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Pannexin-1 limits the production of
proinflammatory cytokines during necroptosis
Tiphaine Douanne1,2,3, Gwennan André-Grégoire1,2,3,4, Kilian Trillet1,2,3, An Thys1,2,3 , Antonin

Papin1,2,3, Magalie Feyeux5, Philippe Hulin5, David Chiron1,2,3, Julie Gavard1,2,3,4 & Nicolas Bidère1,2,3,*

Abstract

The activation of mixed lineage kinase-like (MLKL) by receptor-
interacting protein kinase-3 (RIPK3) controls the execution of
necroptosis, a regulated form of necrosis that occurs in apopto-
sis-deficient conditions. Active oligomerized MLKL triggers the
exposure of phosphatidylserine residues on the cell surface and
disrupts the plasma membrane integrity by forming lytic pores.
MLKL also governs endosomal trafficking and biogenesis of
small extracellular vesicles as well as the production of proin-
flammatory cytokines during the early steps of necroptosis;
however, the molecular basis continues to be elucidated. Here,
we find that MLKL oligomers activate Pannexin-1 (PANX1) chan-
nels, concomitantly to the loss of phosphatidylserine asymme-
try. This plasma membrane “leakiness” requires the small
GTPase RAB27A and RAB27B isoforms, which regulate intracellu-
lar vesicle trafficking, docking, and fusion with the plasma
membrane. Although cells in which PANX1 is silenced or inhib-
ited normally undergo necroptotic death, they display enhanced
production of cytokines such as interleukin-8, indicating that
PANX1 may tamper with inflammation. These data identify a
novel signaling nexus between MLKL, RAB27, and PANX1 and
propose ways to interfere with inflammation associated with
necroptosis.
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Introduction

Necroptosis is a programmed lytic cell death pathway that occurs in

apoptosis-deficient conditions [1]. In contrast to apoptosis, which is

thought to be immunologically silent as cellular content remains

impermeable and is rapidly engulfed by surrounding phagocytic

cells, necroptotic cells produce proinflammatory cytokines and

release cytosolic proinflammatory material in the extracellular

milieu as a consequence of the loss of plasma membrane integrity

[2]. Although the engagement of several immunoreceptors culmi-

nates in necroptosis, this form of death has been best studied upon

ligation of the death receptor family member TNF receptor 1

(TNFR1) [2]. When caspases are blocked, TNFR1 signaling assem-

bles a filamentous death-inducing complex of the Ser/Thr kinases

RIPK1, RIPK3, and the pseudokinase MLKL coined necrosome,

which culminates in the phosphorylation of MLKL by RIPK3 [3–9].

This causes MLKL to adopt a conformational change and to bind

negatively charged phospholipids such as high-order inositol phos-

phates, leading to its multimerization [10]. As a consequence,

MLKL oligomers insert into the plasma membrane, where they trig-

ger the exposure of phosphatidylserine residues at the cell surface,

acting as “eat-me” signals for the surrounding immune cells

[11,12]. Ultimately, oligomerized MLKL compromises cell-

membrane integrity by forming lytic pores leading to the cell’s

demise [10,13–16].

Cells with phosphorylated MLKL and flipped phosphatidylserine

are not necessarily committed to death and can “resuscitate”

provided the stimulus is removed in a timely manner [12,17].

During this commitment phase, necroptotic cells mount a potent

immune response, and MLKL promotes the cell-autonomous

production of proinflammatory cytokines such as interleukin-8

(IL-8, CXCL8) [18]. Active MLKL also governs endosomal traf-

ficking, as well as the dynamic biogenesis and extrusion of small

extracellular vesicles (EVs) [11,19,20]. This requires the RAB27

small GTPase subfamily of RAB27A and RAB27B, which facili-

tates the trafficking of intracellular vesicles, as well as their

docking and fusion to the plasma membrane [19,21].

How exactly MLKL controls these diverse functions continues

to be elucidated. Here, we report that MLKL oligomers promote

the activation of the channel-forming glycoprotein PANX1 via

the RAB27 isoforms, in cells otherwise viable. PANX1 is a

single-membrane large-pore channel, which is activated by a

variety of stimuli, such as membrane stretches, ATP, flux of
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ions (K+, Ca2+), or receptor-induced signaling [22]. In its

open-state, PANX1 allows the passage of nucleotides (ATP, UTP),

chloride, and small molecules, as well as the uptake of dyes such

as the carbocyanine monomeric TO-PRO-3 from the extracellular

medium [22]. Recently, effector caspases were shown to cleave a

COOH-terminal latch in PANX1 to irreversibly open the channel

in apoptotic and pyroptotic cells [23–25]. This promotes cell clear-

ance and inflammation, as PANX1 channels conduct the release

of nucleotide-based “find-me” signals and of potassium, which

favors the assembly of the NLRP3 inflammasome [25]. However,

the contribution of PANX1 to necroptosis has not been investi-

gated. By combining genetic and chemical tools, we show that

PANX1 is dispensable for the proper execution of the necroptotic

program, but it restrains the production of proinflammatory

cytokines such as IL-8.

Results and Discussion

MLKL promotes “leakiness” of the plasma membrane
during necroptosis

HT-29 colon cancer cells, which constitute a classical model for

necroptosis [4,5], were treated with TNFa (T) in the presence of

the pan-caspase inhibitor QVD-OPh (Q), together with the Smac

mimetic Birinapant (S) [26]. Necroptosis was then visualized by

depletion of intracellular ATP, crystal violet staining, staining of

phosphatidylserine residues on the outer face of the plasma

membrane with Annexin V (A5), and uptake of the vital cell-

impermeant dye TO-PRO-3 [4,5,11,12,17] (Fig 1A–D). As expected

[3,6], cell death was efficiently prevented by either the RIPK1

inhibitor Nec-1s or by silencing MLKL (Figs 1A–D and EV1A).

Supporting an initial observation by Gong et al [17], staining with

TO-PRO-3 discriminated a population of “leaky” cells with a dim

staining from dead cells with a high incorporation of the dye

(Fig 1C and E). Of note, those TO-PRO-3Dim cells were mostly A5-

positive (Fig 1C). Silencing of MLKL significantly reduced both

exposure of phosphatidylserine residues and TO-PRO-3 uptake

(Figs 1C and EV1B). Moreover, “leakiness” preceded full perme-

abilization to the dye seen after 24 h, which likely reflects the

loss of plasma membrane integrity (Ref. [17], Fig 1F and G).

Importantly, the early uptake of TO-PRO-3 was selective, as it

was not accompanied by a staining with propidium iodide,

although of smaller molecular weight (Fig 1H and I). Further mili-

tating against a general rupture of the plasma membrane,

cytosolic lactate dehydrogenase was only modestly released in the

extracellular milieu during early steps of necroptosis (Fig 1J).

Time-lapse microscopy to monitor A5 staining and TO-PRO-3

uptake further unveiled that kinetics of phosphatidylserine expo-

sure and TO-PRO-3 uptake during necroptosis slightly differed

(Fig 1K, and Movies EV1 and EV2). Although both events started

2 h post-stimulation, phosphatidylserine exposure occurred

suddenly as compared to the gradual uptake of TO-PRO-3. Alto-

gether, this suggests that the plasma membrane of cells becomes

“leaky” to TO-PRO-3 in an MLKL-dependent manner during the

early onset of necroptosis.

Pannexin-1 governs plasma membrane “leakiness”

This “leakiness” of necroptotic cells is reminiscent of the caspase-

mediated opening of the plasma membrane PANX1 channels during

apoptosis, as evidenced by the selective uptake of TO-PRO-3 [23].

This results in the release of purines, such as ATP in the extracellu-

lar space, which serve as a “find-me” signal for surrounding phago-

cytes [23]. To test the impact of PANX1 on “leakiness” during

necroptosis, we first knocked down its expression with three indi-

vidual siRNA oligoribonucleotides and found no overt defect on the

phosphorylation of the necrosome core components (Figs 2A and

EV2A). Of note, we observed the appearance of a shorter MLKL

fragment 4–6 h post-stimulation, which was PANX1-dependent

(Figs 2A and EV2A). The size of the generated fragment and the

specificity of antibodies used (Fig EV2B and C) suggested a cleav-

age between the brace region and the pseudokinase domain of

MLKL [27]. Nevertheless, oligomerization of MLKL occurred

normally in PANX1-silenced cells and was efficiently blocked by

pre-treating cells with Nec-1s (Figs 2B and EV2D). Moreover,

PANX1 silencing did not alter necroptotic death, and MLKL-

mediated flip of phosphatidylserine occurred normally, suggesting

that PANX1 is mostly dispensable for cell death by necroptosis

(Figs 2C and D, and EV2E–G). In contrast, silencing PANX1 was as

efficient as knocking down MLKL in preventing TO-PRO-3 uptake

(Figs 2D–F, and EV2F and G). We further deployed a CRISPR/Cas9

strategy to knock out PANX1, and two single-guide RNA (sgRNA)

were used to deplete endogenous PANX1 in HT-29 cells without

single-cell cloning. Although cell survival was slightly increased in

knockout cells compared to control, no clear defect in necroptosis

signaling and phosphatidylserine asymmetry was seen (Fig 2G–I).

Nevertheless, plasma membrane “leakiness” was abolished in the

absence of PANX1 (Fig 2J). Importantly, the re-expression of

PANX1 in those knockout cells was sufficient to restore the uptake

▸Figure 1. MLKL controls the selective permeabilization of the plasma membrane during the early stages of necroptosis.

HT-29 cells were transfected with siRNA for MLKL, or scramble non-specific (NS) siRNA for 72 h. Cells pre-treated with 10 lMQVD-OPh (Q), 5 lM Birinapant (S), and 20 lM

necrostatin-1 (Nec-1s) were stimulated with 1–10 ng ml�1 TNFa (T).

A, B Cell viability was assessed by CellTiter-Glo (A), and Crystal Violet (B) after 16 h. Data are means � SEM of three independent experiments. *P < 0.1, ****P < 0.0001
(ANOVA).

C–E Flow cytometric analysis of cells stained with TO-PRO-3 and Annexin V (A5). Histograms show means � SEM of three independent experiments. ***P < 0.001,
****P < 0.0001 (ANOVA).

F–I Cells were collected after 4 and 24 h of treatment and stained with TO-PRO-3 (F and G), or with propidium iodide (PI) and A5 (H and I). Data are means � SEM of
three independent experiments. **P < 0.01, ***P < 0.001, ****P < 0.0001 (ANOVA).

J Measurement of lactate dehydrogenase (LDH) released from necroptotic cells, as indicated (means � SEM, n = 4 biological replicates, ****P < 0.0001, ANOVA).
K Time lapsed microscopy analysis of A5 and TO-PRO-3 staining upon induction of necroptosis. The presented data are representative of at least three independent

experiments.
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of TO-PRO-3 in response to the necroptotic insult (Fig 2K–M). Simi-

lar results were obtained in cells expressing a shRNA targeting the

50-UTR region of PANX1 (Fig EV2H and I). Lastly, we found that

cells treated with the PANX1 channel blockers carbenoxolone

(CBX), Probenecid, and Trovafloxacin [28] also displayed impaired

uptake of TO-PRO-3 (Fig 2N and O). This was however not the
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case when connexins, another family of large-pore channels that

shares similarities with Pannexins [22], were inhibited with Gap19

or LaCl3 (Fig EV2J and K). Of note, a greater phosphorylation of

MLKL was observed without PANX1 or when its activity was inhib-

ited (Fig 2A, G, and P). Collectively, these data demonstrate that

MLKL initiates “leakiness” of the plasma membrane via PANX1

and that PANX1 activation is dispensable for the execution of cell

death.

During apoptosis, effector caspases remove a COOH-terminal

inhibitory domain of PANX1 to irreversibly open the channels [23].

The analysis of PANX1 by immunoblotting revealed multiple

species, consistent with N-glycosylation, as they were efficiently

removed with a treatment with PNGase F (Ref. [29] and Fig EV2M).

Although less dramatic than during apoptosis [23,30], we noticed a

modest cleavage of PANX1 during necroptosis at a site close to the

characterized caspase site, as evidenced by a slight decrease in full-

length PANX1 combined with the presence of a cleaved fragment in

PNGase F-treated samples (Fig EV2L and M). The canonical caspase

substrate PARP remained intact, arguing against residual caspase

activity (Fig EV2M). This modest PANX1 proteolysis occurred

simultaneously with MLKL processing, and both were significantly

reduced in cells treated with PANX1 inhibitors (Figs 2A, B, G, P,

and EV2N). Hence, the cleavage of MLKL and PANX1 likely results

from the opening of the channel in necroptotic cells.

MLKL oligomerization and vesicular trafficking control plasma
membrane “leakiness”

Once phosphorylated by RIPK3, MLKL binds high-order inositol

phosphates [13]. This displaces MLKL’s auto-inhibitory domain and

allows MLKL to oligomerize and reach the plasma membrane to

exert its lethal function [13,14]. As expected [3,14], the treatment of

cells with the small molecule necrosulfonamide (NSA) prevented

MLKL oligomerization (Fig 3A). NSA also significantly reduced the

uptake of TO-PRO-3 (Fig 3B). We next silenced inositol-tetrakispho-

sphate 1-kinase (ITPK1), a crucial kinase for the generation of

◀ Figure 2. Pannexin-1 controls the uptake of TO-PRO-3 during necroptosis.

A HT-29 cells were transfected with two individual siRNA for PANX1, or scramble non-specific (NS) siRNA for 72 h. Cells were pre-treated with 10 lM QVD-OPh (Q)
together with 5 lM Birinapant (S), prior stimulation with 10 ng ml�1 of TNFa (T), as indicated. Western blotting for hallmarks of necroptosis, as indicated. The
arrowhead indicates MLKL cleaved fragment. Molecular weight markers (Mr) are shown.

B Cells as in (A) were exposed to TQS for 5 h. Necrostatin-1 (Nec-1s, 20 lM) was also used. MLKL oligomers (MLKLn) were resolved by non-reducing SDS–PAGE after
cross-linking.

C The cell viability was assessed by CellTiter-Glo after 24 h of treatment (means � SEM, n = 4 biological replicates).
D–F Flow cytometric analysis of cells as in (A) treated with TQS for 4 h and stained with Annexin V (D), or with TO-PRO-3 (E and F). Data are means � SEM of three

independent experiments. *P < 0.1, ****P < 0.0001 (ANOVA).
G–J HT-29 cells were infected with lentiviruses containing two individual sgRNA to deplete endogenous PANX1. A control non-specific sequence (NC) was also used.

Cells were treated as in (A) with the addition of 1 lM cycloheximide (C) to enhance cell death and analyzed by Western blotting (G). Cell survival was assessed by
CellTiter-Glo after 24 h of treatment (H). Histogram shows means � SEM, n = 4 biological replicates, ****P < 0.0001, ANOVA. Annexin V staining and TO-PRO-3
uptake was analyzed by flow cytometry after 4 h of stimulation (I and J). Shown are means � SEM, n = 3 biological replicates, *P < 0.1, ****P < 0.0001, ANOVA.

K–M PANX1 expression was restored in PANX1 knockout cells after an infection with a lentivirus containing a PANX1 cDNA and expressing GFP. Cell lysates were
analyzed by Western blotting as indicated (K). TO-PRO-3 uptake was analyzed by flow cytometry (L and M). Shown are means � SEM, n = 3 biological replicates,
****P < 0.0001 ANOVA.

N, O NS- and MLKL-silenced cells were pre-treated with 100 lM carbenoxolone (CBX), 2 mM Probenecid (Probe), or 30 lM Trovafloxacin (Trova) and stimulated as in
(A). Cell survival was evaluated by CellTiter-Glo after 24 h (N). Data are means � SEM, n = 4 biological replicates, ***P < 0.001, ****P < 0.0001, ANOVA. TO-PRO-3
uptake was analyzed by flow cytometry (O). Data are means � SEM, n = 3 biological replicates, ***P < 0.001, ****P < 0.0001, ANOVA.

P Cells as in (N) were analyzed by Western blotting. The presented data are representative of at least three independent experiments.

Source data are available online for this figure.

▸Figure 3. MLKL oligomerization and vesicular trafficking enable plasma membrane “leakiness”.

HT-29 cells were transfected with a non-specific (NS) siRNA or with the indicated siRNAs for 72 h. Cells were pre-treated with 10 lM QVD-OPh (Q) plus 5 lM Birinapant (S)
and exposed to 10 ng ml�1 of TNFa (T).

A, B NS- and MLKL-silenced cells were treated with 5 lM necrosulfonamide (NSA). MLKL oligomers (MLKLn) were visualized by non-reducing SDS–PAGE after cross-
linking proteins (A). Cells were exposed to TQS for 5 h. Molecular weight markers (Mr) are shown. TO-PRO-3 uptake was analyzed by flow cytometry in cells treated
with TQS for 4 h (B). Data are means � SEM of three independent experiments. ****P < 0.0001 (ANOVA).

C Cell lysates from NS- and ITPK1-silenced cells were analyzed by Western blotting as indicated.
D Western blotting analysis of MLKL oligomerization as in (A).
E Cell survival was evaluated by CellTiter-Glo after 24 h of treatment (means � SEM, n = 4 biological replicates, ****P < 0.0001, ANOVA).
F Measurement of TO-PRO-3 uptake as in (B). Dead TO-PRO-3high cells were discarded. Data are means � SEM of three independent experiments. *P < 0.1,

****P < 0.0001 (ANOVA).
G Small EVs fractions were purified from the culture medium by ultracentrifugation. Shown is a representative diagram of particle count obtained with tunable

resistive pulse sensing analysis (TRPS, qNano, IZON).
H Cells as in (G) were subjected to Western blotting analysis as indicated.
I MLKL oligomerization was determined as in (A).
J Cell survival by CellTiter-Glo after 24 h (mean � SEM, n = 4 biological replicates, **P < 0.01, ***P < 0.001, ****P < 0.0001, ANOVA).
K TO-PRO-3 uptake as in (B). Data are means � SEM, n = 3 biological replicates, ****P < 0.0001 (ANOVA). The presented data are representative of at least three

independent experiments.

Data information: (A, C, H, I) Arrowhead, MLKL cleaved fragment.
Source data are available online for this figure.
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inositol phosphates [13]. Although an increase in the phosphoryla-

tion of RIPK1 was noticed without ITPK1, the phosphorylation of

RIPK3 and MLKL was normal, in agreement with Dovey et al [13]

(Fig 3C). However, silencing ITPK1 precluded MLKL oligomeriza-

tion (Fig 3D). This led to a reduction in the exposure of phos-

phatidylserine residues together with a significant inhibition of

TO-PRO-3 uptake (Figs 3E and F, and EV3A). Thus, MLKL oligomer-

ization is instrumental for PANX1-mediated “leakiness” of the

plasma membrane.

In addition to the plasma membrane [3], active MLKL targets

intracellular vesicles and was demonstrated to regulate constitutive

endosomal trafficking [19,20]. In agreement, our examination by

super-resolution microscopy of CD63, a tetraspanin enriched in late

endosomes, lysosomes, and secretory vesicles confirmed a drop in

the number and volume of vesicles without MLKL (Fig EV3B–E).

Because MLKL-mediated trafficking and release of small EVs require

the small RAB GTPases RAB27A and RAB27B [19], we next assess

their impact on TO-PRO-3 uptake during necroptosis. First,
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100,000 × g (100k) sedimented membrane vesicle fractions, purified

from culture media of RAB27A- or RAB27B-silenced cells, were

analyzed by tunable resistive pulse sensing technology. Supporting

previous works [11,19], the triggering of necroptosis increased small

EVs release and this induction was markedly reduced when RAB27A

or RAB27B was knocked down (Fig 3G). Silencing RAB27A or

RAB27B did not alter classical hallmarks of necroptosis, such as

RIPK1 and MLKL phosphorylation or MLKL oligomerization,

whereas phosphatidylserine exposure and overall cell death were

only slightly diminished (Figs 3H–J and EV3F). Yet, the uptake of

TO-PRO-3 was drastically reduced without RAB27 isoforms

(Fig 4K). Further paralleling PANX1 inhibition, the residual proteol-

ysis of MLKL was also impaired. Combined, these data suggest that

MLKL oligomerization and RAB27-dependent vesicular trafficking

control “leakiness” of the plasma membrane.

Pannexin-1 restrains the production of proinflammatory
cytokines during necroptosis

MLKL was recently shown to promote, in a cell-autonomous

manner, the production of proinflammatory cytokines during the

early stages of necroptosis [18]. We therefore investigated whether

interfering with PANX1 had an effect on inflammation. To this

end, we first carried out an unbiased antibody array for the pres-

ence of 120 cytokines in the culture media from control and

PANX1-silenced cells engaged in the necroptotic process. Support-

ing the results from Zhu et al [18], triggering necroptosis promoted

the expression and release of a subset of proinflammatory cytoki-

nes such as IL-8/CXCL8 and Groa/CXCL1 (Fig 4A). This was

further enhanced when PANX1 was silenced, suggesting a role for

PANX1 in tampering with inflammation. In line with this, quantita-

tive polymerase chain reaction (qPCR) analysis revealed that more

IL-8 mRNA was produced without PANX1 (Fig 4B and C). This

was accompanied by an increase in the abundance in IL-8 protein,

as measured by immunoblotting and ELISA (Fig 4D and E). Impor-

tantly, the same was true in cells treated with the PANX1 inhibitor

CBX (Fig 4F–H). Of note, silencing MLKL or inhibiting its activity

with NSA abolished CBX-mediated effects (Fig EV3G and H).

Lastly, we assessed the impact of RAB27 proteins, which partici-

pate in PANX1-mediated “leakiness” of the plasma membrane, on

IL-8 synthesis. Paralleling the situation with PANX1, the silencing

of RAB27A or RAB27B significantly increased the production of IL-

8 both at the mRNA and at the protein level (Fig 4I–K). Altogether,

these findings support the idea that PANX1 and the RAB27

proteins play a negative role in inflammation by dampening the

production of cytokines.

In conclusion, we provide evidence that PANX1 channels operate

downstream of MLKL to constrict the production of proinflamma-

tory cytokines during necroptosis. Our data also illustrate how the

plasma membrane of necroptotic cells undergoes drastic rearrange-

ments before it collapses. This includes the insertion of MLKL oligo-

mers [10,13–16], scrambling of phosphatidylserine residues, ions

fluxes [15,31], activation of cell surface proteases [32], the release

of so-called “bubbles” of broken plasma membrane and of small

EVs [12], and now the activation of the channel-forming PANX1.

Although PANX1 silencing only marginally affected phos-

phatidylserine asymmetry, additional work is required to elucidate

whether these “eat-me” signals constitute a prerequisite for plasma

membrane “leakiness”, or if MLKL signaling bifurcates.

How exactly is MLKL linked to PANX1? Hints may come from

the discovery that MLKL oligomers target intracellular compart-

ments, in addition to the plasma membrane [14,19,20]. Whether

MLKL’s location dictates its apparently independent functions

remains unknown. Nevertheless, our results indicate that MLKL

oligomer-mediated activation of PANX1 channels requires RAB27

GTPase family. Future investigations will define how RAB27-depen-

dent intracellular trafficking of vesicles to the PM is propitious for

PM “leakiness”. In addition to mechanical distortion, ATP, K+

efflux, Ca2+ influx, phosphorylation, or caspase-mediated process-

ing was shown to open PANX1 channels [33]. Of note, oligomerized

MLKL promotes a drastic efflux of potassium in bone marrow-

derived macrophages, which culminates in the activation of the

NLRP3 inflammasome [34]. However, buffering the concentration of

K+ with KCl at concentrations that did not interfere with MLKL

phosphorylation [34] had no apparent impact on PANX1-mediated

uptake of TO-PRO-3 and PANX1-dependent processing of MLKL

(Fig EV3I and J). Although not formally ruled out here, MLKL-

dependent Ca2+ flux was shown to occur rather lately in necroptotic

HT-29 cells, concomitantly to the loss of plasma membrane integrity

[31]. Interestingly, MLKL phosphorylation and phosphatidylserine

asymmetry do not mark a point-of-no-return and both events can be

reversed if the insult is removed [11,12,17]. Because “leakiness”

▸Figure 4. Pannexin-1 restrains the production of cytokines associated with necroptosis.

A HT-29 cells were transfected with a siRNA for PANX1 (#3), or scramble non-specific (NS) siRNA for 72 h. Cells were pre-treated with 10 lM QVD-OPh (Q) plus 5 lM
Birinapant (S) and exposed to 10 ng ml�1 of TNFa (T) for 6 h. Shown is a normalized densitometric analysis for the presence of 120 cytokines in cell supernatants
with an antibody array. The color scale (0–10) represents the means of normalized densitometry values (n = 2 technical replicates).

B, C HT-29 transfected as indicated (B) or PANX1 knockout HT-29 cells (C) were treated with TQS for 6 h. The mRNA levels of Cxcl8 relative to untreated NS or NC
samples were measured by qPCR (means � SEM, n = 3 biological replicates, ****P < 0.0001, ANOVA).

D Lysates from cells treated as indicated were prepared and subjected to Western blotting analysis as indicated. Molecular weight markers (Mr) are shown.
E Abundance of IL-8, measured by ELISA, in the supernatants of cells treated as indicated after 6 h of stimulation (means � SEM, n = 4 biological replicates,

***P < 0.001, ANOVA).
F–H HT-29 cells were treated as indicated. Cxcl8 mRNA levels relative to untreated NS samples were measured by qPCR after 6 h of treatment (F). Cell lysates were

analyzed by Western blotting (G). The release of IL-8 in cell culture media was analyzed by ELISA (H). Data are means � SEM of three (F) or four (H) independent
experiments (***P < 0.001, ****P < 0.0001, ANOVA).

I–K HT-29 cells were treated as indicated. Cxcl8 mRNA levels relative to untreated NS samples were measured by qPCR after 6 h of treatment (I). Cell lysates were
analyzed by Western blotting (J). IL-8 release was analyzed in cell culture media by ELISA (K). Data are means � SEM of three (I) or four (K) independent
experiments (**P < 0.01, ****P < 0.0001, ANOVA).

Data information: (D, G, J) Cleaved MLKL is indicated with an arrowhead.
Source data are available online for this figure.
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occurs concomitantly to the exposure of phosphatidylserine resi-

dues, it is tempting to speculate that PANX1 opening during necrop-

tosis is also reversible.

During apoptosis, the presence of phosphatidylserine residues

on the outer leaflet of the plasma membrane, combined with the

opening of PANX1 channels, serves as “eat-me” and “find-me”
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signals to favor silent phagocytosis [23,28,35]. Caspase-mediated

activation of PANX1 also coordinates NLRP3 inflammasome

assembly, apoptotic bodies release and prevents the formation of

“string-like” protrusion called apoptopodia [28,36]. During

necroptosis, MLKL oligomers govern the production of cytokines,

the secretion of small EVs, and the subsequent release in the

extracellular milieu of “danger signals” from dying cells drive

inflammation [37]. Our data indicate that MLKL simultaneously

initiates a negative feedback loop via PANX1 to finely tune the

production of cytokines and therefore shape the necroptotic

microenvironment. Future work will elucidate how PANX1 and

its interplay with MLKL regulate this inflammatory response.

The necroptotic machinery has been linked to several inflamma-

tory conditions such as ischemia/reperfusion, inflammatory

neurodegenerative diseases, intestinal inflammation, and cancer

[1,38,39]. Strategies aimed at targeting PANX1 might be relevant

to selectively modulate early inflammation associated with

necroptosis.

Materials and Methods

Cell culture and reagents

HEK293T, HT-29, and HeLa cells were purchased from the

American Type Culture Collection. Bafilomycin A1, carbenox-

olone (CBX) Concanamycin A, Cycloheximide, LaCl3, and Trova-

floxacin were purchased from Sigma. Gap19, QVD-OPh, and

TNFa were obtained from R&D Systems. Birinapant, Necrostatin-

1 (Nec-1s), and Necrosulfonamide (NSA) were from Selleckchem.

MCC-950 (Invivogen), Probenecid, TO-PRO-3, Alexa-488 Annexin

V, and propidium iodide (Life Technologies), CellTiter-Glo and

PGNase F (Promega), and Cytotoxicity Detection kitPLUS (Roche

Diagnostics) were also used.

siRNA and transfections

Cells were transfected with 10 pmol of siRNA using the Lipofec-

tamine RNAiMAX Transfection Reagent (Invitrogen) as previously

described [40]. The following sequences were obtained from Life

Technologies: ITPK1#1, GCAGCACGCCGUCAUUGACAUCAAU (HSS-

105601); ITPK1#2, GCCUACAUGGAAGACGACAGGAUCU (HSS10-

5602); ITPK1#3, GCACCAACUCUCACGAGAUGGCUAU (HSS105603);

MLKL#1, UCGAAUCUCCCAACAUCCUGCGUAU (HSS136795); MLK-

L#2, CAAGGAAACUUUGAGGCAGUAUUUA (HSS176401); MLKL#3,

GCAACGCAUGCCUGUUUCACCCAUA (HSS136796); PANX1#1,UC

AGGCUGCCUUUGUGGAUUCAUAU (HSS119236); PANX1#2, ACCU

CCCACUGUGGCUGCAUAAGUU (HSS119237); PANX1#3, CAUAUU

UGCUCAGACUUGAAGUUUA (HSS177598).

A mixture of siRNAs targeting RAB27A was purchased from

Sigma (EHU91501). RAB27B was silenced as previously published

[41].

shRNA, CRISPR, and infections

A lentiviral shRNA vector containing a sequence targeting the 50-
UTR region of PANX1 was used (Dharmacon, Cat#V2LHS-73947,

ATGTGTAAGTCCTCATCAA). For CRISPR, single-guide RNAs

(sgRNA) targeting PANX1 were chosen in the sgRNA library (Ref.

[42] and cloned into a lentiviral lentiCRISPRv2 (GeCKO, ZhangLab)

backbone [43]) . The sgRNA used are the following: PANX1#1CRISPR

forward: CACCGACTGTTAGCGTGTATCTACC; PANX1#1CRISPR reverse:

AAACGGTAGATACACGCTAACAGTC; PANX1#2CRISPR forward: CAC

CGGCTGCGAAACGCCAGAACAG; PANX1#2CRISPR reverse: AAACC

TGTTCTGGCGTTTCGCAGCC. For infections, lentiviral particles

were produced in HEK293T by co-transfection of the various

constructs together with pVSV-G and psPAX2 plasmids. Super-

natants containing lentiviral particles were collected after 48 h and

applied on HT-29 during a 1,250 × g centrifugation for 90 min in

presence of 8 lg ml�1 of polybrene (Sigma). For CRISPR, cells were

cultured with 1 lg ml�1 of puromycin to select infected cells.

Knockout or shRNA-expressing cells were reconstituted after trans-

duction with a pHIV-derived lentivirus encoding PANX1 and for

GFP, kindly provided by G. Núñez [24].

Cell death induction and measurement

To induce necroptosis, HT-29 cells were pre-treated 30–60 min with

10 lM QVD-OPH plus 5 lM Birinapant prior stimulation with 0–

10 ng ml�1 of TNFa. In some experiments, CBX (100 lM), Probe-

necid (2 mM), Gap19 (20 lM), LaCl3 (1.5 mM), Nec-1s (20 lM),

Trovafloxacin (30 lM), NSA (5 lM), and cycloheximide (1 lM)

were used. Cell viability was assessed using CellTiter-Glo, staining

with Crystal violet, and staining with Annexin V and TO-PRO-3,

following the manufacturer’s instructions.

Western blotting analysis and antibodies

Cells were washed with ice-cold PBS and lysed with TNT buffer

[50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1%

Igepal, 2 mM EDTA] or with RIPA buffer [25 mM Tris-HCl (pH

7.4), 150 mM NaCl, 0.1% SDS, 0.5% Na-Deoxycholate, 1%

NP40, 1 mM EDTA] supplemented with protease inhibitors

(ThermoFisher Scientific) for 30 min on ice. Extracts were

cleared by centrifugation at 9,000 × g, and protein concentration

was determined by BCA (ThermoFisher Scientific). 5–10 lg of

proteins was resolved by SDS–polyacrylamide gel electrophoresis

(SDS–PAGE) and transferred onto nitrocellulose membranes (GE

Healthcare). To visualize MLKL oligomers, protein cross-linking

was performed as previously described [44]. Briefly, cells were

fixed in PBS containing 0.4% paraformaldehyde for 12 min at

room temperature and lysed with PBS containing 1% Triton-

X100 and proteases inhibitors. Proteins were incubated with 2×

Laemmli buffer (Life Technologies) at room temperature and

separated by SDS–PAGE.

Antibodies specific for the following proteins were purchased

from Cell Signaling Technology: MLKL (D2I6N), P-MLKL S358

(D6H3V), PANX1 (D9M1C), RAB27A (D7V6B), P-RIPK1 S166

(D1L3S), RIPK3 (E1Z1D), and P-RIPK3 S227 (D6W2T). Antibodies

specific for GAPDH (6C5) and PARP (F-2) were purchased

from Santa Cruz Biotechnology. Antibodies specific for MLKL

(ab183770) were purchased from Abcam. Antibodies against

IL-8 (R&D, MAB208), against RIPK1 (BD Biosciences, 51),

against MLKL (Millipore, MABC604), against ITPK1 (Sigma,

HPA055230), and against RAB27B (Proteintech, 13412-1-AP) were

also used.
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qPCR

RNA was extracted using the Nucleospin RNAplus (Macherey-

Nagel) following manufacturer’s instructions. 2 lg of RNA was

reverse transcribed using the Maxima Reverse Transcriptase kit

(ThermoFisher), and 50 ng of the resulting cDNA was amplified by

qPCR using PerfeCTa SYBR Green SuperMix Low ROX (QuantaBio).

Data were analyzed using the 2�DDCt equation and normalized by

the housekeeping genes ACTB, HPRT1.

The following primers were used: ACTB forward: GGACTTCG

AGCAAGAGATGG; ACTB reverse: AGCACTGTGTTGGCGTACAG;

HPRT1 forward: TGACACTGGCAAAACAATGCA; HPRT1 reverse:

GGTCCTTTTCACCAGCAAGCT; Cxcl8 forward: CAGTTTTGCCAAG

GAGTGCT; Cxcl8 reverse: ACTTCTCCACAACCCTCTGC.

Immunofluorescence microscopy

HT-29 grown on coverslips were fixed with PBS containing 4%

paraformaldehyde for 30 min at room temperature, and staining

was performed as previously described [13]. Briefly, fixed samples

were incubated at 4°C overnight with primary antibodies and

60 min with secondary antibodies in PBS containing 3% BSA, 1%

saponin, and 1% Triton X-100. The following antibodies were used:

anti-CD63 (556019, BD Biosciences) and anti-GM130 (Abcam,

ab52649). Coverslip was sealed with Prolong gold anti-fade mount-

ing media (Life Technologies) that allowed illumination of the

nuclei by DAPI staining. For confocal microscopy, images were

acquired with a Nikon A1R confocal microscope using the NIS-

Element Software and processed using the FIJI Software. Structure

illumination microscopy (SIM) images were acquired with a Nikon

N-SIM microscope. Z-stacks of 0.12 lm were performed using a

100× oil-immersion lens with a 1.49 numerical aperture and recon-

structed in 3D using the NIS-Element Software. Reconstructed

images with a maximal NIS score of 8 were further analyzed. For

live imaging, transfected HT-29 cells were pre-treated with QVD-

OPh, Birinapant, and incubated with TO-PRO-3 and Annexin V.

After 30 min, TNFa was added and images were recorded every

5 min for 8 h. Acquisition and analysis were performed on a Leica

Timelapse DMI-8 using the MetaMorph software (version 7.5;

MicroPicell, SFR François Bonamy, France).

Image analysis

Reconstructed images validated with the SIMcheck plugin 1.2 were

analyzed with Fiji ImageJ2 v1.52i [45]. A binary mask was applied

to select images with a modulation contrast-to-noise ratio

(MCNR) > 8. Individual spots corresponding to single CD63-positive

structure were isolated with the classic watershed function of the

MorpholibJ plugin [46], and pixel intensity was measured. Only

structures with the MCNR > 12 were retained.

IL-8 secretion and cytokine array

IL-8 was measured from cell culture supernatants by ELISA (R&D,

Quantikine ELISA kit, D8000C). Cytokine presence in culture media

from HT-29 cells undergoing necroptosis was assessed using a

Human Cytokine Array C1000 (RayBiotech) followed by a densito-

metric analysis (ImageJ, NIH, USA).

Small extracellular vesicle analysis

Small EVs were purified as previously described [47]. Briefly, to

avoid contamination with extracellular vesicles (EVs) from the FBS,

serum was centrifuged at 100,000 × g for 16 h on a Beckman Coul-

ter ultracentrifuge using the SW-41 Ti rotor. EVs were purified from

the conditional media of 0.4 × 106 transfected HT-29 cells via

successive centrifugations (300 × g 5 min, 2,000 × g 10 min,

10,000 × g 30 min, 100,000 × g 2 h). Pellets were washed in PBS-

0.22 lm filtered, re-centrifuged at 100,000 × g for 2 h, and resus-

pended in a small volume of PBS-0.22 lm filtered. 100,000 × g steps

were performed on a Beckman Coulter Centrifuge using the MLA-

130 rotor. Diameter and concentration of the particles were deter-

mined by Tunable Resistive Pulse Sensing (TRPS) using the qNano

system (IZON). Particles within the range of 50–330 nm were

detected using the pore “NP 100”. A stretch 46 mm was applied to

the pores with an appropriate voltage (0.80 Ω–1.00 V) to reach a

120 nA baseline with noise < 10 pA. We have submitted all relevant

data of our experiments to the EV-TRACK knowledgebase (EV-

TRACK ID: EV180073) [48].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 7 soft-

ware using one-way and two-way analysis (ANOVA).

Expanded View for this article is available online.
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