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Abstract
Naturalistic stimuli can elicit highly similar brain activity across viewers. How do naturalistic educational materials
engage human brains and evoke learning desire? Here, we presented 15 audiovisual course clips (each lasting
�120 s) to university students and recorded their neural activity through electroencephalography. Upon finishing
all the video viewings, subjects ranked 15 courses in order of learning desire and reported the reasons for high
learning desire (i.e., “value” and “interest”). The brain activity during the video viewing was measured as the neural
similarity via intersubject correlation (ISC), that is, correlation between each subject’s neural responses and those
of others. Based on averaged learning desire rankings across subjects, course clips were classified with high
versus medium versus low motivational effectiveness. We found that the ISC of high effective course clips was
larger than that of low effective ones. The ISC difference (high vs low) was positively associated with subjects’
learning desire difference (high vs low). Such an association occurred when viewing time accumulated to �80 s.
Moreover, ISC was correlated with “interest-based” rather than “value-based” learning desire. These findings
advance our understanding of learning motivation via the neural similarity in the context of on-line education and
provide potential neurophysiological suggestions for pedagogical practices.
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Introduction
Learning desire is an important prerequisite for human

learning to occur. How to evoke learning desire is a
persistent concern in the field of educational psychology
and pedagogy (Todd, 2013). Recently, on-line courses

have brought a tremendous transformation to education,
as evidenced by their use in many open learning systems,
such as Coursera and Khan Academy (Copley, 2007;
Waldrop, 2013). Compared with the traditional classroom
learners, on-line learners experience lower-level interac-
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Significance Statement

This study shows that naturalistic educational materials with high motivational effectiveness elicit larger
neural similarity across learners than less effective ones. Importantly, the neural similarity serves as a
sensitive predictor of learners’ course-learning desire. It is suggested that the use of an emerging
electroencephalography-derived intersubject correlation approach works with evaluating the quality of
audiovisual educational materials. Hence, such a novel approach is promising to provide neurophysiological
information for pedagogical practices.
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tivity and thus are more susceptible to quitting learning or
dropping out of courses (Szpunar et al., 2013; Kizilcec
et al., 2015). Therefore, evoking learning desire is of great
importance, especially in the context of on-line education
(Visser, 1998; Keller and Suzuki, 2004). To this end, one
good practice is to introduce audiovisual materials during
the introductory phase of the course (Grant and Thornton,
2007; Kay, 2012).

Currently, there are two main hypotheses that account
for potential factors contributing to learning desire. First,
the “value-based” hypothesis (Atkinson, 1957; Eccles
et al., 1983) proposes that helping learners perceive the
value (e.g., utility value) will effectively promote learning
desire. The perceived utility value of courses influences
course enrollment decisions (Updegraff et al., 1996; Can-
ning et al., 2018) and academic achievements (Hulleman
et al., 2010). Second, the interest-based hypothesis
(Krapp, 2002; Hidi and Renninger, 2006), postulates that
guiding learners to develop interest will effectively boost
learning desire. Interest, as the saying goes, is the best
teacher. Interest contributes to learners’ further study
(Mitchell, 1993; Ainley et al., 2002; Harackiewicz et al.,
2002; Renninger and Hidi, 2002; Schiefele, 2009) and
improves learning performance (Rotgans and Schmidt,
2014).

In the context of on-line education, learning desire
evoked by audiovisual educational materials has been
rarely studied from the neural perspective. To decode
human brain activity during real-world experiences, pre-
vious studies have measured individuals’ neural re-
sponses to discrete and simplified artificial stimuli; these
responses comprise electroencephalography (EEG)-
derived event-related potentials and functional magnetic
resonance imaging (fMRI)-derived blood oxygenation
level-dependent (BOLD) signals (Spiers and Maguire,
2007). Beyond all that, emerging neuroscience research
has started to measure the neural similarity (i.e., group-
level similar neural responses) to concrete and complex
naturalistic stimuli from a “collective-brain” perspective.
Indeed, when exposed to the same stimulus, individual
brains tend to tick collectively in synchronized spatiotem-
poral patterns (Hasson et al., 2004). The neural similarity
can be quantified by intersubject correlation (ISC), that is,
correlation between individual subject’s neural responses
and those of others (Cohen et al., 2018). Using the ISC
approach, previous fMRI research reveals that movie
viewing elicits highly similar neural activity across viewers
(Hasson et al., 2004). Within several-minute narratives,
time-resolved ISC peaks during the viewing of scenes
with high emotional arousal and valence (Hasson et al.,
2004; Nummenmaa et al., 2012). Moreover, ISC is indic-
ative of the powerfulness of political speeches (Schmälzle

et al., 2015) and the effectiveness of antialcohol public
service announcements (Imhof et al., 2017).

Apart from fMRI-derived ISC, previous EEG studies
have captured significantly correlated components during
the watching of movie clips, TV series, and commercials
(Dmochowski et al., 2012, 2014). Correlated components
were extracted from multichannel EEG time series to
maximize the correlation based on a signal decomposi-
tion method (Dmochowski et al., 2012). EEG-derived ISC
has been found to indicate attentional engagement during
the narrative video viewing (Dmochowski et al., 2012;
Cohen et al., 2017) and preferential attitudes toward Su-
per Bowl commercials (Dmochowski et al., 2014). In a
recent study, learners were asked to attentively or inat-
tentively watch on-line educational videos, during which
their brain activity was measured (Cohen et al., 2018).
EEG-derived ISC discriminates between the attentive and
inattentive viewings and predicts the learning perfor-
mance. In a real-world classroom, EEG-derived ISC has
also been found to associate with engagement and atten-
tional modulation (Poulsen et al., 2017).

Building upon previous findings, the EEG-derived ISC
approach holds the potential to uncover the neural under-
pinnings during the natural processing of audiovisual ed-
ucational materials. In current study, we recorded EEG
signals while learners were viewing audiovisual course
clips. The ISC approach was adopted to examine the
neural similarity across learners. Upon finishing all the
video viewings, subjects ranked 15 courses in order of
learning desire and reported the reasons of high learning
desire (i.e., “value” and “interest”). The viewing of course
clips was expected to prompt significant neural similarity
across learners because brains tend to tick collectively
during natural vision (Hasson et al., 2004; Dmochowski
et al., 2012). Moreover, considering the potential links
from the neural similarity to the effectiveness of natural-
istic materials (Schmälzle et al., 2015; Imhof et al., 2017),
and subjects’ attentional engagement (Dmochowski et al.,
2012; Cohen et al., 2017; Poulsen et al., 2017) and pref-
erential attitudes (Dmochowski et al., 2014), we expected
that the neural similarity could be indicative of the moti-
vational effectiveness of course clips and serve as a
predictor of learning desire. Specifically, we hypothesized
that (1) ISC should be higher for course clips ranked with
high versus low learning desire, and (2) the ISC difference
(high vs low) should be positively correlated with subjects’
learning desire difference (high vs low). Finally, to provide
neurophysiological suggestions for why some naturalistic
educational materials elicited high learning desire, we
explored the association between ISC and potential rea-
sons [e.g., value (Hulleman et al., 2008) and interest (Har-
ackiewicz et al., 2002)].

Materials and Methods
Subjects

Fifteen subjects (three males; mean age, 21 years; age
range, 18–25 years) were recruited through public an-
nouncement at the East China Normal University (Shang-
hai, People’s Republic of China). All of them were right
handed and in good health, and had normal or corrected-
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to-normal vision and no history of neurological or psychi-
atric disorders. Monetary compensation was afforded for
their participation. The study was approved by the Com-
mittee on Human Research Protection of East China Nor-
mal University (HR 064-2017). All subjects provided a
written, signed informed consent form prior to the exper-
iment.

Materials
Fifteen courses from Massive Open Online Courses

(http://www.icourse163.org) were selected based on the
following three criteria: (1) being designed by National Key
Universities to ensure the production quality; (2) covering
various topics in humanities, social sciences, and natural
sciences; and (3) on-line enrollments of those courses
were various (see details in Table 1). We focused and
selected the introductory parts of those several-hour on-
line video courses (https://www.icourse163.org/course/
WHU-85001), since the initial learning phase exerts an
important effect on learning desire (Visser, 1998; Keller
and Suzuki, 2004). The selected course clips were then
edited (i.e., 1 s fade-out; resolution, 1280 � 720) using
Movie Maker (Windows, Microsoft). The duration of each
course clip lasted for �120 s (mean � SD, 127 � 41 s;
range, 57–215 s).

Procedures
During the experiment, subjects were individually seated

in front of a 19.5 inch monitor in an electromagnetic-sound-
shielded room, and wore earphones and an EEG recording
cap (Fig. 1A).

There were 15 trials corresponding to 15 course clips.
One trial entailed the following steps. First, a course title
together with its preassigned course number (Table 1, see
details) appeared for 3 s, followed by a 1 s fixation. Next,
subjects watched a course clip. After that, subjects pro-
vided answers to “Do you like the introduction?” and “Do
you want to learn the course?” (1–100, from “not at all” to

“very much,” until response; Fig. 1B). Controlled by
E-prime software (version 2.0; Psychology Software
Tools), the presentation order of trials (course clips) was
randomized across subjects.

Upon finishing 15 trials, 15 course titles with their
course numbers were presented together on the screen.
Subjects were then instructed to rank the 15 courses in
order of their learning desire from 1 (most) to 15 (least). To
do so, subjects wrote down corresponding course num-
bers beside a column of rankings (1–15) using a paper and
pen (Fig. 1C). Upon finishing the course ranking, subjects
were asked to rate the potential reasons to which they
attributed their high learning desire on a 4-point scale
from 1 (strongly disagree) to 4 (strongly agree). Two items
testing the most concerned reasons, value and interest,
were included: “learning the introduced course is useful
for me” (Hulleman et al., 2010) and “I am interested in the
introduced course” (Nuutila et al., 2018). As suggested by
the precollected data from independent raters (see Sta-
tistical analyses), subjects reported reasons only for their
top two courses (i.e., those were ranked with 1 and 2). To
note, learning desire rankings of courses were later coded
in reverse (i.e., 16 minus original rank), such that larger
rankings indicated higher course-learning desire.

EEG data acquisition and preprocessing
Brain signals were recorded via a 64-channel EEG ap-

paratus (Compumedics NeuroScan), in accordance with
the international 10/10 system. The electrooculograms
(EOGs) were recorded via four auxiliary electrodes. Two
horizontal electrodes were placed lateralized to two eyes,
while the other two vertical electrodes were placed over
the upper and lower sides of the left eye. Data collected
from the two horizontal electrodes and the two vertical
electrodes were synthesized respectively and merged into
one horizontal channel and one vertical channel. Imped-
ances were kept to �10 k�. Signals were digitized at a
sampling rate of 1000 Hz.

Table 1. Summary of course clips

Online
enrollment

No. Course title Topic Duration (s) URL-ending � Mean Rank
1. Psychological Health of College Students Psychology 100 NEU-1001930012#/info 2991 5
2. Taoist Wisdom Philosophy 81 XJTU-1001522001#/info 3528 2
3. Chinese Poetry Art Literature 149 SCU-21006#/info 4937 1
4. Silk Culture and Products Art 129 SUDA-1001754250#/info 160 15
5. Managerial Communication Management 133 NUEPU-292001#/info 2168 6
6. Economic Geography and Vicissitude of

Enterprises
Economics 67 ZNUEDU-1001615011#/info 848 10

7. Culture of Mathematics Math 123 NANKAI-312001#/info 3350 4
8. Applied Optics Physics 57 BIT-1001606003#/info 1481 9
9. Medicinal Chemistry Chemistry 121 CPU-1001570004#/info 1831 7
10. Engineering Materials and Manufacturing Engineering 133 SDU-306001#/info 776 12
11. Cytobiology Biology 132 SCU-46011#/info 1511 8
12. First Aid General Knowledge Medical Science 170 WHU-85001#/info 3368 3
13. Space Humanities and Arts Interdiscipline 215 NUAA-1001764004#/info 836 11
14. Medical Ethics Interdiscipline 170 XJTU-47022#/info 382 13
15. Fantastic Bionics Interdiscipline 129 JLU-32007#/info 187 14

On-line enrollment (person-time/session) was recorded by the date of 2017/03/26.
�URL beginning with http://www.icourse163.org/course/.
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Following the study by Dmochowski et al. (2012), pre-
processing of EEG data was performed using custom
MATLAB (R2016b, MathWorks) scripts with EEGLAB tool-
box (version 14.1.0; Delorme and Makeig, 2004). Data
were filtered at a 1 Hz high-pass and a 50 Hz notch, and
downsampled to 250 Hz. As we focused on the EEG
activity during the watching of course clips, data were
segmented from the beginning to the end of each
video. Eye-movement artifacts were corrected using a
regression-based approach (Gratton et al., 1983; Elbert
et al., 1985), as follows: (1) approximating the amplitude
relation between EOG channels and each EEG channel
and (2) then subtracting the estimated proportion of the
EOG from the EEG. The regression-based correction was
separately performed on the entire data block corre-
sponding to each video. Two EOG channels and two
mastoid channels were then omitted, leaving 60 channels
in the following analyses. Bad channels were automati-
cally rejected for exceeding mean channel power by 5
SDs. Outlier samples in each kept channel were rejected
for their magnitudes exceeding the mean of that channel
by more than 5 SDs. Data within �40 to �40 ms (20
sampling points) relative to each identified artifactual out-
lier were additionally rejected, and all were replaced by
zeros. The preprocessed EEG data entered into subse-
quent analyses.

Intersubject correlation
The analysis of ISC (Dmochowski et al., 2012, 2014; see

more details at www.parralab.org/isc/) was computed to
quantify the neural similarity while subjects were watching
the same naturalistic stimuli. It aims to find components
(here, linear combinations of electrodes) capturing maximal
correlation across all subjects. The concept of maximizing

correlations resembled that in canonical correlation analysis
(Hotelling, 1936), with a constraint being that the same pro-
jection vectors were used for all the datasets.

ISC analysis was performed individually for each course
clip. It included three steps (Fig. 2). First, correlated com-
ponents were captured across all subjects’ neural data-
sets (subjects � electrodes � time-points) by solving an
eigenvalue problem similar to the principle component
analysis (Parra and Sajda, 2003). Second, the three stron-
gest correlated components (i.e., C1, C2, and C3) were
retained while other smaller ones were ignored (Dmo-
chowski et al., 2012, 2014; Ki et al., 2016). Spatial distri-
butions of the C1, C2, and C3, informing the approximate
locations of the underlying neuronal sources, were visu-
alized (Parra et al., 2005; Haufe et al., 2014). Finally, for
each subject, component-wise (i.e., projected EEG data)
correlations were computed between this subject and
each of all remaining subjects, and then averaged. The
ISC was then obtained as the sum of the correlation
coefficients over C1, C2, and C3.

Statistical analyses
Following previous EEG-ISC studies (Dmochowski

et al., 2012; Ki et al., 2016), we used a phase randomiza-
tion technique to determine the chance-level ISC of each
course clip (Theiler et al., 1992). To do so, fast Fourier
transformation was first used to extract the original
phases and amplitudes of preprocessed EEG data. Then,
randomly generated phases were added to the original
phases. With unchanged original amplitudes, inverse fast
Fourier transformation was then used to reconstruct
phase-randomized surrogate EEG data. By this step, the
phase-randomized EEG surrogate data were not sup-
posed to correlate across subjects. For each course clip,

Figure 1. Schematic illustration of the experimental procedure. A, Experimental setup. B, Events and time flows in a trial. C, Subjects
ranked courses based on their learning desire form 1 (highest) to 15 (lowest). Note that in the following analyses, rankings were
reversely coded.
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the significance level was determined by comparing the
ISC of the original data to the mean ISC of 1000 phase-
randomized surrogate datasets. The resulting p values for
15 course clips were then corrected using the false dis-
covery rate (FDR) procedure (Benjamini and Yekutieli,
2001).

We calculated the motivational effectiveness of course
clips by averaging the learning desire rankings across
subjects. Fifteen course clips were then classified into
three categories with different degrees of motivational
effectiveness, high (average rankings from 11 to 15) ver-
sus medium (6–10) versus low (1–5); two clips (i.e., no. 3
and no. 12) were classified into the high effective cate-
gory, 2 (i.e., no. 10 and no. 13) into the low effective
category, and 11 (i.e., the remaining) into the medium
effective category. Such a classification was validated by
an additional group of independent raters. Prior to the
EEG experiment, using the identical experimental proce-
dures except for the EEG collection, behavioral data were
precollected from an independent group of 25 subjects
(six males; mean age, 21 years; age range, 19–25 years;
1 subject was left handed). The independent raters clas-
sified exactly the same 2 clips into the high effective
category, exactly the same 2 into the low effective cate-
gory, and exactly the same remaining 11 into the medium
effective category as the EEG group did. To validate the
use of group-averaged rankings for classification, we
measured the variability of learning desire rankings for

course clips across subjects (including EEG subjects and
independent raters) using intraclass correlation (ICC). The
ICC reached 0.93, suggesting that the variability of the
group-averaged rankings for course clips across subjects
were fairly low (Koo and Li, 2016).

With the aforementioned classification of course clips,
we then conducted one-way repeated-measures ANO-
VAs to relating motivational effectiveness (high vs medium
vs low) with ISC values (i.e., ISC and subcomponents).
Specifically, for each subject, ISC values of each effective
category were first averaged across course clips in that
category and then compared using repeated-measures
ANOVAs, with motivational effectiveness (high vs medium
vs low) as a within-subject variable. For post hoc pairwise
comparisons, we used paired t tests with FDR correction.

We further conducted a Pearson correlation analysis
between ISC difference (high vs low) and learning desire
difference (high vs low). Difference values (i.e., ISC differ-
ence and learning desire difference) were calculated by
subtracting values of the low effective category (after
averaging values across two involved course clips) from
values of the high effective category (after averaging val-
ues across two involved course clips). To note, consider-
ing that ISC varies due to individual differences (Petroni
et al., 2018), we chose to use the difference values rather
than values of either low or high effective category. The
ISC of the low effective category served as an active
baseline and was subtracted to control for individual dif-

Figure 2. Overview of the three-step ISC analysis. Neural responses are recorded on D electrodes from N subjects during the time
(0–T s) of stimuli presentation. First, a few (first three in this study) maximally correlated components are extracted. Second, the
spatial distribution of each component is visualized. Third, for each subject, ISC is measured as the sum of the averaged correlation
coefficients between that subject and remaining subjects over the first three components. Ed, Electrode d; Sn, subject n. Ci,
component i.
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ferences. Here we focused on learning desire rankings
decided after all the viewings of course clips rather than
learning desire ratings of “do you want to learn the
course?” collected after each course clip viewing since
they were highly correlated with each other (r(15) 	 0.97, p
� 0.001) and the former were less biased to limited
information. Given the evidence linking subcomponents
of ISC (i.e., C1, C2, and C3) to separate cognitive func-
tions (Dmochowski et al., 2014; Cohen and Parra, 2016),
parallel correlation analyses were also separately per-
formed between subcomponent ISCs difference (high vs
low) and learning desire difference (high vs low).

Previous studies have found that human brain is opti-
mized to make the fastest decision at a specified accu-
racy after successively integrating external perceptional
inputs (Bogacz et al., 2006; Gold and Shadlen, 2007; de
Gardelle and Summerfield, 2011; Tsetsos et al., 2012).
How early brain responses predict subsequent behaviors
has been computed by identifying the earliest time-point
at which time-cumulative brain activity was significantly
correlated with subsequent behaviors (Jiang et al., 2015;
Zheng et al., 2018; Liu et al., 2019). Accordingly, we
explored how early ISC predicted learning desire by iden-
tifying the earliest time-point, at which time the cumulative
ISC difference (high vs low) was correlated with subse-
quent learning desire difference (high vs low). Specifically,
time course correlation analyses between time-cumu-
lative ISC difference and subsequent learning desire dif-
ference were repeatedly performed from 0.1 to 133 s (the
shortest duration among the four course clips involved in
low and high effective categories) with a time increment of
0.1 s. The time-cumulative ISC at a certain cumulative
time (ct) was computed by the time points from 1 to ct �
250 (sampling rate). The subsequent learning desire dif-
ference used in the time course correlation analyses was
same as that used in the aforementioned full time corre-
lation analysis. The resulting p values, at the same size of
repeated times for correlation analyses, were then cor-
rected using FDR methods. Accordingly, if there existed a
certain time point after which p values of the correlations
between the time-cumulative ISC difference and learning
desire difference started and were maintained to survive
the FDR correction, such a time-point would be labeled as
the starting time point that ISC could successfully predict
learning desire. Time increments of 0.5, 1, 2, 5, and 10 s
also returned similar results. In addition, parallel time

course correlation analyses were performed separately
for subcomponent ISCs (C1, C2, and C3).

Moreover, we attempted to provide neurophysiological
suggestions for why some naturalistic educational mate-
rials elicited high learning desire. To do so, for individual
subjects, we focused on reason ratings (i.e., value and
interest) and ISC of their own top two course clips with the
highest rankings. Value and interest ratings were aver-
aged across individual-level top two course clips and
compared using a paired t test. Next, we conducted
Spearman correlation analyses between reason ratings
(i.e., interest and value) and ISC, which was also averaged
across individual-level top two course clips for each sub-
ject.

Code accessibility
The code described in the article is freely available

on-line at https://github.com/YiZhuECNU/EEG-ISC.git.
The code is available as Extended Data 1. It can be
performed using MATLAB (version 2016b) in a Windows
10 system.

Results
The significant ISCs for course clips

As expected, each of 15 video-evoked ISCs (i.e., the
averaged ISC across all the subjects) significantly ex-
ceeded its corresponding chance-level ISC determined
by phase-randomized surrogated data (p values � 0.001,
FDR corrected; Fig. 3), indicating that course clips in-
duced a significant learner-wise similar neural activities.

ISC of high versus medium versus low effective
course clips

We next sought to identify whether ISC varied by mo-
tivational effectiveness. A one-way repeated-measures
ANOVA comparing the ISC across motivational effective-
ness (high vs medium vs low) factor on ISC was con-
ducted. Results revealed a significant main effect (F(2,28) 	
8.36, p 	 0.001, �p

2 	 0.37). Follow-up pairwise compar-
isons showed that the ISC was significantly larger for the
medium effective category (mean � SD, 0.09 � 0.02; t(14)

	 3.18; corrected p � 0.05; Cohen’s d 	 0.68) and for the
high effective category (0.10 � 0.02; t(14) 	 3.25; cor-
rected p � 0.05; Cohen’s d 	 0.86) than that for the low
effective category (0.08 � 0.02; Fig. 4A).

Figure 3. Video-evoked versus chance-level ISC of each course clip. ISC evoked by each course clip significantly exceeded its
chance level. Each dot represents one subject. Error bars indicate SEs. ���p � 0.001, FDR corrected.

New Research 6 of 11

September/October 2019, 6(5) ENEURO.0083-19.2019 eNeuro.org

https://github.com/YiZhuECNU/EEG-ISC.git
https://doi.org/10.1523/ENEURO.0083-19.2019.ed1


Similar analyses on subcomponent ISCs (C1, C2, and
C3) consistently showed the main effect of motivational
effectiveness (F values 
 6.78; p values � 0.004; �p

2 

0.33). Follow-up pairwise comparisons showed the fol-
lowing results: for C1, the ISC of the high effective cate-
gory was larger than that of the medium effective category
(t(14) 	 3.98; p � 0.01; Cohen’s d 	 0.58) and that of the
low effective category (t(14) 	 3.03; p � 0.05; Cohen’s d 	
0.59); for C2, the ISC of the medium effective category
was significantly larger than that of the low effective cat-
egory (t(14) 	 4.00; p � 0.01; Cohen’s d 	 0.98); for C3,
the respective ISC of the medium and high effective cat-
egories was larger (t(14) 	 6.28; p � 0.001; Cohen’s d 	
1.01) and tended to be larger than that of the low effective
category (t(14) 	 2.58; p � 0.1; Cohen’s d 	 0.89; Fig. 4B,
bottom).

Representative spatial projections of three correlation-
maximizing components on the scalp showed that the
first component was symmetric and marked approxi-
mately in the frontal and occipital lobes, the second com-
ponent was approximately in the bilateral frontotemporal
lobes, and the third component was marked widely in the
parietal cortex (Fig. 4B, top). Such scalp projections re-
sulted from viewing course videos that were in accor-
dance with those previously found for other audiovisual
stimuli (Dmochowski et al., 2012, 2014).

ISC as a predictor of course-learning desire
We then tested whether the ISC predicted subjects’

course-learning desire. ISC difference (high vs low) was
significantly correlated with learning desire difference
(high vs low: r(15) 	 0.74, p 	 0.002; Fig. 5A). Parallel
correlation analyses for subcomponent ISCs found that
the difference in subcomponent ISCs (high vs low) was
independently correlated with the learning desire differ-
ence (high vs low: C1, r(15) 	 0.66, p 	 0.007; C2, r(15) 	
0.58, p 	 0.02; C3, r(15) 	 0.47, p 	 0.08; Fig. 5C).

To identify how an early ISC predicted learning desire,
time course correlation analyses were repeatedly con-

ducted with a 0.1 s time increment from 0.1 to 133 s
between time-cumulative ISC difference (high vs low) and
subsequent learning desire difference (high vs low). We
found that at 100.6 s after the video onset, the time-
cumulative ISC difference (high vs low) started to become
a significant predictor of subsequent learning desire dif-
ference (high vs low: p � 0.05, FDR corrected; Fig. 5B).
Later on, correlations remained constantly significant until
the video ended. Parallel time course correlation analyses
were conducted for each subcomponent ISC. Results
revealed a key role of C1 (but not of C2 and C3) in the
prediction (starting at 85.5 s; Fig. 5D).

The association between ISC and interest/value
In an attempt to provide neurophysiological sugges-

tions for why some course clips are effective to evoke
learning desire, we tested whether ISC was associated
with value and/or interest. Behaviorally, ratings of interest
(mean � SD, 3.67 � 0.36) were highest among all the
reasons and significantly exceeded ratings of value (3.27
� 0.62; t(14) 	 2.45, p 	 0.03, Cohen’s d 	 0.79; Fig. 6A).
Moreover, the ISC for individual-level top two course clips
was significantly correlated with ratings of interest (r(15) 	
0.77, p 	 0.0008; Fig. 6B), but not of value (r(15) 	 0.32, p
	 0.25; Fig. 6C).

Discussion
Here we used an EEG-derived ISC approach to capture

the degree of shared brain responses to naturalistic edu-
cational materials. Results revealed that (1) on-line course
videos prompted similar neural activity across learners; (2)
the neural similarity was enhanced by the motivational
effectiveness of course clips for evoking learning desire;
(3) the neural similarity was predictive of course-learning
desire (even before finishing the viewing of the entire
video); and (4) the neural similarity was associated with
interest-based (rather than value-based) learning desire.
These results are discussed successively as follows.

Figure 4. ISC of high versus medium versus low effective course clips. A, ISCs of high and medium effective clips were respectively
larger than that of low ones. B, Top, One representative illustration (i.e., the highest effective course clip) of the scalp projections of
the first three maximally correlated components (i.e., C1, C2, and C3). Color indicates how strongly the component activity correlated
with the EEG signals recorded on different electrodes across the scalp. Bottom, Subcomponent ISCs were also enhanced when the
motivational effectiveness of course clips increased. Each dot represents one subject. Error bars indicate SEs. #p � 0.1, �p � 0.05,
��p � 0.01, ���p � 0.001, FDR corrected.
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First, using EEG, we recorded learners’ general patterns
of neuronal activity at the timescale during the watching of
on-line course videos. We found that all 15 course clips,
regardless of their motivational effectiveness for evoking
learning desire, elicited significant neural similarity across
learners. This result aligns well with pervious findings that
brains of different individuals tend to act in unison during
the natural watching (Hasson et al., 2004; Dmochowski
et al., 2012, 2014; Ki et al., 2016). Thus, an ISC across
multiple brains tends to provide a sensitive and quantifi-
able measure of the continuous neural responses to nat-
uralistic stimuli. Critically, this measure makes it feasible
for conventional laboratory paradigms to move beyond
the rigid trial-based structure where discrete stimuli are
repetitively presented.

Second, although all course clips prompted similar neu-
ral processing across learners, we found significantly
larger ISC for high (vs medium, vs low) effective course
clips. It seems that course clips, which engage learners’
brains more collectively, are more effective to evoke
course-learning desire. This finding is consistent with
prior studies demonstrating larger ISC during strong (vs
weak) powerful political speeches (Schmälzle et al., 2015),
and more (vs less) effective antialcohol public service
announcements (Imhof et al., 2017). An ISC has also been
found to predict the preferential effectiveness of adver-
tisements in an EEG study (Dmochowski et al., 2014).
However, here we failed to demonstrate that ISC scaled
monotonically with the motivational effectiveness of
course clips. To note, the duration of advertisements used

Figure 5. ISC predicted course-learning desire. A, Pearson correlation indicated ISC difference (high vs low) positively associated with
the subject’s learning desire difference (high vs low; r(15) 	 0.74, p 	 0.002). B, ISC difference became a significant correlate of
learning desire difference after �100 s of watching. The vertical red line with an asterisk indicates the earliest time (100.6 s) at which
such a correlation reached the significance. The horizontal dashed line indicates the correlation coefficient (r(15) 	 0.64, p � 0.05, FDR
corrected). C, Pearson correlations indicated differences in subcomponent ISCs independently associated with the subject’s learning
desire difference. D, For C1, the vertical purple line with an asterisk indicates the earliest time (85.5 s) at which correlation reached
the significance. The horizontal dashed line indicates the correlation coefficient (r(15) 	 0.60, p � 0.05, FDR corrected). C2 or C3
showed no such early prediction effect. Each dot represents one subject. #p � 0.1, �p � 0.05, ��p � 0.01.

Figure 6. ISC was associated with interest rather than value. A, Ratings of interest significantly exceeded those of value. B, C, For
individual-level high effective course clips, the Spearman correlation indicated that ISC positively associated with the ratings of value
(r(15) 	 0.77, p 	 0.0008; B), but not with ratings of interest (r(15) 	 0.32, p 	 0.25; C). Each dot represents one subject. Error bars
indicate SEs. �p � 0.05, ���p � 0.001.
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in the study by Dmochowski et al. (2014) is identical (i.e.,
30 s), while the duration of course clips used in our study
is not (i.e., 57–215 s). We suspected that the longer
watching of materials might damage the sustained atten-
tion or vigilance (Nuechterlein et al., 1983; Sarter et al.,
2001), thence modulating the ISC (Ki et al., 2016; Iotzov
et al., 2017; Cohen et al., 2018).

Third, course-learning desire could be predicted by the
neural similarity. Moreover, time course analyses showed
that ISC was predictive of subsequent course-learning
desire after �80 s of watching of videos. The first maxi-
mally correlated component (C1) played a key role in such
a prediction. Representative scalp projection of the C1
exhibited a symmetric pattern marked in the frontal and
occipital electrodes. Such a component captures the neu-
ral activity possibly reflecting the visual processing (Dmo-
chowski et al., 2012, 2014), suggesting that the visual
property of educational materials is crucial for promoting
learning desire. This finding is in accordance with those of
previous studies showing that visual properties, such as
saliency, influence the final decision (Milosavljevic et al.,
2012; Towal et al., 2013). The second component (C2) in
the bilateral frontotemporal lobes was possibly recruited
in the auditory processing (Hickok and Poeppel, 2007).
Besides, C1 and C2 might also capture supramodal re-
sponses (Cohen and Parra, 2016). The third component
(C3) was marked widely in the parietal cortex, which might
be associated with attentional modulation to audiovisual
stimuli (Shomstein and Yantis, 2006; Nardo et al., 2011).
The global scalp patterns observed in the current study
aligned with those found in a previous fMRI study, where
spatial dimension of the observed EEG-derived neural
similarity was probed by regressing BOLD activation time
series onto the neural similarity scores (Dmochowski
et al., 2014). In a final detail, �80 s of video watching was
sufficient to predict the course-learning desire. This find-
ing bolsters the optimization of brain to make the fastest
decision at a specified accuracy after successively inte-
grating external perceptional inputs (Bogacz et al., 2006;
Gold and Shadlen, 2007; de Gardelle and Summerfield,
2011; Tsetsos et al., 2012).

Fourth, we provided neurophysiological suggestions for
why some course clips were effective to evoke learning
desire by testing the association between ISC and value/
interest. For course clips ranked with higher learning de-
sire by individuals, (1) interest was reported to be a more
important reason for further course study, and (2) neural
similarity during the processing of those videos was as-
sociated with self-reported interest rather than value.
These findings support interest-based learning desire hy-
pothesis—learners’ interests effectively promote learning
desire (Ainley et al., 2002; Harackiewicz et al., 2002;
Krapp, 2002; Hidi and Renninger, 2006). Given the evi-
dence that ISC is strongly modulated by attention (Ki
et al., 2016; Iotzov et al., 2017; Cohen et al., 2018) and the
potential association between attention and interest
(Shirey, 1992), we suspected that attention might play a
role in the relationship between ISC and interest-based
learning desire. As an important note, although value-
based learning desire hypothesis did not gain the sup-

porting results in the current study, we could not
assuredly draw a conclusion that value played no role in
promoting learning desire. It might be the case that our
ISC measure was not so sensitive to the value-based
on-line learning. Future independent replications are
needed to provide more evidence.

Several limitations of this work, along with future direc-
tions, deserve to be noted. First, scalp projections of
correlated components are not valid to exactly locate
brain sources due to the inherently limited spatial resolu-
tion of EEG. Therefore, future studies should consider
adopting source analyses (e.g., standardized low-
resolution brain electromagnetic tomography; Pascual-
Marqui, 2002) with high-resolution EEG, as well as fMRI/
MEG with satisfactory spatial resolution (Dmochowski
et al., 2014). Second, post hoc power analyses with
G�Power (Erdfelder et al., 1996) indicated that a sample
size of �13 would be sufficient to obtain statistical power
at the recommended 0.8 level (Cohen, 1988) with Cohen’s
d 	 0.86 reported in the result that ISC was larger for high
(vs low) effective course clips. However, our sample size
(N 	 15) was far from adequate to examine how individ-
uals’ factors (e.g., goal orientation; Elliot and Mcgregor,
2001) influenced the neural responses to educational
messages in a top-down manner, calling for future stud-
ies. Finally, value and interest were viewed independently
in the present study, since the correlation conducted on
individual subjects between value and interest ratings for
their own high effective course clips was not significant
(r(15) 	 0.26, p 	 0.34). However, value and interest have
been found to interact with each other and have interplay
effects on competence belief, success expectancy, and
learning performance (Hidi and Renninger, 2006; Fryer
and Ainley, 2018; Nuutila et al., 2018). Future studies
might test the interplay of value and interest in other
contexts of on-line learning [e.g., courses with (1) high
value � high interest, (2) high value � low interest, (3) low
value � high interest, and (4) low value � low interest, and
the power of ISC measure to differentiate between them].

To sum up, the current results indicate that naturalistic
educational materials with greater motivational effective-
ness enhanced neural similarity across learners. Such
enhanced neural similarity is predictive of learning desire,
which is based on interest. From a collective-brain per-
spective, the use of EEG-derived ISC approach holds the
potential to evaluate the motivational effectiveness of nat-
uralistic educational materials. Our study paves the way
to investigate learners’ motivation at a neurophysiological
level in the context of on-line learning. It also holds rele-
vance for instructional designs to aid learning interest
deficit.
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