishing function more
firmly. Since SAFE analysis showed enrichment of early secretory
pathway processes (Fig. 2c), we searched for enrichments in
coverage of GO terms*®*® of the early secretory pathway’° in the
communities of Fig. 4. Coverage of a GO-term is the fraction (%) of
the total genes known for that GO-term in a given dataset and is
defined with a probability of it arising by chance. In 14/20 panels,
there was one unique community (labelled in Fig. 4) enriched in
‘endoplasmic reticulum’ GO term displaying high coverage

hmg1-A

Y55 S288C

UWOPS87

YPS606

iam

Fig. 4 Community analysis reveals genetic background variation among GINs. Communities in each GIN were defined using community
analysis described in the text. Communities shown in different colours (for visual distinction only) on the diagonal are numbered from zero at
the top left where each GIN consists of between 7 and 14 communities (Supplementary Table S8). For example, the GIN in the first panel
shows 10 communities. Community panels are labelled with community number (“C#") denoting presence of the high ER/Golgi GO-term

pattern described in the text
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(11-21%, P < 0.05) that was always accompanied by the GO-term
‘Golgi apparatus’ and/or ‘Golgi vesicle transport’ (4.1-7.6% cover-
age; P<0.01) (Supplementary Table S7). This pattern often was
accompanied by ’lipid metabolic process, protein targeting,
cytoplasmic vesicles’ GO-terms demonstrating a community
dedicated to early secretory pathway functions in a majority of
our 20 GINs. Specific genes of the early secretory pathway,
glycosylation and protein folding®®*"*? were present in the
communities that had the ‘high ER coverage/Golgi apparatus/
Golgi vesicle’ GO-term pattern (Supplementary Table S9).

In further investigation of community function, ire1-A in the
primary GINs (Fig. 1) was hypersensitive to statins in two of the
resistant strains suggesting involvement of the UPR. Therefore, we
searched all 200 communities in the 20 panels (Fig. 4) for
simultaneous presence of three major sensors of the UPR (CWH41,
IRET and HACT). These three genes were found together in a single
community in 11 of the 20 community panels namely the
atorvastatin query (in S288C, YPS606, and UWOPS87-2421), the
cerivastatin query (in $S288C and UWOPS87-2421), the hmgi-A
query (in $288C and YPS606), the hmg2-A query (in S288C, YPS606,
and UWOPS87-2421), and the arvi-A query (in S288C) (Supple-
mentary Table S9). In eight of the nine remaining GINs, the co-
occurrence of this motif in a single community held except that
one of the three genes, usually IRE1, was found in an adjacent
community. These UPR communities mostly did not overlap with
the high ER-coverage pattern communities described in Fig. 4 and
therefore were different communities, though related, in function.

There was also genetic background dependence shown in
community partitioning of another ER function, namely all seven
components (EMC1-7) of the well-documented ER membrane
protein complex®®3%°? that were only found in statin-treated
$288C communities. The whole complex was not found in any
single community for any query or statin probe in the resistant
strains (Supplementary Table S10), pointing to the fundamental
effects of genetic background, even on the uses of essential
complexes.

Topology analysis elucidates bottlenecks of networks

Clustering by community modules is useful because membership
in a community of a profile of genes may infer a function, as we
have shown here. However, it is known that community
methodologies suffer from scalability bias or resolution limits
skewing outcomes to too few large communities or too many
small communities in artificial fusions or fragmentation of natural
clusters.®™> Indeed, we observed community modules that
occasionally showed fragmentation (e.g. cerivastatin in the
YPS606 background exhibited two communities with the high
ER coverage pattern/Golgi GO-term pattern (Supplementary Table
S7). We therefore applied other heuristics for clustering by
topological centrality terms. First, we optimised the number of
centrality clusters in the augmented GIN matrices (Supplementary
Table S6) using agglomerative and k-means clustering, testing up
to ten clusters as a variable and sorting results by Silhouette (SI)
clustering score®*>* and Calinski-Harabasz Index (C-H) score. We
found between 3 and 7 clusters as optimal (Supplementary Table
S11), so we processed the matrices for four clusters as a
compromise calling them Cluster a, Cluster {3, Cluster Y and
Cluster 6 (Table S6, columns E, F, G, H). We then analysed the
content of these clusters by four centralities (betweenness
centrality cluster (BCC), closeness centrality cluster (CCC), eigen-
vector centrality cluster (ECC) and closeness, eigenvector and
betweenness clusters combined (3FCC)) comparing their values
on a 3D plot. The greatest definition by centrality value was
detected in the BCC genes using Cluster 6 (Fig. 5a). Distributions of
BCC also showed the most distinct distributions by query and
genetic background (Supplementary Figs. S12-S14), thus demon-
strating the fundamental importance of betweenness centrality as
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network-controlling bottlenecks. This relationship has previously
been reported for PPl networks.® We next deconvoluted the
genes from the centrality distributions and identified the five
genes with highest BC (Fig. 5b), CC (Supplementary Fig. S15), and
EC (Supplementary Fig. S16). The BC genes are pivotal to the
network integrity and as such we deem these bottleneck genes of
our GINs.

To gain functional insight into the BC bottleneck genes (Fig. 5b),
we used REVIGO simplification®® of semantically redundant GO-
terms for BCC genes by a Lin's similarity pairwise analysis for each
GO term to quantify ‘uniqueness’ values*” in the optimised Cluster
8. Once again, betweenness as a criterion stood-out where the
greatest uniqueness was derived using the betweenness centrality
terms in the various query/strain combinations. The other
topology centrality terms were not as well distinguished (Fig. 5¢;
Supplementary Table S$12). Exemplified standout uniqueness
values for hmg14/YPS606 and atorvastatin/UWOPS87-2421 net-
works were seen for mRNA processing (0.65) and ribosome
processing (0.8), respectively, and the arv14/5288C network was
enriched for the early secretory pathway ER-Golgi term pattern
(0.55) described above in the community analysis. These terms,
derived from topology analysis of augmented GINs, show marked
concordance with functions revealed in the SAFE analysis (Fig. 2c)
that was based on primary GINs (Fig. 2b).

UPR activation and regulation depends on statin sensitivity

The requirement for the major UPR sensor [RET with statin
treatment (Fig. 2a, b; Supplemental Table S4) in two statin-
resistant strains, the enrichment of protein folding processes as a
response to statin treatment (Fig. 2c), the existence of a distinct
IRET community (Supplementary Table S9) and that S288C
showed significantly more growth inhibition in DTT than the
resistant strains, but not in tunicamycin (Supplementary Fig. S17A,
B), suggesting a less robust UPR, led us to evaluate UPR activation
in statin-sensitive and statin-resistant backgrounds. UPR induction
by statins was dependent on IRE1 as determined by statin
sensitivity in the four strains deleted for IRE1 (data not shown).
UPR was measured via a 4X-UPRE-GFP reporter®® using 1Cyo
concentrations of atorvastatin or cerivastatin customised for each
background (0.25 uM for statin-sensitive S288C and 2.5 uM for
statin-resistant backgrounds) and the readout determined by flow
cytometry (gating strategy, Supplementary Fig. S18). Atorvastatin
activated significantly more UPR in statin-sensitive S288C than the
statin-resistant Y55 and UWOPS87-2421 (Fig. 6a-d), while there
were not significant differences in UPR activation between the
strains for cerivastatin treatment (Fig. 6h). To confirm the UPR is
activated by inhibition of the mevalonate pathway by statins, we
supplemented statin treatments with mevalonate and again
measured UPR. In S288C, the UPR activated by atorvastatin was
reduced with mevalonate (Fig. 6a, d) but not to control levels
whilst the response to cerivastatin in $288C was not reduced at all
with mevalonate (Fig. 6, h). In the statin-resistant strains, the UPR
activated by either statin was restored to control levels with
mevalonate supplementation (Fig. 6b-d, f-h). Thus, UPR was
entirely restored to control levels with mevalonate we termed a
direct effect in the statin-resistant strains, and in contrast, the
substantial UPR levels remaining above control levels after
mevalonate supplementation in statin-sensitive 5288C we term
indirect effects of the statin treatment. We conclude that both
atorvastatin and cerivastatin activated UPR differently to each
other and differently in the statin-sensitive and statin-resistant
genetic backgrounds.

DISCUSSION

This study aimed to better understand the function of GINs in
different genetic backgrounds elicited by three query genes and
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Fig. 5 Topology analyses of augmented GINs identify betweenness bottleneck genes and functional uniqueness of GINs. a 3D plot of gene
values calculated for closeness centrality, eigenvector centrality and betweenness centrality for the optimised four clusterings (o, B, v, 8) of
data in the augmented GINs file (Supplementary Table S6). b Deconvoluted driver genes with maximum betweenness centrality from
atorvastatin, cerivastatin, hmg14, hmg2A and arviA queries in S288C, Y55, UWOPS87-2421 and YPS606. ¢ Uniqueness values derived from
Gene Ontology semantic analysis of driver genes using multiple topology measurements: Tl (topology independent), CCC (closeness centrality
cluster), ECC (eigenvector centrality cluster), BCC (betweenness centrality cluster), 3FCC (closeness, eigenvector and betweenness clusters
combined). Shown here are uniqueness (a score that represents the negative of average semantic linearity of a GO term to all other terms),
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two statin probes. For any particular trait in SGA analysis, Gls
between pairs of genes indicate a functionality, which can give
rise to large GINs of overlapping pairs of several hundred genes all
of them potentially informative but requiring further analysis to
assess a rank of importance.*” Here we investigated statin drug
response by constructing GINs in different genetic backgrounds
and examined these GINs by multiple criteria including functional,
topological centrality, and clustering comparisons and especially
by community partitioning that has not previously been
conducted for GINs in yeast.

Substructure may be discerned within large network topology
by modularity optimisation that partitions the network into
communities of densely connected nodes within modules but
sparsely connected between modules.*® Community detection
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may then allow identification of functional modules by specific
enrichment of GO-terms for genes in communities allowing
inference of function. Nonetheless, community analysis is an
heuristic with limitations®>° that depends on achievement of
meaningful® results for its validation.>® To this end, we described
four unique and meaninful communities involved in ER stress;
firstly, the unique communities of early ER pathway genes (Fig. 4)
in response to statins and query gene deletions in all genetic
backgrounds. Secondly, the EMC1-7 complex, involved in ER
membrane protein insertion,>® folding and export,*® was found in
specific communities only in the statin-sensitive S288C strain
whilst the resistant strains did not have complete sets. The EMC
complex use per se is worthy of comment because in 5288C
subunits individually have an effect on intracellular traffic*® and it
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is possible the number of subunits used are proportional to ER
stress in S288C compared to the statin-resistant strains. Thirdly,
induced ER stress requires secretory pathway gene interactions
with kinetochore genes®® and here we detected the COMA
complex (Ctf19p, Okp1p, Mcm21p and Amelp) for atorvastatin
and cerivastatin response in all genetic backgrounds (except
YPS606 in cerivastatin) in one specific community (Supplementary
Table S9). Fourthly, we demonstrated that UPR-specific commu-
nities containing CWH41, IRE1 and/or HAC1 had different
complements of other UPR-related genes depending on genetic
background and also on whether the statin drug was atorvastatin
or cerivastatin. We conclude that the community heuristic we
used is justified and informative of genetic background depen-
dent communities.

Statins are known to induce UPR in the ER of C. elegans,' in
human myocytes®® and mouse macrophages®® but not in S.
cerevisiae prior to the current study. Here we demonstrate that
statins activate UPR in both statin-sensitive and statin-resistant
yeast strains. Interestingly, UPR activation was restored to control
levels with mevalonate only in the statin-resistant strains. This
observation is possibly explainable by a direct effect on the UPR
via ER protein mis-folding and ER-associated degradation
(ERAD)>°°'°2 in the resistant strains. We also found an indirect
effect of mevalonate supplementation on UPR induction in the
statin-sensitive S288C that arises from a quite different mechan-
ism for induction, one mediated by CSG2 which was a significant
bottleneck gene in the response to atorvastatin in the S288C
genetic background. CSG2 is involved in sphingolipid synthesis,®*
autophagy,® its loss induces UPR and it interacts extensively
with the secretory pathway genes.*® It is required for mannosyla-
tion of inositolphosphorylceramide MIPC and M(IP)2C,* and in all
genetic backgrounds treated with atorvastatin and cerivastatin,
CSG2 is required only in $288C. We therefore suggest that since
S288C has a less robust UPR, it requires an autophagy backup
when ERAD is saturated®® and that the indirect mevalonate effect
relates to autophagy balancing ER stress,®” mediated by CSG2.
This interpretation is supported by the requirement for a much
larger number of endosomal/retromer/autophagy-associated
genes in S288C than in the resistant strains in UPR communities
(Supplementary Table S9). Dependence on autophagy for buffer-
ing UPR in S288C is similar to observations reported for C.
elegans®® and human cells.®®

Comparisons of Gls between different yeast species have been
published,'”'® as well as intraspecific comparisons of quantitative
trait nucleotides for sporulation efficiency that were dependent on
genetic background in 13 yeast strains,’® comparisons of stress
quantitative trait loci (QTL) that varied across four different yeast
strains,®’ comparisons of QTL for ketoconazole, benomyl response
that varied across four advanced intercross yeast lines,”
comparisons of genes involved in conditional lethality segregating
in a cross of two yeast strains,'>'* and comparisons of genetic
modifiers of Gls that varied across genetic backgrounds.® Prior to
our current study that compared genome-wide GINs in four
genetic backgrounds of the same species, an equivalent study had
not been conducted. A similar approach was reported in bacteria
in a study on antibiotic resistance,”?> which concluded there was
little conservation of GINs in response to daptomycin in two
different strains of Streptococcus pneumoniae. Our current study
extends these results with comparison of network topological
centralities and communities that includes experimental valida-
tion of community analysis. We conclude that if the four yeast
strains studied here can be seen as a proxy for individuals, then
there is little conservation of GINs among individuals.

If specific GINs are not conserved across genetic backgrounds,
then what are the functions of GINs? GINs have been described as
having intrinsic functionality’® or as functional modules related to
topological modules.”*”> Thus, one might ask if GINs involving
hundreds of genes are units of heritability? We suggest that GINs
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may not be units of heritability because GINs relating to a specific
phenotype, the UPR response to statins in this paper, were not
conserved in different strains. Nonetheless, although GINs appear
to be ephemeral or transitory, it is possible that GINs have a role in
evolutionary potential.”>”® The concept of an evolutionary ratchet
of sequentially accumulating single mutations stabilised by within-
protein epistatic effects describing the evolution of the gluco-
corticoid receptor’” might be instructive. It is thus plausible that
GINs emergent on a new mutation are an evolutionary ratchet
that irreversibly stabilise a new mutation one at a time allowing
increased fitness through transient epistatic mechanisms super-
seded over time by additional mutations. The GINs in this model
would not be heritable but their effects would be heritable. Such a
model could be tested by observing whether an extant GIN seen
in a particular strain deletion library was ephemeral after
additional meioses but stable after additional mitoses.

In summary, we show the statin-resistant strains were
dependent on protein folding and early secretory pathway genes
that were sufficient to alleviate the requirement for the
mevalonate-dependent UPR. By contrast, in the statin-
susceptible S288C strain, ER stress was evident with greater
induction of the UPR that was both dependent and independent
of mevalonate. Topological centrality analysis identified between-
ness gene bottlenecks that are likely of key importance in the
statin response. We conclude that GIN function and the
topological properties of the network induced by a drug, in
addition to the main target, should be considered in the drug
mechanism of action and efficacy. The use of deletion libraries in
multiple genetic backgrounds in the tractable yeast system to
elucidate GINs will guide future eukaryotic chemical genomic
analyses from yeast to human cells in such investigations.

METHODS

Yeast strains and media

Strains of S. cerevisiae (Supplementary Table S1) including SGRP strains
(National Collection of Yeast Cultures (NCYC), Norwich, United Kingdom)
and the $288C DMA library were maintained in synthetic complete (SC),
synthetic dropout (SD), enriched sporulation, or yeast peptone dextrose
(YPD) as previously described.”® Media included yeast extract, peptone,
yeast nitrogen base without amino acids and ammonium sulphate, amino
acids and agar (Formedium), nourseothricin (Werner BioAgents), geneticin
(G418; Carbosynth) and hygromycin B (HPH; Life Technologies), 5-
fluoroorotic acid (Kaixuan Chemical), atorvastatin (Inter Chemical),
cerivastatin (Chengdu Caikun Biological Products) and ampicillin, canava-
nine and S-aminoethyl-L-cysteine (Sigma).

Backcross construction of SGRP deletion mutant array (ssDMA)
libraries

Backcross methodology was used to construct ssDMA libraries. Appro-
priate selection markers were introduced in SGRP strains via PCR-mediated
disruption with a variety of primers (Supplementary Table S13). The KanR
marker at the URA3 locus in SGRP strains was replaced with pAG60-derived
CaURA3 (Supplementary Table $14),”° which was then removed by
homologous recombination with the flanking ura3A0 region from
BY4742, followed by growth on 5-FOA media selecting for URA3 null
mutation. The selected SGRP strains were crossed with the original $288C
DMA and the hybrid progeny backcrossed five more times with the SGRP
strains, resulting in three new deletion libraries we termed “ssDMAs” for
SGRP strain deletion mutant arrays.

Genome sequence analysis and genomic authenticity of ssDMA
libraries

The ssDMA strains were subjected to whole-genome sequence analysis to
determine the efficacy of the backcross strategy. Genomic DNA was
extracted from pooled yeast strains from plate 10 of the DMA and ssDMA
libraries. Truseq Nano 350 bp insert libraries were prepared using a TruSeq
Rapid SBS kit or TruSeq SBS kit v4 and sequenced on an lllumina
HiSeq2000 instrument (Macrogen). Raw image processing, base calling and
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conversion to FASTQ format was carried out at Macrogen by HiSeq Control
Software v2.2, Real Time Analysis v1.18.61, and bcl2fastq v1.8.4. All
sequence data were aligned to the S. cerevisiae $288C reference genome®
and SGRP strains2® The data alignment pipeline was carried out as
previously described.”’ Whole Genome Vista®' was used to align the FASTA
sequence of each ssDMA to the respective parental SGRP strain. The
pairwise alignment score was calculated from the summation of the
alignment score of each aligned fragment with a weighting on the basis of
fragment size and filtration to only retain regions that had 100% alignment
between the ssDMA sequence and parental strains. Sequence coverage in
the final BAM file was used to determine if any aneuploidy was evident in
any of the ssDMA libraries. Per-base sequence coverage was exported
using Unipro UGENE v1.27 and the mean average coverage was calculated
for each 20 kb genomic bin.

SGA analysis

SGA analysis was conducted as previously described® with the additional
methodology of integrating SGA reporters in the MATa ssDMA strains. The
CEN-URA3 marker (pRS316) was expressed in the standard SGA query strain
(Y7092) with the reporter (can1A:STE2pr-Sp_his5), mated with the SGRP
parent, and the CEN-URA3 marker was removed with selective killing on
media containing 5-FOA. Replica plating (pinning) was performed using an
automated RoToR HDA system (Singer Instruments). Double deletion
mutants at completion of the SGA analysis were incubated at 30 °C for 48 h
and imaged using a digital camera (Canon EOS 600D).

Chemical genetic analysis

Growth (measured as an end point after 48 h, used as a proxy for fitness) of
ssDMA and S288C libraries was evaluated at concentrations of atorvastatin
and cerivastatin that inhibited growth by ~40% in SC media. These
concentrations of atorvastatin (25, 100 uM) and cerivastatin (10, 50 uM)
were based on growth of plate 10 in each library in the screening format of
1536 colonies per plate. The S288C and ssDMA libraries were pinned in
1536 format on the media containing either atorvastatin, cerivastatin or
DMSO (vehicle control), incubated at 30 °C for 48 h, and imaged using a
digital camera (Canon EOS 600D).

Phenotypic analysis

Colony size and circularity were measured using Gitter®? and statistically
compared using ScreenMill.®? Growth ratios (double deletion vs single
deletion, treated single deletion vs untreated single deletion) were
represented in Z-score values that were statistically evaluated using a
normal distribution. Interactions (Z>2.0, P <0.05) were visualised using
Cytoscape v3.5.1.2%

SAFE analysis

SAFE analysis was performed as previously described'® using the global
GIN of S. cerevisiae,'>* where the map-weighted shortest path length was
the distance metric, maximum distance from a node was set at 7.5 radius,
and threshold for enrichment significance was 0.05.

Topology analysis of augmented GIN

We assembled an augmented GIN using adjacency matrices®® comprising
the 1660 hits in the 20 primary SGAs of this paper arising from the five
probes (atorvastatin, cerivastatin, hmgi1-A, hmg2-A, arvi-A) in the four
genetic backgrounds (Supplementary Table S4) and additional genes from
the published global GIN'>%¢ to include all genes less than two levels of
distance apart (i.e.,, path length of 3) from the seed vertices of the genes
from the 20 primary SGAs utilising K-edge centralities. The resulting 20
adjacency matrix files of ~2000 x ~2000 nodes each made up our 20
augmented GINs (Supplementary Table S6) were used for topology
analyses in this paper (Figs. 4, 5). Closeness centrality, betweenness
centrality and eigenvector centrality were calculated as previously
described.”® Interactions were additionally filtered based on established
stringent cut offs for digenic and trigenic interactions.' Bootstrap analysis
(n=1000) of a random sample set of genes of the same size was
statistically compared with our list using a Mann-Whitney rank test. Only
networks with P-values below 0.05 were included in the topology analyses.

Published in partnership with the Systems Biology Institute

Functional community clustering analysis

Networks were visualised as sorted adjacency matrices for best community
modularity using the Louvain method.*® Defining A as edge weight, k as
the sum of the weights of the edges attached to respective vertex, 2m as
the sum of all of the edge weights in the graph, C as the community, and 6
as Kronecker delta for a weighted network with vertices i, random walk
modularity M was defined as:

1 kik;
M= ﬂizj[Aij —ﬂ}é(q,cj).
Change of modularity after reassigning the community was calculated as

follows:
B (- ()]

AM = |:(Zin +2kjn _ 2ot +kj)2

2m 2m

GO enrichment analysis

GO terms were identified using GOATOOLS*® for each community and
statistically evaluated using P-values that were corrected using a 2-stage
Benjamini-Krieger-Yekutieli false discovery rate (FDR). Distinct, functional
communities were defined by ‘uniqueness’, a score that represents the
negative of average semantic similarity of a term to all other terms
according to Lin’s semantic similarity.?”

UPR analysis

The UPR was evaluated using a highly specific fluorescent marker as
previously described.3®3° Strains expressing four tandem repeats of the
UPR elements fused to a GFP (4X-UPRE-GFP) were subcultured to an OD of
0.2 and treated with appropriate 1C,, concentrations of atorvastatin or
cerivastatin for 4h at 30°C. Fluorescence was measured using a
FACSantoTM Il flow cytometer (Becton Dickinson) across 100,000 total
events. Cells stained with 4 ug/mL of propidium iodide (Pl) to determine
cell viability were first identified by gating on FSC-A/SSC-A. Next, a singlets
gate was placed on single cells by SSC-A/SSC-W. Singlets were then
assessed by FSC-A against Pl fluorescence using the 488 laser and 585/42
filter set, and a live cells gate placed on the Pl-negative population
(Supplementary Fig. S18). GFP expression was quantified in the whole live-
cell population using the 488 laser and 530/30 filter set, and data
presented as the geometric mean fluorescence intensity + median
absolute deviation was calculated using FloJo (Becton Dickinson).

Reporting summary

Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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