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Abstract

Chalmers recently published a critique of the use of ordinal a proposed in Zumbo et
al. as a measure of test reliability in certain research settings. In this response, we
take up the task of refuting Chalmers’ critique. We identify three broad misconcep-
tions that characterize Chalmers’ criticisms: (1) confusing assumptions with conse-
quences of mathematical models, and confusing both with definitions, (2) confusion
about the definitions and relevance of Stevens’ scales of measurement, and (3) a fail-
ure to recognize that a measurement for a true quantity is a choice, not an absolute.
On dissection of these misconceptions, we argue that Chalmers’ critique of ordinal
a is unfounded.
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Introduction

This note is a response to the recent article by Chalmers (2018) concerning alleged

misconceptions around ordinal a and related concepts in classical test theory (CTT).

It is distressing that an article that claims to address misconceptions in the literature

is so full of misconceptions itself. We unpack the most important of these
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misconceptions in the following sections. Broadly speaking, the misconceptions in

Chalmers (2018) can be grouped into three categories: (1) misunderstandings about

what are assumptions and what are consequences of a mathematical model, and how

these things differ from definitions, (2) misunderstandings about the definitions and

relevance of Stevens’ (1946) scales of measurement, and (3) a failure to recognize

that a measurement for a true quantity is a choice, not an absolute.

Like Chalmers, we will mainly refer to coefficient a reliability throughout; how-

ever, our remarks are not limited to coefficient a but apply to other quantifiers of test

reliability as well. Lest we conflate a critique of ordinal a with more general criti-

cisms of the a reliability coefficient, we remind the reader that Zumbo, Gadermann,

and Zeisser (2007) described in the conclusion of their paper a strategy for using the

polychoric correlation that could be applied to any reliability quantifer that can be

computed from a correlation matrix, such as an ordinal version of the McDonald’s

coefficient v (1970, 1999), Revelle’s reliability coefficient b (1979), or ordinal coef-

ficient u among others.

Assumptions, Consequences, and Definitions

Continuous Random Variables Versus Discretizations of Continuous Random
Variables

We agree with Chalmers that the calculation of coefficient a does not ‘‘require’’ con-

tinuous item response data from a mathematical perspective, in general. However, it

does require continuous data if we want a to capture the actual linear variation in an

underlying latent continuous process (if one is assumed), rather than simply a discre-

tized proxy of that process. This is the point that was made in Zumbo et al. (2007)

when they stated that, ‘‘If this assumption is violated, then the Pearson correlation

matrix may be distorted’’ (pp. 21-22).

Chalmers is correct that both the CTT model and the general notion of reliability

do not require continuous variables for direct and coherent interpretations but he is

mistaken that coefficient a does not. That is, he conflates the general notion of relia-

bility with its quantifier, in this case coefficient a. The reason for this is that a is a

function of a covariance matrix, as Chalmers himself shows in his Equation (3).

Thus, if we are studying a latent continuous process, then we ideally want this covar-

iance matrix to capture the continuous structure of the underlying process. In contrast,

neither the definition of reliability nor the general CTT model rely on a covariance

specification.

When computing coefficient a from a set of observed measurements arising from

a discretized version of this process, as is the case when using Likert-type items, the

covariance matrix will only capture the structure of that particular discretization of

the latent phenomenon. While this is intimately related to the underlying continuous

structure, it is not the same. This is in fact the exact motivation for Zumbo et al.

(2007) to define their ordinal a as they did: Ordinal a attempts to recover some of

the continuous structure of the latent continuous process before calculating an
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estimate of the covariance structure of the items. In this way, one would expect ordi-

nal a to better reflect the hidden, continuous covariance structure of the items. This

maneuver does not necessarily recover the exact continuous structure of the latent

phenomenon, but Zumbo et al. (2007) argued via simulation that it does tend to cap-

ture more of the underlying continuous structure than simply ignoring it, as a naive

calculation of coefficient a would.

This attempt to recover the continuous structure of latent response processes is

also the motivation for the use of underlying variable approaches such as probit

regression models, as well as polychoric correlation (e.g., Jöreskog, 1994; Quiroga,

1992), or hybrid approaches in the categorical variable methodology estimator of

Muthén (1984) in structural equation modeling and factor analysis in general.

Therefore, Chalmers’ allegations of the limited usefulness of such an approach would

apply equally to this long tradition of widely used underlying variable approaches

and the long list of developments that have emerged from this framework.

Mathematically, of course, coefficient a may be calculated regardless of the dis-

tributional form of the test data; but it is most accurate to interpret this quantity as a

lower bound on the reliability of a test of a continuous latent trait only when the

actual measurement (proxy for the latent trait) assumes a continuous form.

Otherwise, it is most directly a lower bound on the reliability of a test of a discretized

version of this latent trait. Indeed, this fact was another main motivation for the intro-

duction of ordinal a in Zumbo et al. (2007): ordinal a attempts to directly quantify a

more appropriate bound on the reliability of a test of a continuous latent trait when

only a discretized version of this trait has been measured by testing.

Information Content of Related Measurements

It is false that ‘‘ordinal a implicitly assumes that dichotomous test items provide the

same amount of statistical information as similar test items that use polytomous or

continuous item response formats,’’ as Chalmers (2018, p. 1065) claims. The justifi-

cation for this claim seems to be only that ‘‘the correlation estimates between dichot-

omous and polytomously scored items are approximately of the same magnitude as

the untransformed continuous variables from which the variables were constructed.’’

But this is exactly what should be expected since all these measurements are quanti-

fying the same thing (i.e., a latent continuous trait) in different ways (see section A

Measurement Is a Choice; a True Quantity Is Indifferent). This does not prove that

any assumption is being invoked.

The fact that these correlations are similar is simply a consequence of the discreti-

zation procedure; all measurements (discretized or not) here are quantifying the same

phenomenon. The information content in any particular measurement is free to vary

depending on the exact measurement procedure, but naturally the information con-

tents of similar measurements will be similar. They need not be identical, and

nowhere do Zumbo et al. (2007) claim otherwise. The fact that ordinal a ‘‘provides

approximately the same reliability estimate regardless of the item response stimuli’’

1186 Educational and Psychological Measurement 79(6)



does not indicate that ‘‘the item’s method of data collection is of little to no conse-

quence’’ (Chalmers, 2018, p. 1065). This fact is simply a consequence of how ordinal

a proposes to bound reliability; that is, by treating the observed response (discretized

or not) as arising from a continuous latent quantity directly.

The Definition of the Classical Test Theory Model

Next, it must be noted that the CTT model of measurement error does not assume

that E(E) = 0 and Cov(T , E) = 0, contra Chalmers (p. 1057). These are consequences

of the definition of the CTT model. This misspecification is in fact a serious mistake

and far too common in the published literature. To see why, recall that the CTT

model proposes that

X = T + E, where T =E(X j s(f )),

where f is an assignment-to-individual function and s(f ) denotes the set of (measur-

able) events generated by this function (e.g., see Kroc & Zumbo, 2019; Zimmerman,

1975; Zimmerman & Zumbo, 2001). In simpler terms, the definition of the true score

under the CTT model assures that each individual receives one and only one true

score that remains fixed on any actual or hypothetical reapplications of the measure-

ment process X .

The two properties that Chalmers claims are assumptions of the model are easily

seen to be consequences of the model under this correct specification. To wit,

E(E j s(f )) =E(X j s(f ))� E(T j s(f ))

= T � E(T j s(f ))

= T � T = 0:

Applying double expectation, it follows that E(E) = 0. From this, it is easy to

calculate

Cov(T , E) =E(TE)� E(T )E(E)

=E(TE)

=E(E(TE j s(f )))

=E(T E(E j s(f ))) = 0:

The measurement error model that Chalmers proposes is actually what is known

as an errors in variables model, and is common in the econometrics literature (e.g.,

see Hausman, 2001). This is a much weaker measurement error model than that of

CTT and lacks the rich structure induced by the CTT model’s individual-level

exchangeability of errors condition. This condition is really the key, novel structure

of the CTT model; without it, we would not have the defining property that the

expectation of the observed score should equal the true score for every individual

(see Kroc & Zumbo, 2019, for more discussion).
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The Definition of Reliability Versus Its Quantification

Researchers and test users often associate the concept of reliability with terms such

as ‘‘dependability,’’ ‘‘precision,’’ ‘‘repeatability,’’ and so on, assuming these things

are consistent with the mathematical definition in the CTT. In that context, reliability

is defined as the ratio of the true score variance and the total variance, or equivalently

as, the squared correlation between observed scores and true scores (Gulliksen, 1950;

Lord & Novick, 1968; Novick, 1966). Although reliability has been defined in many

different ways in test theory, and for most purposes it is immaterial which algebraic

expression is taken as a definition and which expressions are regarded as theorems,

one advantage of taking the ratio of true score variance and observed score variance

as the definition is that it encompasses all observed scores with nonzero variance,

whereas the squared correlation is not defined if true score variance happens to be

zero.

More generally, Zimmerman and Zumbo (2001) introduced an operator theory for-

mulation of CTT. They described the measurement process as a collection of linear

operators acting on a Hilbert space of true score vectors. In this way, the concepts of

true score and error score can be naturally associated with projection operators on this

Hilbert space. Once this identification is made, metric concepts of distance, length,

angle, and orthogonality have immediate implications for test theory. They went on

to show, exploiting their operator formalism, that one can consider reliability as a

mathematical object that can be defined as another type of projection.

It is this mathematical object, the conventional CTT reliability, that Zumbo and

his colleagues call the ‘‘theoretical reliability.’’ The qualifier ‘theoretical’ is appro-

priate here because this object emerges from the abstract mathematical structure of

the underlying (Hilbert) space, and this object is not formally estimated in day-to-day

psychometric work. Instead, quantifiers like coefficient a simply bound (from below)

this theoretical reliability (e.g., see Zumbo, 1999).

Although it is commonplace to see the phrase ‘‘estimate the reliability’’ in the

psychometric literature, the term ‘‘estimate’’ is deceptive. From a purely formal per-

spective, one could say that quantifiers like coefficient a are consistently biased esti-

mators of theoretical reliability, but this is not what typical practitioners and

psychometricians have in mind when they speak about estimators. For this reason, it

is clearer to say that one may ‘‘measure’’ or ‘‘quantify’’ reliability, via a series of

clever and widely used statistical experiments (e.g., repeatable structured data gather-

ing strategies) which, with the aid of mathematical models of the test data such as

parallel forms, tau-equivalence, or essential tau-equivalence, can accurately bound

the (theoretical) reliability, for example, by means of an empirical copula approach

(Bonanomi, Cantaluppi, Ruscone, & Osmetti, 2015).

Because the mathematical object of (theoretical) reliability is defined as a ratio of

two components of variance with respect to a population, a given numerical value of

‘‘reliability’’ can be associated with many different combinations of values of true-

score variance and error-score variance. To resolve this, one may choose to bound

the error term in this quotient and therefore define a quantifier of the reliability by
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the design of a measurement experiment. Thus, there are choices one must make,

from (1) choosing the manner in which to bound the error, such as internal consis-

tency of a single test administration, interrater variation, or measurement variation

over time, to (2) designing of the experiment to actually measure the quantifier of

interest, the estimand, to (3) the choice of estimator. Different estimators naturally

yield different properties of their resultant sample estimates. Which of these proper-

ties are most desirable depends on the objective of the psychometric analysis.

Confusion about estimators (mathematical expressions), estimates (sample values

of an estimator), and estimands (target quantities that estimators are defined to quan-

tify) plague most discussions of reliability and coefficient a, and Chalmers’ article is

no exception. In particular, Chalmers (p. 1066) mistakenly chastises Gadermann,

Guhn, and Zumbo (2012) for claiming that Green and Yang’s (2009) estimator

(bound) of reliability relies on an appeal to the polychoric correlation matrix. He cor-

rectly notes that Green and Yang’s definition of reliability does not depend on such a

quantity but fails to recognize that their definition of reliability defines an estimand

not an estimator. The actual estimator proposed by Green and Yang (2009, Equation

21) utilizes a transformation of discrete test scores into continuous quantities, and

the estimation procedure they then employ to compute estimates makes explicit use

of the polychoric correlation inherited from this transformation (pp. 160, 164, 166).

Stevens’ ‘‘Scales of Measurement’’ and Continuity

The Frivolity of Stevens’ Scales of Measurement

It is frustrating that so many quantitative social scientists continue to rely on Stevens’

(1946) proposed ‘‘scales of measurement’’ as a coherent way to distinguish and cate-

gorize measurements. Consideration of these scales is nearly absent in the mathemati-

cal and statistical literature of at least the past 30 years, and with good reason: they

do not categorize actual measurements in a statistically useful way. Nevertheless,

many quantitative social scientists continue to appeal to these scales to try to justify

usage or criticism of all manners of methodological choices, often contributing little

more than confusion. It is high time to stop this.

Quantitative social scientists often cite Stevens’ scales of measurement as a rea-

son for the appropriateness or not of applying a particular statistical procedure to cer-

tain kinds of data. Classically, Stevens proposed that one should only consider count

and proportion-based statistics for nominal data, additionally allowing rank-based

statistics for ordinal data, mean-based statistics (including covariances and Pearson

correlations) for interval data, and making no restrictions at all on ratio data. What

seems to have been lost in the many decades since Stevens’ original proposal is the

criterion by which he judged the appropriateness of these statistics for these different

conceptual types of data. This criterion was invariance of the statistic under a partic-

ular group structure (Stevens, 1946, p. 678); for example, Stevens argued that statis-

tics deemed appropriate for nominal data should be invariant under permutations of

the arbitrary labels one assigns to the nominal categories. However, this particular
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criterion that Stevens proposed is only one of many different criteria one could imag-

ine. As has been borne out of the decades since Stevens’ original proposal, it is clear

that many statistics have enjoyed immensely successful usage in a variety of contexts

that would be deemed strictly ‘‘inappropriate’’ according to Stevens’ criterion.

The most obvious example of this is the fact that no one seems to have any prob-

lem with including nominal or ordinal variables as predictors in a regression model.

Consider the following simple model:

Y = b0 + b1X + e, ð1Þ

where Y is some continuous response (say, height), X is a binary (nominal) variable

indicating sex (coded so that 0 = M, 1 = F), and e;N (0, s2). Naturally, b0 then cap-

tures the average height of males in the theoretical population, E(Y j X = 0), and

b0 + b1 captures the average height of females, E(Y j X = 1). The corresponding

sample statistics will produce the analogous sample estimates of these quantities. Of

course, this is exactly what is produced by the ordinary least squares solutions to

Equation (1). To see how, recall that the ordinary least squares solutions are

b1 =
Cov(X , Y )

Var(X )
, b0 =E(Y )� b1E(X ):

When X is binary so that X;Ber(p), these expressions reduce to

b1 =
1

1� p
E(Y j X = 1)� 1

1� p
E(Y ), b0 =E(Y )� p

1� p
E(Y j X = 1): ð2Þ

Applying double expectation, we know that

E(Y ) =E(Y j X = 0)(1� p) +E(Y j X = 1)p:

Plugging this expression into the equations in Equation (2), we recover the natural

interpretations of b0 and b0 + b1 as the average heights within each nominal sex

group. But these expressions depend on averages and variances of a nominal X , and

covariances (correlations) between X and an interval or ratio Y , something that is

strictly forbidden under Stevens’ original proposal.

A simpler example of the unhelpfulness of Stevens’ scales of measurement is that,

for binary random variables, proportions are mathematically equivalent to means.

Indeed, suppose fX1, . . . , Xng is a random sample from a Ber(p) random variable.

Then the number of observed ‘‘successes’’ is
Pn

i = 1 Xi, which is equivalent to n�X .

Thus, the observed proportion of successes is �X , the sample mean. Under Stevens’

criterion, however, only the first interpretation is allowed, since statistics dependent

on the mean are only permissible for interval or ratio data. This clearly illustrates

how Stevens’ scales of measurement only categorize semantics. They are not mathe-

matically coherent and, in fact, are detrimental to a discussion of statistical

usefulness.
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A final example of the unhelpfulness of Stevens’ scales of measurement is sup-

plied by a statement in Chalmers (2018) that characterizes what he considers to be

‘‘Misconception 1’’ surrounding the use of ordinal a. In his text, Chalmers states the

following:

Coefficient a, as well as the KR-20 as a special case, has never required continuous item-

level data. These reliability estimates only require that the observed bivariate relationships

among each test item have linear functional forms, and that the observations are coded in

interval (or possibly ratio) formats (Stevens, 1946). For dichotomous variables, both of

these requirements are true by construction, regardless of the coding scheme.

Additionally, interval data do not inherently require an infinite number of subdivisions in

the measured variables (i.e., do not need to be coded with decimal places or fractions). This

measurement scale only requires that the distances between commensurate values represent

the same quantity. (p. 1061)

It is this final line that explains Chalmers’ confusion. The confusion is understand-

able though given that this (incorrect) characterization of interval data has become

the industry norm in quantitative social science.

Granting this interpretation for the moment, Chalmers is primarily concerned with

binary variables arising within the context of dichotomous item responses on a test.

Thus, these variables encode whether a respondent answers each item on the test cor-

rectly or not. If we consider a single-item test where X = 1 corresponds to a correct

answer and X = 0 corresponds to an incorrect answer, then X construed as an indica-

tor of correctness is nominal; that is, the proposed encoding is arbitrary and so the

structure of X does not change if we simply permute the ‘‘correct’’ and ‘‘incorrect’’

labels. However, if X is construed as the total score of the test, then X appears to be

interval according to Chalmers’ interpretation since the only ‘‘distance’’ between

data points is the distance between ‘‘correct’’ and ‘‘incorrect.’’ Trivially then, this

distance is commensurate to itself. So, a single dichotomous item test is simultane-

ously nominal and interval, depending on the semantical interpretation of the infor-

mation content of the test; that is, does it measure correctness (nominal), or does it

measure amount correct (interval)? From a mathematical or statistical perspective

this is nonsense, since regardless of the semantics, the information contained in X is

the same. Again, we see the frivolity of Stevens’ scales of measurement.

Continuous Data

Reexamining the above quote from Chalmers uncovers yet another important flaw in

Stevens’ scales of measurement. So far, we have blithely accepted Stevens’ criterion

of invariance of a statistic under the group transformation appropriate to the scale of

measurement. However, it is not at all obvious what invariance under a group trans-

formation meant for Stevens.

Certainly, it did not mean that the value of a statistic would remain unchanged

after a group transformation since, for example, the mean, median, and mode will all
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change values when scaling a random variable by anything other than unity. It seems

what he envisioned was that if one applied the group operation appropriate to the

proposed scale of measurement to a set of sample data, then the particular sample

data point (realized or hypothetical) that corresponded to the sample statistic would

remain the same after the transformation. This is what Stevens seems to imply with

the following:

Thus, the case that stands at the median (mid-point) of a distribution maintains its position

under all transformations which preserve order (isotonic group), but an item located at the

mean remains at the mean only under transformations as restricted as those of the linear

group. (p. 678)

From this quotation, it is clear that Stevens’ proposed categories of interval and

ratio data can only apply to continuous quantities. If not, then there is not necessarily

any case/item/data point ‘‘at the mean.’’ For the dichotomous X considered above,

there can never be a sample point at its mean (unless X is essentially a constant) with-

out some kind of linear interpolation, something that Stevens himself noted was not

‘‘strictly proper’’ since ‘‘the linearity of an ordinal scale is precisely the property

which is open to question’’ (Stevens, 1946, p. 679). What then would it mean for the

sample mean of an ordinal or nominal variable to be invariant under a transformation

from the general linear group?

The only apparent way out of this quandary is to recognize that alleged interval or

ratio data must arise from only continuous random variables (or certain kinds of

discrete-continuous mixtures). Within the context of Chalmers’ original criticisms

then, requiring interval data to make sense of coefficient a is functionally equivalent

to requiring continuous data.

We are hardly the first authors to point out some of the many flaws with Stevens’

proposed scales of measurement (see e.g., Mosteller & Tukey, 1977; Velleman &

Wilkinson, 1993, or Chrisman, 1998). Yet Stevens’ original proposal still clings stub-

bornly to life in quantitative social science circles. While we recognize that Stevens’

work was novel and quite promising in its time, we have learned more than enough

in the intervening 70 + years to lay its modern usefulness to rest.

As for the question of determining which statistics are most appropriate for which

kind of data, we repeat the advice of Zimmerman (1995) from more than 20 years

ago:

Current evidence . . . suggests that the probability distribution of a random variable, not the

level of measurement, is paramount in determining which statistical test is appropriate. (p.

93)

To this, we generalize that it is the probability distribution of a random variable,

not any purported level of measurement, that should determine which statistic is

most appropriate. This statement is the generic justification for preferring the use of
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ordinal a over coefficient a for Likert-type measurements of a latent continuous

phenomenon.

A Measurement Is a Choice; a True Quantity Is Indifferent

Different Measurements Can Quantify the Same Phenomenon

Perhaps the most distressing misconception in Chalmers (2018) is the failure to

recognize that we may choose to measure a true quantity encoded in a random vari-

able in many different ways. Chalmers quibbles with the definition of ordinal a

because

substituting polychoric correlations into the required matrix to compute coefficient a . . .

fundamentally distorts the meaning of what test reliability is being measured. This is

because the supplied correlations are no longer about the observed data, but rather the rela-

tionship between two unobserved continuous variables. (p. 1062)

This statement seems to fail to recognize that we use observed data to study unob-

served quantities all the time. Indeed, the entire domain of measurement error is con-

cerned with precisely this enterprise, where a random variable of interest cannot be

measured directly, so can only be studied by some observable proxy. It is hardly nec-

essary to point out how lucrative this enterprise has been, and there exist vast arrays

of resources summarizing the possibilities (e.g., see Gustafson, 2003, or Kroc &

Zumbo, 2019).

Chalmers prefers to use a test composed of dichotomous items to bound the relia-

bility of this test as a measure of a discretized version of the latent continuous pro-

cess. Zumbo et al. (2007) prefer to use the same test to bound the reliability of the

test as a measure of the latent continuous process itself. Here, we see that the two pro-

posals want to use the same measurement process (a test of dichotomous items) to

study two intimately related random variables: a latent continuous process or one of

its possible discretizations. Both of these propositions are perfectly acceptable from a

statistical point of view depending on one’s research goals. There is no mathematical,

statistical, or conceptual problem with studying some underlying latent phenomenon

even if one cannot measure precise realizations of that phenomenon directly. This is

what measurement error modelling is for.

However, just because we can compute things, does not mean that those quantities

are inherently meaningful, or that they accurately capture the phenomenon we are try-

ing to quantify. In the case of coefficient a applied to a test consisting of Likert-type

items, the statistic captures only the structure of the Likert items that are presumed to

have discretized a continuous latent process. On the other hand, ordinal a attempts to

recapture some of the information in the continuous latent process that has been lost

via Likert discretization. In this way, both measures can be seen to quantify the same

thing: reliability of the test for the latent phenomenon. Zumbo et al. (2007) simply
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argue that ordinal a is a better measure in this context since it recaptures some of the

continuity in the latent process.

Changing Measurements Does Not Change True Scores

In this same vein of measurement as a choice, we point out that Chalmers’ claim that

‘‘applying data transformations to the continuous X distribution implied by the rela-

tionship X = T + E will necessarily change the distribution of the true scores and the

errors’’ (p. 1063) is patently false. This is simple algebra: if one changes the value of

one unknown in an equation relating three unknowns, then at least one but not neces-

sarily both of the two other unknowns must change. In the context of measurement

error, applying a data transformation to the measurement X amounts to proposing a

new measurement X 0 for T . The transformation of X will necessarily change the cor-

responding errors so that we could now propose X 0 = T + E0.
This of course aligns with reality since each measurement process generates its

own error process. For example, one could measure a person’s height via any one of

the three measurements: (1) use a tape measure and record height to the nearest centi-

meter, (2) use a yard stick and record height to the nearest yard, or (3) if the person is

taller than you are, record 6 feet; otherwise, record 3 feet. All three of these measure-

ments quantify the same phenomenon, and all come equipped with their own error

processes. Of course, some of these measurements are better than others at capturing

the true quantity of interest.

The same holds in the context of studying a latent continuous phenomenon by

means of a discretized (e.g., Likert-type) measurement proxy. If T denotes the latent

continuous random variable of interest, and X denotes a discrete (e.g., Likert-type)

measurement of this phenomenon, then the corresponding error process E must be

continuous for X = T + E to hold. Or, if X 0 denotes a continuous measurement of the

same phenomenon T , then the corresponding error process E0 generated by the equa-

tion X 0 = T + E0 may be discrete or continuous depending on the particular nature of

the measurement process X 0. The implicit transformation of observed Likert-type

measurements X to continuous proxies X 0 that characterize the logic of ordinal a is

simply a transformation of one measurement process into another intimately related

one. The underlying true scores are indifferent to such a procedure. It is precisely

because of this transformation that ordinal a will often better capture the structure of

a latent continuous phenomenon than will only coefficient a when that latent contin-

uous phenomenon is measured via a Likert-scale proxy.

This general algebraic phenomenon has been exploited in the past, notably by

Ekström (2009), to show that the statistical information captured by the phi coeffi-

cient is equivalent to that captured by the tetrachoric correlation, and that, under mild

conditions, the statistical information captured by Spearman’s rank correlation is

equivalent to that captured by the polychoric correlation. These results reflect the

general reality that the way we choose to quantify (i.e., measure) a particular phe-

nomenon will not change the true underlying value of that phenomenon (observer
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effects and quantum entanglement aside). The discretization that occurs when mea-

suring a latent continuous trait by a Likert-response to a certain scale simply changes

the measurement X, and corresponding error E; it does not affect the true score T.

Final Thoughts

Chalmers (2018) proposes four misconceptions surrounding the justification for and

use of ordinal a. He claims that (1) coefficient a does not require continuous data to

accurately capture the reliability of a test as a measure of a latent continuous phe-

nomenon, (2) ordinal a quantifies reliability of a test as a measure of a latent contin-

uous process rather than of a discretized version of this process generated by the

Likert measurements, (3) ordinal a does not provide a better estimate of the popula-

tion reliability than coefficient a in this setting, and (4) ordinal a is inconsistent with

modern latent variable theory because it assumes that the information content of a

discretized or continuous measurement of a latent continuous process are the same.

We have seen that Claim (1) is incoherent because of its reliance on an argument

from Stevens’ scales of measurement. Claim (2) is actually correct and reflects nei-

ther a misconception nor a problem of any kind (see section Different Measurements

Can Quantify the Same Phenomenon). Claim (3) is empirically refuted in Zumbo et

al. (2007), while Chalmers’ (2018) theoretical justification for it hinges on an algebra

mistake. Both Claim (3) and Claim (4) expose a failure to recognize that one can use

many different measurements to quantify the same phenomenon.

Finally, it should be noted that Chalmers (2018, pp. 1067-1068) himself concedes

that ordinal a may be the most appropriate quantifier of reliability when using Likert-

type measurements to study a latent continuous random variable. Oddly, this is

exactly what Zumbo et al. (2007) proposed as the research setting in which ordinal a

should apply.
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