Skip to main content
. 2019 Sep 16;4(14):15956–15965. doi: 10.1021/acsomega.9b01997

Table 2. Comparison of the Prediction Power of Scoring Functions with the Core Sets of PDBbind v2016 and v2013 Benchmarksa.

scoring functions RMSE R v201644
OnionNet 1.278 0.816  
KDeep17 1.27 0.82  
RF-Score-v317 1.39 0.80  
Pafnucy12 1.42 0.78  
AGL43 1.271 0.833  
scoring functions SD R v20137
OnionNet 1.45 0.78  
AGL43 1.45 0.792  
Pafnucy12 1.61 0.70  
RF-Score-v312 1.51 0.74  
kNN-Score14 1.65 0.672  
X-Score14 1.78 0.614  
ChemScore14 1.82 0.592  
ChemPLP14 1.84 0.579  
AutoDock Vina9 1.90 0.54  
AutoDock9 1.91 0.54  
a

Detailed training and test sets used are reported in Supporting Information Table S1.