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Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopa-
minergic neurons that results in characteristic motor and non-motor symptoms. l-3,4 dihydroxyphenylalanine (l-DOPA) is the 
gold standard therapy for the treatment of PD. However, long-term use of l-DOPA leads to side effects such as dyskinesias 
and motor fluctuation. Since purines have neurotransmitter and co-transmitter properties, the function of the purinergic sys-
tem has been thoroughly studied in the nervous system. Adenosine and adenosine 5′-triphosphate (ATP) are modulators of 
dopaminergic neurotransmission, neuroinflammatory processes, oxidative stress, excitotoxicity and cell death via purinergic 
receptor subtypes. Aberrant purinergic receptor signalling can be either the cause or the result of numerous pathological 
conditions, including neurodegenerative disorders. Many data confirm the involvement of purinergic signalling pathways in 
PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial 
in the treatment of PD. We give a brief summary of the background of purinergic signalling focusing on its roles in PD. 
Possible targets for pharmacological treatment are highlighted.
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ADORA2A	� Adenosine A2A receptor
ADP	� Adenosine 5′-diphosphate
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CB1	� Cannabinoid receptor type 1
DA	� Dopamine

GABA	� γ-Amino butyric acid
GRIN2A	� Glutamate ionotropic receptor NMDA type 
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l-DOPA	� l-3,4 dihydroxyphenylalanine
LPS	� Lipopolysaccharide
LRRK2	� Leucine-rich repeat kinase 2
6-OHDA	� 6-hydroxydopamine
mGlu	� Metabotropic glutamate receptor
MPP+	� 1-Methyl-4-phenylpyridinium
MPTP	� 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine
MSA	� Multiple system atrophy
NMDA	� N-methyl-d-aspartate
PD	� Parkinson’s disease
ROS	� Reactive oxygen species
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Introduction

Parkinsons’s Disease: Pathophysiological 
Background

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, characterized by progres-
sive loss of dopaminergic neurons in the substantia nigra 
pars compacta that results in dopamine (DA) deficiency 
in the striatum. The ongoing degeneration of this peculiar 
pathway causes the characteristic motor symptoms such as 
resting tremor, rigidity, bradykinesia and postural insta-
bility [1, 2]. Besides dopaminergic neural degeneration, 
the presence of Lewy bodies (protein aggregates) due to 
misfolding of α-synuclein occurs in various regions of the 
affected brain [3]. In spite of many studies on the patho-
genesis of PD, the precise mechanism underlying these 
events has not been unraveled yet. However, a genetic pre-
disposition associated with disturbed proteostasis due to 
impaired ubiquitin–proteasome system, mitochondrial dys-
function, oxidative stress and neuroinflammation seems to 
play cardinal roles for the α-synuclein aggregation and the 
progression of pathology in PD [4–7]. Among these fac-
tors, the pathological, self-amplifying interaction between 
mitochondrial dysfunction and oxidative stress has been 
early recognized, which might be a key factor responsible 
for the selective vulnerability of dopaminergic neurons in 
PD, and one potential reason behind the clinical failures 
of neuroprotective therapies so far [8]. Dysfunction of the 
mitochondrial complex I results in an enhanced produc-
tion of reactive oxygen species (ROS), which, in turn will 
inhibit complex I and other vital metabolic enzymes such 
as alpha-ketoglutarate dehydrogenase, whilst the latter 
also serves as a source of ROS generation in mitochon-
dria [9, 10]. Simultaneous or preceding mitochondrial 
dysfunction exacerbates the effect of oxidative stress on 
pathological monoamine release from nerve terminals [11, 
12]. This process leads to the formation of toxic, oxidative 
DA metabolites, such as dopamine quinone, which might 
further amplify the ongoing degeneration process [13]. 
Therefore, disease-modifying potential could be primarily 
expected from those novel multi-target therapies, which 
simultaneously target the above mentioned pivotal patho-
logical pathways and prevent their pathological interaction 
[14, 15].

The Current Treatment of PD

As for the symptomatic treatment of PD, the clinical break-
through came with the first clinical trials of DA replace-
ment therapy using the high dosage of the DA precursor 

l-3,4 dihydroxyphenylalanine (l-DOPA) [16–19]. l-DOPA 
is able to cross the blood–brain barrier and converts into 
DA that engages specific DA receptor subtypes (D1 to D5) 
[20]. However, long-term use of l-DOPA leads to a dys-
balance of striatal circuits of the motor system and leads 
to side effects such as l-DOPA induced dyskinesias and 
motor fluctuation in 50% of patients after 5 years of con-
tinuous treatment [21, 22]. The therapeutic management 
of these complications is difficult and there is a need for 
developing effective and new pharmacological therapies 
against motor fluctuation and dyskinesias [23].

Purinergic Signalling: Concept and Purinergic 
Receptors

The concept of purinergic signalling, being adenosine 
5′-triphosphate (ATP) as an extracellular signalling mol-
ecule with neurotransmitter properties was proposed in the 
early 1970s [24, 25]. A couple of years later, purines were 
also described as co-transmitters and neuromodulators in 
the peripheral and central nervous system (CNS), as they 
are able to modulate other signalling pathways and neuro-
transmitter systems [26–28]. ATP is co-released with ace-
tylcholine, catecholamines, γ-amino butyric acid (GABA), 
glutamate and DA in the CNS [29–34]. Extracellular ATP is 
released from cells under physiological conditions. The lev-
els of extracellular ATP are controlled by ectonucleotidases 
that catalyze its degradation [35, 36].

There are two families of purinergic receptors, which are 
distinguished by their main agonists [37]. P1 receptors are G 
protein-coupled metabotropic receptors activated by adeno-
sine and can be subdivided into four subtypes (A1, A2A, A2B, 
A3). P2 receptors are subdivided into two classes: P2X(1-7) 
ionotropic receptors, activated by ATP and G protein-cou-
pled metabotropic P2Y(1-2,4,6,11-14) receptors, activated by 
ATP, adenosine diphosphate (ADP), uridine di- and triphos-
phate (UDP and UTP), or UDP-glucose depending on the 
receptor subtype [38–40]. ATP is able to bind to the extra-
cellular ligand-binding site of P2X receptors and leading to 
conformational change that opens a permeable channel to 
Na+, K+ and Ca2+. The activation of these ionotropic recep-
tors is important for Ca2+-induced intracellular signalling 
pathways [41–43]. Depending on the activated adenosine 
and P2 receptor subtype, the induced signalling pathway 
may vary. These activated receptors are able to make altera-
tions in Ca2+ levels, which modulate the activity of several 
secondary messengers involved in physiological processes 
[44–46]. The final effects of purinergic receptor-mediated 
signalling depend on the cell type and other physiological 
(neurogenesis, proliferation, cell death, stem cell differen-
tiation) or pathological cellular conditions (inflammatory, 
neurological, psychiatric, oncological, cognitive, neuromus-
cular and neuromotor diseases) [47–66]. Purinergic receptor 
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activation may have para- or autocrine nature, which is char-
acteristic for astrocytes in the regulation of neuronal activity 
[67]. Not only purinergic receptors but membrane nucleo-
tide/nucleoside transporters, channels and ectonucleotidases 
also play important role in purinergic signalling [36, 68–70].

Adenosine is the predominant, presynaptic modulator 
of neurotransmitter release in the CNS, although ATP has 
presynaptic modulator effect as well [71–73]. Adenosine 
is produced by enzymatic breakdown of released ATP, but 
some CNS cells are able to release adenosine directly [74]. 
A1 and A2A receptors have higher affinity (activated by phys-
iological extracellular levels of adenosine) and A2B and A3 
receptors have lower affinity (activated by higher extracel-
lular levels of adenosine) for the ribonucleoside [75–77]. 
The adenosine A1 and A2A receptors are highly expressed 
in the brain and CNS, where they have profound influence 
on neuronal activity. Adenosine A1 receptor is the dominant 
adenosine receptor subtype in the CNS. Adenosine A1 recep-
tors can be found in various cortical and subcortical regions 
of the brain, while A2A receptors are mainly expressed in the 
striatum [78–81] (Table 1). In contrast, adenosine A2B and 
A3 receptors are mainly found in peripheral tissues, even 
though low levels of these receptors are also expressed in 
some regions of the brain [82–84].

There is a heterogeneous distribution of P2 purinergic 
receptors in the CNS as well. For instance P2X1 receptors 
are predominantly expressed in the cerebellum, while P2X3 
receptors are expressed in the brainstem [85, 86], and they 
can be found in the basal ganglia with variable expression 
level [87] (Table 2). Various P1 and P2 receptor subtypes 
are also expressed by microglia, astrocytes and oligodendro-
cytes [88–93]. Extracellular nucleotides act as messengers 
between neuronal and non-neuronal cells, thereby integrat-
ing functional activity between neurons, glial and vascular 
cells in the CNS [94–98]. Adenosine and ATP—as key play-
ers in neuron–glia interaction and microglial activation—
are modulators of neuroinflammatory processes, oxidative 
stress, excitotoxicity and cell death [99–102]. Aberrant 
purinergic receptor signalling can be the cause or result of 
numerous pathological conditions, including neurodegen-
erative disorders [103]. Here, we explore the importance of 
purinergic signalling in PD to suggest potential targets for 
novel therapies.

Purinergic Signalling Involvement in PD

Purinergic Gene Polymorphisms in PD

Two ADORA2A (A2A receptor) polymorphisms (rs71651683, 
a 5′ variant or rs5996696, a promoter region variant) were 
inversely associated with genetic PD risk, moreover, there 
was evidence of interaction with coffee consumption [104]. 
CYP1A2a is an enzyme, which is responsible for caffeine 
metabolism, two polymorphisms (rs762551 or rs5996696) 
of the enzyme in homozygous coffee drinkers reduced PD 
risk [104]. Humans with R1628P variant (LRRK2 risk vari-
ant) who did not take caffeine had a 15 times increased risk 
of PD [105]. GRIN2A encodes an N-methyl-d-aspartate-
2A (NMDA) glutamate receptor subunit involved in cen-
tral excitatory neurotransmission, which is associated with 
A2A receptor activation. Carriers of GRIN2A rs4998386-T 
allele had a lower risk of PD, than carriers of rs4998386-CC 

Table 1   Localization of 
adenosine receptor subtypes in 
CNS [80, 81]

CNS

A1 High levels in striatum, thalamus and moderate levels in cortex, 
pons

A2A High levels in striatum, thalamus, hippocampus
A2B Low levels in microglia cells, astrocytes
A3 Low levels in cortex, hippocampus, striatum, cerebellum

Table 2   Expression of P2 
receptor subtypes in the basal 
ganglia (striatum and substantia 
nigra) [87]

Expression level of P2 recep-
tor subtypes: – = no expres-
sion, ↑ = low expression, 
↑↑ = medium expression, 
↑↑↑ = high expression

Striatum Sub-
stantia 
nigra

P2X1 ↑↑↑ ↑↑↑
P2X2 ↑↑↑ ↑↑↑
P2X3 ↑↑ ↑↑
P2X4 ↑↑↑ ↑↑↑
P2X5 ↑ ↑↑↑
P2X6 ↑ ↑↑
P2X7 ↑↑ ↑↑
P2Y1 ↑ ↑↑
P2Y2 ↑↑↑ ↑↑↑
P2Y4 ↑↑↑ ↑↑↑
P2Y6 ↑ ↑↑↑
P2Y11 – –
P2Y12 ↑↑↑ ↑↑↑
P2Y13 – –
P2Y14 – ↑↑↑
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genotype among heavy coffee drinkers [106]. There is evi-
dence that creatine is able to hasten PD progression in 
GRIN2A coffee drinkers, which demonstrates an example of 
a genetic factor interacting with environmental factors exem-
plifying the complexity of environment–gene interactions 
in the progression of PD [107]. In addition, P2X7 receptor 
1513A>C polymorphism is a risk factor for sporadic PD, 
late-onset PD and male PD in Han Chinese population [108].

Adenosine Receptor‑Mediated Signalling in PD

A2A receptors are enriched in dopaminergic brain areas (the 
highest expression of these receptors are in the striatum), 
thus pointing to a significant role of purines in motor control 
[109]. A2A and DA D2 receptors are mainly expressed in the 
neurons of the indirect pathway of striatal circuits projecting 
to the globus pallidus, in contrast to A1 and DA D1 receptors, 
which are mainly found on the neurons of the direct pathway 
of motor control projecting to the internal globus pallidus 
and substantia nigra pars reticulata. The main adenosine 
signalling mechanism is via the cyclic adenosine monophos-
phate (cAMP)-dependent pathway. Activated A2A receptors 
stimulate the enzymatic function of adenyl cyclase that 
increases cAMP levels and depresses the signalling medi-
ated by D2 receptors. Activation of protein Gi-coupled DA 
D2 receptors leads to reduction in the cAMP level. There is 
a reciprocal situation in the direct pathway of motor control 
with protein Gs-coupled D1 and protein Gi/o-coupled A1 
receptors. Generally, adenosine acts as a negative modula-
tor of D1- and D2-mediated actions in the direct and indirect 
pathways [110–112].

The antagonistic functional interaction between adeno-
sine A2A and DA D2 receptors may depend on the forma-
tion of receptor heterodimers (A2A-D2 heteroreceptor com-
plexes) in the striatum thereby balancing the inhibitory and 
excitatory impulses in the striatal circuits [112]. Not only 
dopaminergic mechanisms, but non-dopaminergic modes of 
action of A2A receptors may involve interactions with vari-
ous non-dopaminergic receptors, possibly by forming heter-
odimeric and/or multimeric receptor complexes [23]. Thus, 
adenosine A2A receptors may adjust the actions of striatal 
adenosine A1 receptors (A1-A2A heteroreceptor complexes), 
metabotropic glutamate receptors (mGlu) 5 (A2A-mGlu5 het-
eroreceptor complexes), cannabinoid receptor type 1 (CB1) 
receptors (A2A-CB1 heteroreceptor complexes) and serotonin 
1A (5-HT1A) receptors [113–115]. Moreover, studies also 
suggested the presence of multimeric A2A-D2-mGlu5 and 
A2A-CB1-D2 receptor complexes in the striatum [116, 117]. 
These functional interactions between receptors may modu-
late the activity of striatal efferent neurons and influence 
motor behavior [23]. In general, adenosine tone appears as 
a key for the fine tune control of DA dependent actions in 

the basal ganglia and affects non-dopaminergic mechanisms 
also [20].

Adenosine receptor antagonists (especially non-selective 
A2A receptor antagonists, such as methylxanthines, caffeine, 
or selective A2A antagonists) have been shown to enhance 
therapeutic effect of l-DOPA in a wide range of animal 
models of PD [118–121]. A2A homoreceptor complexes are 
in balance with DA D2 homoreceptor complexes in intact 
striatum [122–126]. Dysbalance of striatal circuits leads to 
motor inhibition and disruption of this balance in PD leads 
to increased signalling via A2A receptors and decreased 
signalling via DA D2 receptors. These changes explain the 
beneficial effect of A2A receptor antagonists on increasing 
motor functions without worsening l-DOPA-induced dys-
kinesias [20, 127].

A2A receptor antagonists have been used in clinical tri-
als in patients with PD (Table 3). Istradefylline is a xan-
thine-based compound with increased selectivity for A2A 
receptors against A1 receptors, which is used concomitantly 
with l-DOPA [128]. The drug was not approved in the USA 
because there was no significant reduction in off time com-
pared to l-DOPA treatment [129]. In contrast, istradefyl-
line was approved in Japan in 2013 with the trade name 
Nouriast® to enhance the antiparkinsonian effect of l-DOPA 
with less long-term side effects [130, 131]. Preladenant is a 
second-generation A2A receptor antagonist, which failed in 
phase III clinical trials in the treatment of PD because the 
compound was not superior to placebo in reducing off state 
[132, 133]. Vipadenant is a triazolopyromidine-based drug, 
which has increased selectivity for A2A receptors versus A1 
and A3 receptors [134]. Its development as an antiparkinso-
nian medication was stopped; however, A2A receptor antago-
nists have considerable potential in novel immune-oncology 
and cardiology therapies [113, 135–137]. Another adenosine 
A2A receptor antagonist, tozadenant was safe, well tolerated 
and effective in reducing off time in PD patients in phase II 
trial but phase III clinical trial was discontinued because 
of serious adverse events (agranulocytosis) [23, 133, 138]. 
There have been many drug trials for selective A2A receptor 
antagonists. Most of them were shown to be safe, well toler-
ated and beneficial; however, the majority did not reach the 
regulatory threshold for efficacy to be approved as PD drugs 
[139, 140]. Development of bivalent drugs (able to bind to 
two receptors simultaneously) to target A2A-D2 heterorecep-
tor complexes acting on A2A and DA D2 receptors may be 
a good therapeutic approach in the future. Heterobivalent 
drugs offers the opportunity to target the orthosteric sites 
of the receptors in the heterodimer with a higher affinity 
and a higher specificity versus corresponding homomers and 
reduce the dose required for therapy and, accordingly, the 
side effects [20].

Adenosine A2A receptor antagonists may also involve 
direct or indirect actions at microglia and inflammatory 
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processes. Pre-treatment of slices from 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-injected mice with 
preladenant facilitates the ability of activated microglia to 
respond to tissue damage [141]. The nonselective A1/A2A 
adenosine receptor antagonist caffeine and the selective 
A2A receptor antagonist (KW-6002) had anti-inflammatory 
potential in a rat model of lipopolysaccharide (LPS)-induced 
neuroinflammation [142].

The Role of A2A Receptors in Synucleopathy

Increased striatal A2A receptor expression was observed as 
an early pathological event in PD and increased A2A recep-
tor expression was detected after hippocampal injection of 
α-synuclein in mice [143, 144]. A2A receptor-knock out 
mice showed resistance against α-synuclein induced insults 
[145]. A2A receptor antagonism restrained hyperactivation 
of NMDA-glutamate receptors and decreased the aggrega-
tion of α-synucleins [146]. Based upon these results, A2A 

receptors seem to have role in the pathological process of 
synucleinopathy [111].

P2 Receptor‑Mediated Signalling in PD

P2 ionotropic and metabotropic receptors are widely 
expressed in basal ganglia and in various cell types, such 
as neurons and astrocytes [87, 147, 148]. 6-Hydroxidopa-
mine (6-OHDA) induced lesions of nigral dopaminergic 
neurons generate a significant decrease in the expression of 
P2X and P2Y receptor proteins from striatal spiny neurons 
and GABAergic interneurons, thus confirming the involve-
ment of P2 receptors and extracellular ATP in the striatal 
circuits [87]. P2Y1 and P2X1-4, 6 receptor protein subtypes 
are expressed in dopaminergic neurons with co-expression 
of P2X1 with DA D1 receptors, therefore stimulation of P2 
receptors by ATP induces an increased release of DA in 
the striatum [149–152]. In a neuronal cell model, extracel-
lular ATP induced a significant increase in intracellular 

Table 3   Pre-clinical and clinical studies with purinergic receptor antagonists in PD

The list is not comprehensive and is restricted to studies mentioned in the article. For further references, see [111, 113]

Compounds Mechanism of effect Models Published Results

KW-6002 (istradefylline) A2A receptor antagonism PD patients 2003 Improved PD motor scores when 
added to low-dose l-DOPA

KW-6002 (istradefylline) A2A receptor antagonism LPS treated rats 2013 Enhanced therapeutic effect of 
l-DOPA

Caffeine A2A receptor antagonism LPS treated rats 2013 Reduced motor impairment
Preladenant A2A receptor antagonism MPTP treated mice 2014 Enhanced therapeutic effect of low 

doses of l-DOPA
8-Ethoxy-9-ethyladenine A2A receptor antagonism 6-OHDA lesioned rats 2015 Enhanced effect of low doses of 

l-DOPA without increased dyski-
nesia

SCH 58261 A2A receptor antagonism A2A receptor knockout mice, SH-
SY5Y cells

2015 Decreased α-synuclein aggregation, 
prevented neuronal death

ZM 241385 A2A receptor antagonism A2A receptor knockout mice, SH-
SY5Y cells

2015 Decreased α-synuclein aggregation, 
prevented neuronal death

Preladenant A2A receptor antagonism PD patients 2017 Failed (was not superior to placebo) in 
phase III clinical trial

Vipadenant A2A receptor antagonism PD patients 2009 Failed (was not superior to placebo)
Tozadenant A2A receptor antagonism PD patients 2017 Failed in phase III clinical trial 

(induced agranulocytosis)
NF449 P2X1 receptor antagonism H4 cells 2015 Prevented α-synuclein aggregation
A-438079 P2X7 receptor antagonism 6-OHDA lesioned rats 2010 Prevented depletion of DA in striatum
BBG P2X7 receptor antagonism 6-OHDA lesioned rats 2014 Reverted dopaminergic neurons loss 

in substantia nigra
BBG P2X7 receptor antagonism BV2 microglia cells 2015 Decreased ROS production induced 

by α-synuclein
PPADS P2X7 receptor antagonism SH-SY5Y cells 2017 Prevented abnormal calcium influx 

induced by α-synuclein
AZ 11645373 P2X7 receptor antagonism SH-SY5Y cells 2017 Prevented abnormal calcium influx 

induced by α-synuclein
AP4A P2Y2/P2Y4 antagonism 6-OHDA lesioned rats 2003 Reduced dopaminergic neurons loss
MRS2578 P2Y6 receptor antagonism SH-SY5Y cells 2017 Delayed neuronal loss
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α-synuclein levels, which was the result of lysosome dys-
function caused by P2X1 receptor activation [153].

Many data have implicated the role of P2X7 receptor in 
PD. P2X7 receptor antagonism with A-438059 or Brilliant 
Blue G (BBG) prevented DA deficit in the striatum and 
6-OHDA-induced hemiparkinsonian behavior [154, 155]. 
However, P2X7 receptor deficiency or inhibition did not pro-
mote the survival of dopaminergic neurons in rotenone and 
MPTP induced animal models of PD [156]. It is presumed 
that there is a massive release of ATP during cell death in 
the lesioned striatum and substantia nigra, which activates 
cell death pathways via purinergic receptors and is able to 
activate further purinergic subtypes [20]. Permanent puriner-
gic receptor activation and ATP release seem to play a key 
role in the neuronal death, which exacerbates α-synuclein 
aggregation in PD [87]. The accumulation of α-synuclein 
might overwhelm the capacity of intracellular protein-deg-
radation mechanisms and induce neuroinflammation, which 
creates a positive feedback loop promoting the degeneration 
of dopaminergic cells [7]. α-Synuclein-induced intracellular 
free calcium mobilization in neuronal cells depends on the 
activation of purinergic P2X7 receptors. In the same study, 
activation of P2X7 receptors lead to ATP release with the 
recruitment of the pore forming protein pannexin1, whilst 
α-synuclein decreased the activity of extracellular ecto-
ATPase which is responsible for ATP degradation [157]. 
Stimulation of the microglial P2X7 receptor by extracellular 
α-synuclein increased oxidative stress, which was prevented 
with the use of P2X7 receptor antagonist [158].

DA neurotransmission has been linked to calcium sig-
nalling. There is data that P2Y1 receptor is involved in the 
regulation of calcium signalling [159]. Neurodegeneration 
induced by 6-OHDA in nigrostriatal dopaminergic neurons 
was reduced by pretreatment with diadenosine tetraphos-
phate (AP4A, an endogenous diadenosine polyphosphate) 
possibly through an anti-apoptotic mechanism and the acti-
vation of P2Y1 and P2Y4 receptors [160]. Recently, expres-
sion levels of P2Y6 receptor in PD patients younger than 
80 years were higher than healthy controls and multiple 
system atrophy (MSA) patients and P2Y6 receptor could 
thereby be a potential clinical biomarker of PD. P2Y6 recep-
tor was also upregulated in LPS-treated microglial cells and 
involved in proinflammatory cytokine release through UDP 
secretion [161]. Another study showed that expression of 
P2Y6 receptor on neuronal SH-SY5Y cell is associated with 
the progression of oxidative stress and cell death induced 
by 1-methyl-4-phenylpyridinium (MPP+) [162]. In vivo, 
LPS induced microglial activation and delayed neuronal 
loss was prevented by selective inhibition of P2Y6 receptor 
with MRS2578 [163]. Based on these studies P2Y6 receptor 
subtype seems to be involved in the process of neuroinflam-
mation in PD and blocking UDP/P2Y6 receptor signalling 
could reverse these pathological processes [161].

Conclusion

In general, many data confirm the involvement of puriner-
gic signalling pathways in PD. Modulation of purinergic 
receptor subtypes, the activity of ectonucleotidases and 
ATP transporters could be beneficial in the treatment of 
PD. Antagonism of A2A, P2X1, P2X7 and P2Y6 receptor 
subtypes is a promising weapon against PD via various 
ways: reducing l-DOPA induced dyskinesia, influencing 
neuroinflammation, preventing α-synuclein aggregation, 
reducing microglia activation. Development of new biva-
lent compounds to target A2A-D2 heteroreceptor com-
plexes, which are orally bioavailable and can cross the 
blood–brain barrier could be a potential therapeutic tool. 
In addition, multi-target compounds targeting self-ampli-
fying circuits controlled by purinergic and non-purinergic 
receptors could be a viable strategy to obtain the desired 
disease-modifying effect [164]. Additional studies and bet-
ter quality PD animal models are required for the deeper 
understanding of underlying unknown pathological pro-
cesses in PD and the role of purinergic signalling in it.
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