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Abstract

An operon is a set of neighboring genes in a genome that is transcribed as a single polycistronic 

message. Genes that are part of the same operon often have related functional roles or participate 

in the same metabolic pathways. The majority of all bacterial genes are co-transcribed with one or 

more other genes as part of a multi-gene operon. Thus, accurate identification of operons is 

important in understanding co-regulation of genes and their functional relationships. Here, we 

present a computational system that uses RNA-seq data to determine operons throughout a 

genome. The system takes the name of a genome and one or more files of RNA-seq data as input. 

Our method combines primary genomic sequence information with expression data from the 

RNA-seq files in a unified probabilistic model in order to identify operons. We assess our 

method’s ability to accurately identify operons in a range of species through comparison to 

external databases of operons, both experimentally confirmed and computationally predicted, and 

through focused experiments that confirm new operons identified by our method. Our system is 

freely available at https://cs.wellesley.edu/~btjaden/Rockhopper/.
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1. Introduction

An operon is a set of consecutive genes on the same strand in a genome that are co-

transcribed into a single polycistronic message. Operons were first described by Jacob and 

Monod [1]. Operons pervade the genomes of bacteria and archaea, and less commonly can 

be found in eukaryotes such as nematodes [2]. They are a means by which an organism can 

implement co-expression of related genes. As a result, identification of operons is an 

important component in elucidating gene regulatory networks.
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A variety of experimental approaches have been employed to detect operons, such as RNA 

polymerase footprinting, primer extension or S1 mapping, northern blotting, RNase 

protection assays, and RT-PCR. While these experimental methods may be precise and 

provide strong evidence in support of an operon, they can be relatively costly or time 

consuming. Thus, a number of computational methods have been developed for systematic 

identification of operons throughout a genome. These computational methods have the 

advantage of being fast and efficient, but the operon predictions they generate can have 

varying degrees of accuracy with respect to their correspondence with experimentally 

verified operons [3].

Computational methods for predicting operons generally start with directons, which are 

consecutive genes on the same strand of a genome [4], and use various features indicative of 

operons to predict whether the genes in the directon are co-transcribed as part of a single 

operon or not. The features used in computational methods for predicting operons (reviewed 

in [5, 6]) can be described generally by three categories: (1) primary sequence features, (2) 

external data source features, and (3) transcript expression features.

In the first category, primary sequence features, the most commonly used feature is 

intergenic distance [6]. The distribution of intergenic distances for genes known to be part of 

the same operon is different, and on average shorter in length, than the distribution of 

intergenic distances for consecutive genes in a genome that are not part of the same operon. 

Intergenic distance between consecutive genes is straightforward to compute and offers 

strong predictive power relative to many other features used for operon prediction [6, 7]. 

Another example of a primary sequence feature that can be used for operon prediction is the 

presence of transcription signals, such as promoters or terminators - most commonly Rho-

independent terminators - at the beginning and end of the candidate operon, respectively, but 

not between genes within the candidate operon [8]. Codon usage is commonly used for the 

problem of identifying protein-coding gene sequences in a genome, and an early studied 

observed different codon usage patterns for genes in the same operon as compared to genes 

in different operons based on a small sample of genes [9]. Several studies have employed 

codon usage as a feature in operon prediction under the assumption that codon usage for 

genes in the same operon is more similar than codon usage for genes not in the same operon 

[10–12]. However, the results are mixed when evaluating the contribution of codon usage as 

a feature in operon prediction, with some examples of codon usage showing significant 

predictive power [10] and other examples showing little or no statistical difference when 

incorporating this feature into operon prediction [11, 12].

In the second category, external data source features, features for operon prediction have 

been derived from various data sources beyond an organism’s genomic sequence. One 

feature in this category is the functional relationship of the protein products from genes in a 

candidate operon [13]. Functionally related genes as determined from clusters of 

orthologous groups (COGs) of proteins and participation in similar metabolic pathways can 

be indicative of genes that are co-transcribed as part of the same operon [14]. Comparative 

genomics analyses are commonly used to identify these features, as phylogenetic profiles 

evince neighborhoods of conserved genes [15, 16]. Among operon prediction methods that 

utilize features from the first two categories but not the third category, transcript expression 
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data, the method based on the STRING database [13] and its corresponding webservers [7, 

17] demonstrates some of the highest accuracy of operon predictions [18], and it uses 

conserved genes profiles as a core feature.

In the third category, transcript expression data, features are determined from whole-genome 

transcript expression assays. Early studies used microarray data to aid in operon prediction. 

Co-expression across different conditions of consecutive genes suggests an increased 

likelihood of the genes belonging to the same operon [19]. Similarly, observed expression 

from the intergenic region between genes indicates an enhanced likelihood of the genes 

being co-expressed [20]. In recent years, there has been an explosion in the use of RNA-seq 

data throughout biological and related sciences. The Sequence Read Archive (SRA) now 

contains more than 20 peta-bases of sequencing data [21, 22]. Along with this growth in 

RNA-seq data is its increasing use in characterizing operons. In some cases, methods based 

on RNA-seq data have been developed and applied to identify operons in specific organisms 

[23–26]. In other cases, general purpose tools have been developed to predict operons 

broadly based on RNA-seq data [12, 16, 27].

In order to improve access to the growing number of operon identifications, a number of 

databases and web servers are available. In some cases, computational predictions of 

operons are made offline for a large number of genomes and a database allows users to 

query these pre-computed operon predictions [15, 17, 28]. In other cases, web servers enable 

real-time prediction of operons based on user supplied data [7, 16]. A number of databases 

also integrate curated information about experimentally verified operons [29–31]. While the 

various computational methods and databases for predicting operons are not always in 

agreement [3, 24], tools for computational identification of operons can be effective, often 

achieving predictive accuracies of 90% or more [13]. Table 1 provides a summary of fifteen 

different methods for predicting operons. Four of the methods listed in Table 1 provide a 

webserver interface for accessing the operon predictions. The final seven columns in the 

table indicate the features used by each method when making its predictions. The least 

commonly used feature in this set is codon usage, with only one of the fifteen methods 

employing this feature, whereas the most commonly used feature is intergenic distance 

between operon genes, which is used by eleven of the fifteen methods.

One challenge for these computational methods is that, in many cases, they are trained on 

data from organisms, such as Escherichia coli and Bacillus subtilis, where a large number of 

operons have been confirmed experimentally, but their applicability to prokaryotes more 

broadly is difficult to assess without large sets of independently verified operons outside of a 

few model organisms. Operon prediction is further challenged by the dynamic nature of 

transcription, as operon structures can change when environmental conditions vary [12]. Sets 

of consecutive genes may be co-transcribed as part of an operon in one condition but be 

individually transcribed in another condition, e.g., when alternative promoters occur both 

before and within operons [32, 33]. Most methods make static predictions of genes forming 

an operon, rather than dynamic condition-specific predictions.

Rockhopper is a computational system that provides comprehensive analysis of bacterial 

RNA-seq data [27, 34]. Rockhopper supports a variety of tasks, including aligning 
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sequencing reads to a reference genome, assembling transcripts, identifying transcript 

boundaries and novel transcripts such as regulatory RNAs, de novo transcript assembly 

when reference genomes are unavailable, normalizing data from different experiments to 

enable meaningful inter-experimental integration and comparison, quantifying transcript 

abundance levels, statistical testing for differential gene expression in different experimental 

conditions, and visualizing results in a genome browser. Rockhopper also uses RNA-seq 

data to identify operons throughout genomes. In the remainder of this article, we detail the 

methodology used by Rockhopper for operon prediction, assess the predictions with more 

focused wet-lab experiments, compare the results with databases of operon identifications, 

and evaluate the results provided by other groups who have employed Rockhopper for 

operon annotation. Though the methods that we describe have applicability to other 

domains, the remainder of this article focuses on bacterial operon identification, since this is 

the domain where the vast majority of operons are found and have been studied.

2. Methods

2.1 Input to Rockhopper software system

As input, Rockhopper requires the name of a genome and one or more files of RNA-seq 

reads. Sequencing read files may be in fastq, qseq, fasta, sam or bam format, and the files 

optionally may be gzipped. The sequencing reads may correspond to single-end reads or 

paired-end reads, and they may be strand-specific or strand-ambiguous. Based on the 

supplied name of a genome, Rockhopper automatically downloads the genome sequence and 

gene annotations from RefSeq [35]. If a user wishes to analyze data from an organism not 

found in RefSeq, the user may supply their own genome sequence file in fasta format and 

their own gene annotation file as input to Rockhopper.

2.2 Mapping sequencing reads

For all RNA-seq data in this study, prior to using Rockhopper to map sequencing reads to a 

genome, the Trimmomatic [36] tool was used with default parameter settings for adapter 

trimming and quality filtering. Rockhopper was then employed to align sequencing reads to 

a genome. Rockhopper maps reads to a genome in a manner similar to that of Bowtie 2 [37], 

by building an FM-index [38] for the genome based on the Burrows-Wheeler transform [39]. 

One of the challenges in analyzing RNA-seq data is that reads often map ambiguously to 

different transcripts, e.g., when a genome contains multiple paralogous genes [40]. The 

approach used by RNA-seq analysis pipelines for resolving these ambiguities and allocating 

reads to paralogous genes can have significant effects on downstream analyses such as 

testing for differential gene expression [41]. Rockhopper uses the straightforward approach 

of allocating ambiguous reads equally among the genes to which the reads map. In future 

work, there may be opportunities for evolving Rockhopper’s model, as recent studies have 

proposed new methods for allocating ambiguous reads that have the potential to result in 

increased accuracy of downstream analyses [42].

2.3 Computing directon information

As with many other operon prediction methods [4], Rockhopper begins its identification of 

operons with directons, which are sets of adjacent genes in a genome on the same strand. 
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Using the input gene annotation files, Rockhopper calculates all directons in a genome 

before determining which subset of directons are co-transcribed, i.e., are operons. As 

context, Figure 1a shows the length of directons in the E. coli genome [43]. Here, we use the 

number of genes in the directon to describe its length rather than, say, the number of 

nucleotides. As Figure 1a illustrates, there are approximately 500 instances of directons 

containing a single gene among the 4,386 protein-coding genes in the E. coli genome. Single 

gene directons occur when a gene is flanked on either side in the genome by a gene on the 

opposite strand. Similarly, there are approximately 250 instances of length two-gene 

directons and approximately 150 instances of length three-gene directons. In comparison, 

Figure 1b shows the length of operons in E. coli as reported by RegulonDB [31]. E. coli is 

used here because it is arguably the organism where operons have been most extensively 

studied and because very few other bacterial genomes have large sets of experimentally 

validated operons. As Figure 1b illustrates, approximately 1,800 genes of the 4,386 genes in 

the E. coli genome are transcribed individually as single gene operons, and there are 

approximately 400 instances of pairs of genes being co-transcribed as two-gene operons. 

While the distributions in Figures 1a and 1b both decrease as the number of genes increases, 

the rate of decrease is initially sharper for E. coli operons (Figure 1b) than for directons 

(Figure 1a), suggesting that operons are more likely to be composed of fewer genes than 

directons.

2.4 Intergenic distance as a feature of operon prediction

Consistent with most other methods for predicting operons throughout a genome, 

Rockhopper uses the intergenic distance between genes as a predictive feature in 

determining operons, as consecutive genes separated by a small intergenic distance are more 

likely to be co-transcribed than consecutive genes separated by a large intergenic distance 

[6]. Figures 2a, 2b, and 2c show distributions of the intergenic distances between 

consecutive genes on the same strand (solid red line) and on opposite strands (solid blue 

line) for Bacillus subtilis, Vibrio cholerae, and Escherichia coli, respectively. Figure 2c 

additionally shows the distribution of intergenic distances between consecutive genes that 

are part of documented operons in RegulonDB (solid black line) in Escherichia coli [31]. As 

Figure 2c demonstrates, the distribution of intergenic distances for documented operons in 

RegulonDB (in black) is more similar to the distribution for consecutive genes on the same 

strand (red) than consecutive genes on the opposite strand (blue) though it has less deviation 

than the distribution for consecutive genes on the same strand (red). Dashed lines in the 

figures illustrate versions of the distributions smoothed via an Epanechnikov kernel function 

[44]. Figures 2a, 2b, and 2c illustrate how different genomes have different propensities for 

shorter or longer intergenic regions between consecutive genes on the same strand and 

between consecutive genes on opposite strands. As broader context, Figure 2d shows the 

same distributions but, rather than for individual genomes, for 131,238 bacterial genomes 

available from RefSeq [35]. For a particular genome designated by the user, Rockhopper 

calculates distributions analogous to those shown in Figures 2a, 2b, and 2c. Then, given the 

intergenic distance in nucleotides between two consecutive genes on the same strand, 

Rockhopper estimates the probability that the genes correspond to the same operon and the 

probability that the genes do not correspond to the same operon. The probability that the 

genes correspond to the same operon is based on the smoothed distribution of intergenic 
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distances between consecutive genes on the same strand (dashed red line in Figure 2) for the 

relevant genome. The probability that the genes do not correspond to the same operon is 

based on the smoothed distribution of intergenic distances between consecutive genes on 

opposite strands (dashed blue line in Figure 2) for the relevant genome.

2.5 Expression patterns as a feature of operon prediction

RNA-seq data evince expression patterns of genes, and these expression patterns contain 

information about the likelihood that consecutive genes in a genome are part of the same 

operon [24]. Genes that are co-transcribed as part of the same polycistronic message 

generally have related expression levels to each other [19, 25]. Like other features for operon 

identification, expression patterns contain some predictive information but also have limits 

in their ability to distinguish genes that are co-transcribed from genes that are not co-

transcribed. For example, one study observed differential expression of polycistronic genes 

in 43% of operons in E. coli [26]. Thus, as one feature to aid in its prediction of genes 

belonging to the same operon, Rockhopper uses the relationship of expression across 

conditions assayed by RNA-seq experiments. Rockhopper computes two distributions based 

on the correlation coefficient of two consecutive genes’ expression levels across the assayed 

conditions [45]. The first distribution corresponds to correlations of consecutive genes on the 

same strand throughout the genome. The second distribution corresponds to correlations of 

consecutive genes on opposite strands throughout the genome. These two expression 

correlation distributions, like the two distributions of intergenic distances described in the 

previous section, enable Rockhopper to estimate the probability that two consecutive genes 

are part of the same operon or not, based on the relevant feature.

2.6 Probabilistic model for combining features

In order to combine information from different features suggestive of genes belonging to the 

same operon into a unified probabilistic model for predicting operons, Rockhopper employs 

a naïve Bayes classifier. Specifically, let g be consecutive genes on the same strand of a 

genome. Rockhopper models the probability that g corresponds to an operon, i.e., the genes 

in g are co-transcribed as part of the same polycistronic message, as

probability operon g = prior_probability operon * probability g operon
probability g (1)

and the probability that g does not correspond to an operon as

probability not operon g
= prior_probability not operon * probability g not operon

probability g . (2)

The denominator in expressions (1) and (2) above is constant so, assuming independence of 

the d=2 different predictive features, the probabilities can be expressed as

probability operon g ∝ prior_probability operon

* ∏
i = 1

d
probability gi operon (3)
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and

probability not operon g ∝ prior_probability not operon

* ∏
i = 1

d
probability gi not operon , (4)

respectively. Note, the products in expressions (3) and (4) above are over the d=2 features 

corresponding to intergenic distance and expression pattern, as described in the two previous 

sections above. The prior probability that consecutive genes on the same strand are co-

transcribed as part of the same operon is estimated as 1.0 - (# of directons/number of pairs of 

genes on the same strand) [4]. As points of reference, the prior probability of two 

consecutive genes on the same strand being part of the same operon is computed by 

Rockhopper as 69% for genes in V. cholerae, 73% for genes in E. coli, 84% for genes in S. 
enterica, and 85% for genes in S. pyogenes. Once the probability of g being in the same 

operon and the probability of g not being in the same operon are computed, g is classified as 

an operon or not based on whichever probability is greater using the maximum a posteriori 
(MAP) decision rule

argmax
k ∈ operon, not operon

prior_probability k * ∏
i = 1

d
probability gi k . (5)

2.7 Evaluation metrics

When evaluating operon predictions, different metrics may be employed to assess the 

accuracy of the predictions. One possible metric considers whether all genes in an operon 

are correctly predicted or not. The challenge with such a metric is that some operons contain 

many genes, as indicated in Figure 1b, and the metric will not distinguish between 

approaches that correctly predict most but not all genes in an operon versus approaches that 

do not correctly predict any genes in an operon. Thus, rather than each entire operon as the 

basic unit of prediction and evaluation, gene pairs are used as the basic unit, where a gene 

pair is defined here as two consecutive genes on the same strand in a genome. For genome-

wide operon predictions, all gene pairs in the genome are identified and a prediction is made 

for each as to whether the two genes in the pair are co-transcribed as part of the same operon 

or not. Assuming there exists some external source of information about operons in the 

genome, the predictions can then be compared to the external source to quantify how many 

gene pair predictions are correct. A true positive prediction corresponds to a gene pair 

predicted to be part of the same operon that is part of the same operon in the external source. 

A false positive prediction corresponds to a gene pair predicted to be part of the same operon 

that is not part of the same operon in the external source. A true negative prediction 

corresponds to a gene pair predicted not to be part of the same operon that is not part of the 

same operon in the external source. And a false negative prediction corresponds to a gene 

pair predicted not to be part of the same operon that is part of the same operon in the 

external source. The sensitivity (aka, recall or true positive rate) of the predictions is the 

percentage of gene pairs belonging to the same operon in the external source that are 

correctly predicted to be part of the same operon, i.e., the number of true positive predictions 
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divided by the sum of true positive and false negative predictions. The specificity (aka, 

selectivity or true negative rate) of the predictions is the percentage of gene pairs not 

belonging to the same operon in the external source that are correctly predicted not to be part 

of the same operon, i.e., the number of true negative predictions divided by the sum of true 

negative and false positive predictions.

2.8 RNA-seq data

All RNA-seq data used in this study is publicly available from the Sequence Read Archive 

[21] with the following accession numbers: ERR2221428, SRR6158171, SRR7268670, 

SRR7852779 for Bacillus subtilis; SRR7226161, SRR7226168 for Caulobacter vibrioides; 

SRR031126, SRR031130 for Helicobacter pylori; SRR8142714, SRR8239645, 

SRR8284752, SRR8327205 for Pseudomonas aeruginosa; SRR3339292, SRR5891555, 

SRR6170086, SRR6170094 for Shewanella oneidensis; SRR7178745, SRR7298349 for 

Vibrio cholerae; SRR5456182, SRR5456180 for Streptococcus pyogenes; SRR794912, 

SRR794915, SRR794917, SRR794919 for Salmonella enterica; SRR794875, SRR794877 

for Neisseria gonorrhoeae; SRR794872, SRR794869, SRR794866, SRR794863, 

SRR794860, SRR794857, SRR794854, SRR794851, SRR794848, SRR794845, 

SRR794842, SRR794839, SRR794836, SRR794833, SRR794830, SRR794827 for 

Escherichia coli.

2.9 Rockhopper usage and availability

Rockhopper is available from the website https://cs.wellesley.edu/~btjaden/Rockhopper. In 

addition to the source code, installation and executables are available for PCs and Macs, and 

a JAR file is available for any platform. Rockhopper is implemented using the Java 

programming language and Java version 1.6 or later is required for its execution. 

Rockhopper can be run either from the command line or via a graphical user interface 

(GUI). In the past year, Rockhopper was downloaded approximately seven thousand times 

from four thousand unique IP addresses.

As output for operon predictions, Rockhopper generates a tab-delimited text file. Each line 

of the file corresponds to an operon prediction. Each operon prediction has five components: 

the nucleotide coordinate of the start of the coding sequence of the first gene in the operon, 

the nucleotide coordinate of the end of the coding sequence of the last gene in the operon, 

the strand of the operon, the number of genes in the operon, and a list containing the names 

of the genes in the operon. In addition to the text file containing information about all of the 

operon predictions, Rockhopper enables visualization of the results using the Integrative 

Genomics Viewer (IGV) genome browser [46]. Figure 3 illustrates the visual output of 

Rockhopper’s operon predictions along with the location of annotated genes and sequencing 

reads on both strands of the genome. Figure 3 focuses on a genomic region containing a nine 

gene operon that has been well studied and is experimentally confirmed [47–50]. In the 

figure, the first four tracks show that there is the largest expression for this region on the 

minus strand in the second experimental condition, and there is evidence of expression 

spanning all nine genes. As the fifth track indicates, Rockhopper predicts that all nine genes 

in this region are co-transcribed as part of the same operon. While the figure focuses on a 
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specific region, the genome browser included as part of Rockhopper allows interactive 

exploration of Rockhopper’s operon predictions throughout a genome.

3. Results

3.1 Evaluation of predictions against operon databases

We used Rockhopper to predict operons throughout the genomes of ten bacteria: Neisseria 
gonorrhoeae FA1090, Salmonella enterica subspecies enterica serovar Typhimurium strain 

LT2, Streptococcus pyogenes M1 GAS, Escherichia coli strain K-12 substrain MG1655, 

Caulobacter vibrioides CB15, Helicobacter pylori 26695, Pseudomonas aeruginosa PA01, 

Bacillus subtilis subsp. subtilis str. 168, Shewanella oneidensis MR-1, and Vibrio cholerae 
01 biovar El Tor str. N16961. Table 2 shows the number of operons predicted by 

Rockhopper in each genome and the number of RNA-seq experiments used to make the 

predictions. The number of genes in a genome that Rockhopper predicted to be part of a 

multi-gene operon ranged from 38% for Caulobacter vibrioides to 80% for Vibrio cholerae. 

Rockhopper’s operon predictions were compared to the operon predictions from the 

Database of prOkaryotic OpeRons (DOOR2), a leading database of computationally 

predicted operons in bacteria [16]. The final column in Table 2 indicates the similarity, as 

measured by the Rand coefficient [51], between Rockhopper’s operon predictions and 

DOOR’s operon predictions. The overlap between the two sets of predictions ranged 

between 88% for V. cholerae to 95% for E. coli.

Operon predictions from both Rockhopper and DOOR were then evaluated against three 

external operon databases that are based on operons with experimental evidence: 

RegulonDB contains highly curated information about experimentally verified operons in E. 
coli [31], Sharma et al. produced an extensive annotation of operons in Helicobacter pylori 
[23], and DBTBS consists of experimentally supported operons in Bacillus subtilis [29]. 

Results from comparing Rockhopper’s and DOOR’s predictions to databases of 

experimentally supported operons are shown in Table 3. The sensitivities in Table 3 suggest 

that both Rockhopper and DOOR successfully identify most operons in a genome. The 

specificities in Table 3 suggest a low false positive rate for both approaches, i.e., when 

consecutive genes are not part of the same operon then the approaches successfully identify 

most of the genes as not being co-transcribed. Across the three databases, the sensitivity of 

Rockhopper’s predictions range from 88% to 95%, slightly higher than the sensitivity of 

DOOR’s predictions, which range from 84% to 93%. The specificity of predictions from 

Rockhopper and DOOR are comparable, ranging between 81% to 96% and between 80% to 

95%, respectively. The slightly higher sensitivity of Rockhopper as compared to DOOR at a 

comparable specificity suggests that Rockhopper is identifying more operons as it has a 

higher number of true positive predictions without the cost of increased false positive 

predictions.

To evaluate how the number of RNA-seq experiments might influence Rockhopper’s 

performance, we varied the number of E. coli RNA-seq data sets that we used from 2 to 16 

when making operon predictions with Rockhopper. We used E. coli here because of the large 

number of RNA-seq data sets available for this organism and because there is an external 

database of operons, RegulonDB [31], that is well curated. The sensitivity of Rockhopper’s 
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operon predictions when compared to operons in RegulonDB remained the same at 90% as 

the number of RNA-seq data sets used by Rockhopper increased from 2 to 16. The 

specificity of Rockhopper’s operon predictions increased slightly, from 79% to 81%, as the 

number of RNA-seq data sets used by Rockhopper increased from 2 to 16.

In order to better understand how different features impact the accuracy of Rockhopper’s 

operon predictions, we calculated the mean values of the features for different sets of 

predictions - those corresponding to true positive, false positive, true negative, and false 

negative predictions. Here, we used Rockhopper’s predictions from E. coli as compared to 

RegulonDB [31], as this is a comprehensive and regularly curated database of 

experimentally verified operons. For the feature of intergenic distance, the mean distance 

between pairs of E. coli genes that Rockhopper predicts as belonging to the same operon are 

16 nucleotides and 55 nucleotides, for true positive and false positive predictions, 

respectively. The mean intergenic distance between pairs of E. coli genes that Rockhopper 

predicts as not belonging to the same operon are 237 nucleotides and 223 nucleotides, for 

true negative and false negative predictions, respectively. For the feature of expression 

correlation, the mean correlation of expression between pairs of E. coli genes that 

Rockhopper predicts as belonging to the same operon are 0.86 and 0.85, for true positive and 

false positive predictions, respectively. The mean correlation of expression between pairs of 

E. coli genes that Rockhopper predicts as not belonging to the same operon are 0.39 and 

0.62, for true negative and false negative predictions, respectively. These results indicate a 

significant difference in expression between Rockhopper’s true negative predictions (0.39) 

and Rockhopper’s false negative predictions (0.62).

3.2 Experimental validation of operon predictions

We hypothesize that some of Rockhopper’s predictions that do not correspond to verified 

operons in external databases may indeed be genuine operons that have not been identified 

or validated previously. If this is the case, some of Rockhopper’s predictions that are 

counted as “false positives” and that contribute to a lower specificity score may indeed be 

“true positives” and their incorrect classification would be a consequence of comparing the 

predictions to incomplete operon databases. To test this hypothesis, we performed 

experiments to evaluate whether some of Rockhopper’s novel operon predictions, i.e., 

predictions of operons not found in the database, might correspond to genuine operons as 

opposed to being false predictions. We began by choosing 10 random sets of consecutive 

genes in E. coli according to the following criteria: each set of genes was predicted by 

Rockhopper to be co-transcribed as part of a multi-gene operon, some of the genes in the set 

are identified in RegulonDB as being part of the same operon whereas other genes in the set 

are not identified in RegulonDB as being part of the same operon, and the genes showed 

significant expression in the RNA-seq data. The 10 sets of genes ranged in size from 2 genes 

to 11 genes. For 13 pairs of consecutive genes within these sets that were identified in 

RegulonDB as being part of the same operon and for 14 pairs of consecutive genes within 

these sets that were not identified by RegulonDB as being part of the same operon, we 

performed RT-PCR to test for co-transcription. We found evidence from the RT-PCR 

experiments supporting co-transcription for 11 of the 13 pairs that RegulonDB reported to 

be part of the same operon, and we found evidence from the RT-PCR experiments 
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supporting co-transcription for 12 of the 14 pairs that RegulonDB did not report to be part of 

the same operon [27]. To further understand whether some of Rockhopper’s predictions 

might correspond to operons that have not previously been identified, we similarly tested 

some of our novel operon predictions in N. gonorrhoeae using RT-PCR. For six pairs of 

genes in N. gonorrhoeae that Rockhopper predicted to be co-transcribed as part of the same 

operon, we tested the pairs for co-transcription using RT-PCR and found evidence of co-

transcription for all six [27]. For two pairs of genes in N. gonorrhoeae that Rockhopper 

predicted not to be co-transcribed, we tested the pairs for co-transcription using RT-PCR and 

found evidence of co-transcription for one of the two pairs [27]. Thus, in two different 

genomes, one in which operons have been studied extensively (E. coli) and one in which 

there has been less examination of operon structures (N. gonorrhoeae), we found that a high 

percentage of Rockhopper’s novel operon predictions were supported by independent 

experimental evidence. However, there were also a small number of examples of previously 

verified operons for which we did not observe evidence of co-transcription in our RT-PCR 

experiments and one example where Rockhopper did not predict genes to be part of the 

same operon yet we observed evidence of co-transcription in our RT-PCR experiments. We 

interpret these findings to support the notion that Rockhopper’s operon predictions are 

largely accurate and are applicable to different bacterial genomes, but there is still room for 

improvement both in increasing the sensitivity of the predictions and reducing the false 

positive rate.

4. Discussion

We evaluated Rockhopper’s operon predictions by comparing them to databases of 

experimentally determined operons and to a leading computational approach. Rockhopper 

demonstrates sensitivities between 88% and 95% and specificities between 81% and 96% 

when its predictions are compared to databases of operons for three bacterial species. 

Rockhopper shows slightly improved sensitivity and comparable specificity when compared 

to DOOR 2.0, a leading method for operon prediction [16].

When looking more closely at individual features of Rockhopper’s operon predictions, we 

observed a large gap in intergenic distance between Rockhopper’s positive predictions (16 

nucleotides for true positives and 55 nucleotides for false positives) and Rockhopper’s 

negative predictions (237 nucleotides for true negatives and 223 nucleotides for false 

negatives), as expected. Interestingly, for the feature of expression patterns, the gap between 

positive predictions (0.86 correlation of expression for true positives and 0.85 correlation of 

expression for false positives) and negative predictions (0.39 correlation of expression for 

true negatives and 0.62 correlation of expression for false negatives) was less dramatic. 

These results indicate the importance of combining multiple features for operon prediction, 

as individual features on their own cannot reliably distinguish co-transcribed genes from 

non-co-transcribed pairs of genes. Further, these data suggest that there may be opportunities 

to further improve the predictive accuracy of the system by differentially combining the 

features. Rockhopper’s Bayesian classification approach makes the simplifying assumption 

that features are independent of each other. However, further work may benefit from 

exploring more complex relationships among features.
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One of the challenges with evaluating operon prediction methods is that there are few 

genomes for which large sets of operons have been experimentally confirmed. For the few 

such genomes where large sets of validated operons exist, it is unclear to what extent the set 

of confirmed operons is complete. Thus, assessment of predictions as true/false positives/

negatives is imperfect. The situation is further complicated as many operons are dynamic in 

nature, with genes being co-transcribed in one condition but not in another. One study in E. 
coli found that 36% of operons had internal promoters and terminators that generated 

multiple transcription units [26]. Rockhopper makes static rather than dynamic operon 

predictions, though it can be used for dynamic predictions as well. One group built a 

database called OperomeDB of condition specific operons for more than a hundred bacterial 

transcriptomes based on Rockhopper’s operon predictions [52]. Another group developed a 

method for condition specific operon prediction and evaluated their results against 

Rockhopper’s operon predictions for three genomes, Porphyromonas gingivalis, Escherichia 
coli, and Salmonella enterica, observing that Rockhopper consistently led to more accurate 

operon predictions than the condition specific approach [12].

As further evaluation, we assessed Rockhopper’s predictions for two genomes using RT-

PCR. For many of Rockhopper’s predictions that did not correspond to known operons and 

which we had labeled as false positive predictions when comparing them to various 

databases, we observed evidence that the genes were co-transcribed as part of the same 

operon and that a number of Rockhopper’s novel operon predictions correspond to 

previously unknown operons.

Rockhopper’s method for predicting operons throughout a genome has been evaluated by 

other groups and applied to a broad range of bacteria. In an interesting application, 

Rockhopper was used to identify operons in E. coli that responded to colorectal cancer [53]. 

Rockhopper’s operon identifications have been investigated in a wide range of other bacteria 

and archaea such as Stenotrophomonas maltophilia [54], Methanolobus psychrophilus [55], 

Listeria monocytogenes [56], Streptomyces avermitilis [57], Clostridium acetobutylicum 
[58], Oenococcus oeni [59], Lactococcus lactis [60], Streptococcus pneumoniae [61], and 

Leptospira interrogans [62].

An alternative to Rockhopper’s approach for operon prediction is to use features that are 

genome-specific or that have variable success in different genomes, such as computationally 

predicting transcription signals including promoter regions, transcription factor binding 

sites, and rho-independent terminators. In contrast, Rockhopper was designed so that it can 

be used for operon prediction in any bacterial genome for which RNA-seq data is available. 

Our results indicate that the accuracies of its predictions are relatively stable across different 

genomes.

5. Conclusion

Operons are one mechanism by which organisms can coordinate the expression of proximal 

genes. Understanding which genes are co-transcribed as part of a single polycistronic 

message provides information about the functional relationship and regulation of the genes. 

Computational methods have proven useful as efficient tools for predicting operons 
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throughout a genome. Here, we present one such computational method, Rockhopper. 

Rockhopper uses RNA-seq data, which is increasingly being generated, to aid in its operon 

predictions. Rockhopper combines primary sequence information and RNA-seq data in a 

unified probabilistic model in order to make operon predictions in a genome. Rockhopper 

demonstrates high accuracy across a range of bacterial genomes. We hope that Rockhopper 

serves as a useful tool to the community for accurate, efficient, and user-friendly operon 

identification.
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Highlights

• Integrated bioinformatics system for identifying operons in bacterial genomes

• Combining computational and experimental data improves accuracy of 

operon prediction

• Provides insight into co-expressed genes, functional relationships, and 

regulatory networks
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Figure 1. 
(a) The histogram shows how many directons in E. coli are composed of the indicated 

number of a genes. A directon is defined as a set of consecutive genes on the same strand in 

a genome. (b) The histogram shows how many operons in E. coli are composed of the 

indicated number of genes.
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Figure 2. 
The distribution of intergenic distances in nucleotides between consecutive genes on the 

same strand (solid red line) and between consecutive genes on the opposite strand (solid blue 

line) is shown for (a) Bacillus subtilis, (b) Vibrio cholerae, (c) Escherichia coli, and (d) 
131,238 bacterial genomes. The Escherichia coli figure in (c) additionally shows the 

distribution of intergenic distances in nucleotides between consecutive genes that are part of 

documented operons in RegulonDB (solid black line) [31]. Dashed lines in the figures 

indicate smoothed versions of the distributions as determined with an Epanechnikov kernel.
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Figure 3. 
The visualization created by Rockhopper using the IGV genome browser illustrates a 7,842 

basepair region in the E. coli genome, including sequencing reads corresponding to this 

region from two experimental conditions. The first condition corresponds to minimal 

medium supplemented with 0.2% D-glucose (SRA SRR794972) and the second condition 

corresponds to LB medium exposed to 0.5% α-methylglucoside (SRA SRR794863). The 

region contains nine ATP synthase genes on the minus strand: atpI, atpB, atpE, atpF, atpH, 

atpA, atpG, atpD, atpC. There are six tracks (rows of information) displayed in the browser. 

The first track (in blue) indicates sequencing reads observed on the plus strand from the first 

experimental condition. The second track (in blue) indicates sequencing reads observed on 

the plus strand from the second experimental condition. The third track (in red) indicates 

sequencing reads observed on the minus strand from the first experimental condition. The 

fourth track (in red) indicates sequencing reads observed on the minus strand from the 

second experimental condition. The fifth track (in magenta) represents an operon prediction 

from Rockhopper. The sixth track (in magenta) at the very bottom indicates the locations of 

nine annotated genes on the minus strand in the E. coli genome.
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Table 2.

Information on operon predictions from Rockhopper for ten genomes is shown in the table. The first column 

indicates the genome. The second column indicates the number of RNA-seq experiments from which 

Rockhopper used data to make its operon predictions. The third column indicates the number of multi-gene 

operons (operons containing two or more genes) predicted by Rockhopper. The fourth column indicates the 

total number of genes in all the multi-gene operons predicted by Rockhopper. The fifth column indicates the 

total number of protein-coding genes in the genome as annotated by RefSeq [35]. The sixth column indicates 

the similarity of Rockhopper’s operon predictions to DOOR’s operon predictions [16] as measured by the 

Rand similarity coefficient [51].

Genome
Number
of RNA-
Seq Exps

Multi-
Gene

Operons

Number of Genes
Part of some Multi-

Gene Operon

Total
Genes in
Genome

Similarity to
DOOR Predictions

Neisseria
gonorrhoeae 2 410 1114 1886 91%

Salmonella
enterica 4 868 2677 4549 94%

Streptococcus
pyogenes 2 412 1307 1693 94%

Escherichia
coli 16 838 2557 4386 95%

Caulobacter
vibrioides 2 780 1428 3737 92%

Helicobacter
pylori 2 301 1111 1448 94%

Pseudomonas
aeruginosa 4 1215 3755 5573 92%

Bacillus
subtilis 4 880 2765 4328 90%

Shewanella
oneidensis 4 724 2169 4266 90%

Vibrio
cholerae 2 675 2011 3510 88%

Methods. Author manuscript; available in PMC 2021 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tjaden Page 22

Table 3.

Rockhopper’s operon predictions are compared against external operon databases based on operons with 

experimental evidence. The first column indicates the genome. The second column indicates the external 

database that Rockhopper’s predictions are compared against. The third column indicates the sensitivity of 

DOOR’s operon predictions. The fourth column indicates the specificity of DOOR’s operon predictions. The 

fifth column indicates the sensitivity of Rockhopper’s operon predictions. The sixth column indicates the 

specificity of Rockhopper’s operon predictions.

Genome Database DOOR
Sensitivity

DOOR
Specificity

Rockhopper
Sensitivity

Rockhopper
Specificity

Escherichia coli RegulonDB [31] 85% 80% 90% 81%

Helicobacter pylori Sharma et al. [23] 93% 89% 95% 88%

Bacillus subtilis DBTBS [29] 84% 95% 88% 96%
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