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Plants have pathways that bypass two a-keto-acid
dehydrogenase complexes: the pyruvate dehydrogen-
ase (PDH) bypass around the PDH complex (PDHc)
and the y-aminobutyrate (GABA) shunt around the
a-ketoglutarate dehydrogenase complex (KGDHc;
Fig. 1A). The PDH bypass is suggested to enhance py-
ruvate flux to acetyl-CoA but is otherwise enigmatic
(Tadege and Kuhlemeier, 1997; Wei et al., 2009); the
GABA shunt is proposed to have various metabolic and
signaling functions (Fait et al., 2008). The first enzymes
of these bypasses, pyruvate decarboxylase (PDC) and
Glu decarboxylase (GAD), are expressed constitutively
in leaves and further induced by stresses (Fait et al.,
2008; Mithran et al.,, 2014). It is therefore generally
thought that the bypasses, although energetically less
efficient than the PDHc and KGDHc, have adaptive
roles in both unstressed and stressed leaves. What has
not been considered for plants, although it has been for
mammals, is that the PDHc and KGDHc are thiamin
diphosphate (ThDP)-dependent, and hence vulnerable
to ThDP deficiency; that ThDP is labile, particularly
in organelles and under stress conditions; and that
episodic organellar ThDP deficiency is consequently
probable. Here, we marshal data from the literature on
these points, show that the properties of leaf PDCs
equip them to mediate the PDH bypass, and provide
evidence that this bypass operates in vivo. We then
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argue that a major function of the PDH bypass and the
GABA shunt is to maintain mainline metabolic fluxes
when organellar ThDP levels run low.

GAD and the GABA shunt are well documented in
leaves and other tissues, and have proposed roles that
include maintenance of carbon/nitrogen balance, pH
regulation during hypoxia, and modulation of growth
and development (Fait et al., 2008; Ramesh et al., 2017).
Notwithstanding all the data available, however, the
physiological significance of the GABA shunt remains
quite speculative (Fait et al., 2008; Ramesh et al., 2017),
as indeed are the roles in leaves of the Krebs cycle itself,
especially in C4 plants (Zhang and Fernie, 2018). PDC
has been much studied in the context of ethanol gly-
colysis (Mithran et al., 2014) but not in the context of the
PDH bypass in leaves. PDC is clearly present in leaves
and could provide an alternative path to acetyl-CoA
as well as to acetaldehyde and ethanol during hy-
poxia, but what it does in normoxia remains conjectural
(Nguyen et al., 2009; Wei et al., 2009; Mithran et al.,
2014). The presence of the enzymes of the GABA shunt
and the PDH bypass in leaves is particularly enigmatic
because, unlike roots or developing seeds, leaves rarely
experience hypoxia or use ethanol glycolysis.

A factor adding to the enigma is that the properties of
leaf PDCs from herbaceous plants have not been de-
fined. Specifically, it is not known whether PDC leaf
isoforms have acidic pH optima, this being a key
characteristic that enables activation by a fall in cyto-
solic pH (Ismond et al., 2003). Nor have Kys and K
values or substrate preferences been reported for leaf
PDCs. We therefore expressed the major leaf PDC iso-
forms of Arabidopsis (Arabidopsis thaliana; AtPDC2;
Mithran et al., 2014) and maize (Zea mays; ZmPDCS3;
Walley et al., 2016) in Escherichia coli and characterized
the purified enzymes. Both have acidic pH optima (pH
5.7 for AtPDC2, 6.3 for ZmPDC3; Fig. 2A), strongly
prefer pyruvate to other physiological a-keto acids
(Fig. 2B), and show moderately sigmoidal kinetics
consistent with allosteric activation by pyruvate (Lee
and Langston-Unkefer, 1985; Supplemental Fig. S1).
Their Sy 5, Vinax (Kear), and Hill coefficient (k) values are
pH-dependent in ways that favor activation at low pH
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Figure 1. The PDH bypass, the GABA
shunt, and their relationship to ThDP.
A, Scheme showing the PDH bypass
(red arrows), the GABA shunt (blue
arrows), and the a-keto-acid dehydro-
genase complexes that they circum-
vent. The PDHc occurs in mitochondria
and chloroplasts; the KGDHc is solely
mitochondrial. The dashed red arrow
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leading from cytosolic acetate to mito-
chondrial acetyl-CoA denotes an unde-
fined pathway by which acetate is
respired (Eastmond et al., 2000). The
dashed arcs radiating from the ThDP
structure indicate the enzymes in the
scheme that are ThDP-dependent. B,
Estimated in vivo fluxes through the
mitochondrial PDHc, the chloroplast
PDHc, and the KGDHc in Arabidopsis
leaves compared with the extractable
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(Fig. 2C; Supplemental Fig. S1). First, the Sy 5 values of
AtPDC2 and ZmPDC3 at optimal pH are in the low
millimolar range (~1 and 3 mu, respectively), whereas
at pH 7.5 (a typical cytosolic pH) the Sy 5 values of both
enzymes are 6- to 13-fold higher and their K.,; values
are 2- to 6-fold lower (Fig. 2C; Supplemental Fig. S1).
Second, as for PDCs purified from maize kernels and
roots (Lee and Langston-Unkefer, 1985), the coopera-
tivity of both enzymes is greater at higher pH. Activa-
tion by low pH might be further enhanced if affinity for
ThDP increases as pH falls, as for yeast PDC (Gounaris
et al., 1971). The properties of leaf PDCs are thus con-
sistent with their functioning in the bypass pathway
provided that there is a fall in cytosolic pH.

If there is flux through the PDH bypass, ablating PDC
is predicted to shrink the pool of acetaldehyde and
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expand the pools of pyruvate and/or its transamina-
tion product Ala. We therefore compared the levels of
these metabolites in leaves of an AtPDC2 knockout line
(Supplemental Fig. S2) with those of wild-type plants.
Knocking out AtPDC?2 significantly decreased acetal-
dehyde level (by 48%) and significantly increased py-
ruvate level (by 43%; Fig. 2D). As the plants were
grown in near-optimal conditions, these data imply that
the PDH bypass carries substantial flux even in the
absence of stresses.

The PDH bypass and the GABA shunt each provides
a route around a mitochondrial a-keto-acid dehydro-
genase complex and, for the PDH bypass, around a
chloroplastic a-keto-acid dehydrogenase complex as
well (Fig. 1A). These complexes require ThDP, the co-
factor for their E1 subunits (Fig. 1A). ThDP is inactivated
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Figure 2. Characteristics of the predominant leaf PDCs from Arabidopsis and maize, and metabolic effects of knocking out the
Arabidopsis enzyme. A, pH-activity profiles for recombinant AtPDC2 and ZmPDC3. Activities were assayed in 50 mm MES-KOH
or MOPS-KOH buffer using a pyruvate concentration of 15 mm. Data are means = st for three replicate experiments with the same
enzyme preparations. B, Substrate preferences of AtPDC2 and ZmPDC3, assayed at pH 6.4 using substrate concentrations of 5 mm
for AtPDC2 and 0.94 mm for ZmPDC3, to approximate their respective Sy 5 values. Data are means = st for three replicates and
are expressed as percentages of activity with pyruvate, which was 10.5 wmol min~" mg~" protein for AtPDC2 and 0.76 umol
min~! mg~! protein for ZMPDC3. Substrate abbreviations: OAA, oxaloacetate; a-KLeu, a-keto-Leu; a-KVal, a-keto-Val; a-KG,
a-ketoglutarate; a-Klle, a-keto-lle. C, S5, Hill coefficient (h), and K, values of AtPDC2 and ZmPDC3 at their respective pH
optima and at pH 7.5. Data are means * st for three independent experiments. Values for AtPDC2 at pH 7.5 could not be
measured as precisely as other values because the Sy 5 value approached the maximum acceptable pyruvate concentration (30
mM). Initial velocity versus substrate concentration plots for AtPDC2 and ZmPDC3 are shown in Supplemental Figure S1. D,
Acetaldehyde, pyruvate, and Ala contents of wild-type Arabidopsis (Col-0) and an AtPDC2 knockout line (AtPDC2 KO). Data are
means = st for five or six replicates. The knockout and wild-type mean values for acetaldehyde and pyruvate differ significantly by
Student’s ttest. *P < 0.05; **P < 0.01. FW, fresh weight.

by catalytic misfires (Bunik et al., 2011) and has a short
half-life (~10 h in Arabidopsis leaves) that probably
shortens further as fluxes through ThDP-dependent en-
zymes increase, and as a result of stress (Hanson et al.,
2016). Evidence from plants and mammals suggests that
mitochondrial and chloroplastic ThDP are especially
susceptible to depletion (Bunik et al, 2011; Hanson
et al., 2016), and thiamin deficiency has been known
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for >70 years to reduce the activities of mammalian
PDHc and KGDHc (Bender, 1999). These points make it
reasonable to think that the PDH bypass and GABA
shunt are adaptations to ThDP deficiency. For the GABA
shunt in mammals, this idea is 30 years old and has ex-
perimental support (Page et al., 1989). It is thus striking
that this simple idea has apparently not been invoked to
explain why leaves can run the GABA shunt and PDH
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bypass. For the PDH bypass, an objection to the idea
is that PDC is itself ThDP-dependent—but a counterar-
gument is that PDC is cytosolic whereas the proposed
ThDP deficiency is organellar (as discussed below). The
GABA shunt is not subject to such an objection as GAD is
not ThDP-dependent.

Three lines of reasoning support the idea that the
PDH bypass and the GABA shunt are workarounds for
organellar ThDP deficiency in leaves.

(1) Calculations from published data show that the
PDC and GAD activities in Arabidopsis leaves,
assayed in optimal conditions, are at least 3-fold
greater than the total in vivo fluxes through
the PDHc and KGDHc (Fig. 1B). These enzymes
thus have the capacity to handle all the flux that
normally goes through the reaction they bypass.
Isotope-labeling data for the GABA shunt sup-
port this inference (Fait et al., 2008).

(2) For the PDH bypass, estimates based on a respira-
tory flux to pyruvate of 3.1 umol g~ fresh weight
h~! (Fig. 1B) and standard values for cytosolic vol-
ume and the buffer capacity of leaf cytoplasm
show that, in the absence of PDH complex activ-
ity, it would take only 5-10 min for pyruvate ac-
cumulation to decrease the cytosolic pH by 1 unit,
and hence to strongly activate PDC (Fig. 2A;
Supplemental Data). Although complete loss of
PDH complex activity is physiologically unlikely,
these estimates suggest that even a modest loss
could quickly cause sufficient cytosolic acidifica-
tion to activate PDC.

(3) Many published results point to organellar ThDP
deficiency as an existential threat in leaves. Thus,
estimates of the abundance of ThDP-binding sites
(i-e. the active sites of ThDP-dependent enzymes) in
Arabidopsis leaves give a total of ~1,700 pmol g !
FW, with ~1,300 (76%) coming from a single chlo-
roplast enzyme, transketolasel (Fig. 1C). As total
leaf ThDP content is only ~1,100 pmol g‘1 FW
(Fig. 1C, yellow bar), transketolasel could theoret-
ically sequester all available ThDP, leaving none
for other enzymes, particularly extrachloroplastic
ones. Other studies have reached similar conclu-
sions (Piques et al., 2009; Khozaei et al.,, 2015).
These numbers imply that chloroplast transketol-
ase, and by extension the chloroplast PDH com-
plex, usually operate close to ThDP deficiency.
That there is probably flux through the PDH by-
pass even in mild conditions (Fig. 2D) supports the
possibility that incipient ThDP deficiency is nor-
mal. Further supporting this possibility, doubling
chloroplast transketolase expression in tobacco (Ni-
cotiana benthamiana) leaves led to systemic ThDP
deficiency (Khozaei et al., 2015) and raising ThDP
level in Arabidopsis leaves by just ~20% increased
extractable transketolase activity without changing
transketolase protein level (Bocobza et al., 2013).
Increasing ThDP level also increased mitochondrial
PDH complex activity, but not protein, indicating
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that leaf mitochondria are likewise normally bor-
derline ThDP-deficient (Bocobza et al., 2013). The
classical finding that isolated leaf mitochondria
exhaust their ThDP pool within ~1 h points to
the same conclusion (Douce et al.,, 1977). More
generally, a corollary of the tightly regulated,
just-in-time character of ThDP synthesis in leaves
(Bocobza et al., 2013) is the possibility of transient
ThDP deficiency at any time and prolonged defi-
ciency if stress disrupts the system. As ThDP de-
ficiency is a priori less likely in the cytosol (where
ThDP is made) than in organelles (Hanson et al.,
2018), PDC may well be able to keep its ThDP
cofactor when a-keto-acid dehydrogenase com-
plexes are losing theirs. Relative immunity of
PDC to ThDP deficiency would allow the PDH by-
pass to take over when the PDH complex fails.

If the risk of organellar ThDP deficiency is a baked-in
feature of the plant thiamin economy, then constitutive
bypasses around ThDP-dependent organellar enzymes
would neatly solve the problem of keeping central
metabolism running. Was, then, the primordial func-
tion of the PDH bypass and the GABA shunt to provide
workarounds for ThDP deficiency? And are the diverse
metabolic and signaling roles of these two pathways
secondary functions that evolved later? Whatever the
case, the solid evidence that leaves usually operate with
borderline-deficient ThDP levels raises the question for
future research of why this is so. Two nonexclusive
possibilities are (1) that cells use a limiting ThDP sup-
ply to actively orchestrate core central metabolism, as
proposed by Bocobza et al. (2013), or (2) that cells
minimize the level of free ThDP because it is highly
reactive and potentially toxic (Lerma-Ortiz et al., 2016).

Supplemental Data
The following supplemental materials are available.

Supplemental Figure S1. Initial velocity versus substrate concentration
plots for AtPDC2 and ZmPDC3 at their respective pH optima and at
pH7.5.

Supplemental Figure S2. Validation of AtPDC2 knockout mutant.

Supplemental Data. Supplementary materials, methods, and calculations.
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