Table 2. Comparison of the Prediction Power of Scoring Functions with the Core Sets of PDBbind v2016 and v2013 Benchmarksa.
scoring functions | RMSE | R | v201644 |
---|---|---|---|
OnionNet | 1.278 | 0.816 | |
KDeep17 | 1.27 | 0.82 | |
RF-Score-v317 | 1.39 | 0.80 | |
Pafnucy12 | 1.42 | 0.78 | |
AGL43 | 1.271 | 0.833 |
scoring functions | SD | R | v20137 |
---|---|---|---|
OnionNet | 1.45 | 0.78 | |
AGL43 | 1.45 | 0.792 | |
Pafnucy12 | 1.61 | 0.70 | |
RF-Score-v312 | 1.51 | 0.74 | |
kNN-Score14 | 1.65 | 0.672 | |
X-Score14 | 1.78 | 0.614 | |
ChemScore14 | 1.82 | 0.592 | |
ChemPLP14 | 1.84 | 0.579 | |
AutoDock Vina9 | 1.90 | 0.54 | |
AutoDock9 | 1.91 | 0.54 |
Detailed training and test sets used are reported in Supporting Information Table S1.