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Abstract

The present study aims to compare the robustness under various conditions of
latent class analysis mixture modeling approaches that deal with auxiliary distal out-
comes. Monte Carlo simulations were employed to test the performance of four
approaches recommended by previous simulation studies: maximum likelihood (ML)
assuming homoskedasticity (ML_E), ML assuming heteroskedasticity (ML_U), BCH,
and LTB. For all investigated simulation conditions, the BCH approach yielded the
most unbiased estimates of class-specific distal outcome means. This study has impli-
cations for researchers looking to apply recommended latent class analysis mixture
modeling approaches in that nonnormality, which has been not fully considered in
previous studies, was taken into account to address the distributional form of distal
outcomes.
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Finite mixture modeling (McLachlan & Peel, 2004), in particular latent class analysis

(LCA; Collins & Lanza 2010; Goodman, 1974; Lazarsfeld & Henry, 1968), has been
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employed by applied researchers from a diverse range of fields to analyze populations

containing unobservable or underlying latent subgroups defined by multifaceted

individual-specific observed characteristics. Investigating unobserved heterogeneity

by identifying unknown subgroups based on observed indicators or variables (i.e.,

latent classes) is a major research topic in many fields, including psychology (De

Cuyper, Rigotti, Witte, & Mohr, 2008; McCutcheon, 1985; Ulbricht, Rothschild, &

Lapane, 2015), education (Darney, Reinke, Herman, Stormont, & Ialongo, 2013; Ing

& Nylund-Gibson, 2013; Pastor, Barron, Miller, & Davis, 2007), criminology

(Cavanaugh et al., 2012; Mulder, Vermunt, Brand, Bullens, & Van Merle, 2012),

sociology (Anderson, Ramo, Cummins, & Brown, 2010; Komro, Tobler, Maldonado-

Molina, & Perry, 2010; Oxford et al., 2003), and medical science (Anderson et al.,

2010; Lanza, Tan, & Bray, 2013; Mathur, Stigler, Lust, & Laska, 2014; Roberts &

Ward, 2011).

Recently, the prediction of distal outcomes using latent class membership has been

a focal point for not only applied researchers but also methodology researchers inter-

ested in analysis (Bakk, Oberski, & Vermunt, 2016; Bakk & Vermunt, 2016; Bray,

Lanza, & Tan, 2015). LCA estimates the class-specific means of a distal outcome by

including an auxiliary indicator as the outcome. When the distal outcome is incorpo-

rated into LCA, however, it may appear to define the latent distal outcome variable

as one of the indicators, which can distort the class membership classification results.

To explain the differences in class-specific means across classes without distorting

the classification of the original latent class model, two strong assumptions regarding

the distal outcome need to be met: homoskedasticity across classes and a normal dis-

tribution of the outcome within each latent class (Bakk et al., 2016; Bakk, Tekle, &

Vermunt, 2013; Bakk & Vermunt, 2016; Lanza et al., 2013). However, it is more rea-

sonable to hypothesize that the distribution of distal outcomes within each class is

nonnormal. For example, the floor or ceiling effect can skew outcome responses,

especially in education. For example, the distribution of ability test scores may exhi-

bit a high degree of kurtosis if the test is either too difficult or easy for a specific

latent class.

Several approaches for dealing with distal outcomes have been suggested and

tested using simulations, including one-step and stepwise models. The use of one-step

approaches, in which LCA is conducted with the distal outcome included as an addi-

tional response indicator, has not been supported by the results of previous simula-

tions because of the strong possibility of distorted classification in the original latent

class model (Asparouhov & Muthén, 2014a, 2014b; Bakk et al., 2013; Bakk et al.,

2016; Bakk & Vermunt, 2016; Bray et al., 2015; Lanza et al., 2013; No & Hong,

2018). In contrast, the use of stepwise approaches, including three-step maximum

likelihood (ML; Vermunt, 2010), three-step BCH (Bolck–Croon–Hagenaars; Bolck,

Croon, & Hagenaars, 2004; Vermunt, 2010), and LTB (Lanza–Tan–Bray; Lanza et

al., 2013), has been recommended based on the results of multiple simulation studies

under various modeling conditions, including variation in sample size, classification

quality, heteroskedasticity, and the nonnormality of the distal outcome across classes.
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However, although the recently developed stepwise ML, BCH, and LTB approaches

have been shown to yield unbiased estimates of class-specific distal outcome means

in previous simulation studies, it is still unknown which approach is the most stable

or robust for more realistic underlying conditions, particularly, the nonnormality of

distal outcomes. This is because the distribution of distal outcome variables has been

treated as normal in previous simulation research, with the exception of a few studies

(Asparouhov & Muthén, 2014b; Bakk & Kuha, 2018; Bakk & Vermunt, 2016; Dziak,

Bray, Zhang, Zhang, & Lanza, 2016) that employed bimodal or skewed distributions

for the distal outcome.

Table 1 summarizes the performance of mixture modeling approaches from previ-

ous simulation studies in terms of their robustness or stability under various condi-

tions. As can be observed, the three-step approaches and the LTB approach are

particularly stable under a variety of simulation conditions. This research thus exam-

ines the stability or robustness of these recommended stepwise mixture modeling

approaches (i.e., the three-step ML approach, the three-step BCH approach, and the

LTB approach) when the assumption of normality for the distal outcome within the

classes is violated, and investigates the effects of changes in heteroskedasticity, sam-

ple size, and entropy. The two-step approach recently proposed by Bakk and Kuha

(2018) is not considered for this study because it is not widely supported by software

and it remains unfamiliar to researchers.

By expanding the range of mixture modeling applications and utilizing more rea-

listic distribution assumptions for distal outcomes, this research will contribute to a

better understanding of bias-corrected mixture modeling approaches, thus providing

more robust and realistic guidelines for applied researchers. In particular, this study

answers the following questions:

1. What is the optimal stepwise mixture modeling approach when the distribu-

tion of the distal outcome is assumed to be nonnormal?

2. How is the performance of the different mixture modeling approaches

affected by changes in the homoskedasticity of the distal outcome, the sam-

ple size, and the classification quality?

Theoretical Background

Basic Latent Class Analysis

In LCA, population heterogeneity is explained by identifying unobserved subgroups

that are mutually exclusive and exhaustive. An LC model for particular latent class t

can be formulated as

P Yið Þ=
XT

t = 1
P X = tð ÞP YijX = tð Þ, ð1Þ

where Yi represents the full response vector for the individual subject i. Suppose there

is a set of K categorical response items in an LC model; the response of subject i to
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Table 1. Previous Simulation Studies.

Simulation study
Simulated

approaches Recommendation
Distal outcome

distribution

Bakk, Tekle, and Vermunt (2013) 1-step
3-step

1-step
3-step

Normal

Lanza, Tan, and Bray (2013) 3-step
LTB

LTB Normal

Asparouhov and Muthén (2014a) 1-step
3-step
LTB

1-step
3-step
LTB

Normal

Asparouhov and Muthén (2014b) 1-step
1-step PC
3-step ML
3-step BCH
LTB

3-step BCH Normal

1-step
1-step PC
3-step ML
3-step BCH
LTB

3-step BCH Normal
Bimodal

Bray, Lanza, and Tan (2015) Non-inclusive LTB
Inclusive LTB

Inclusive LTB Normal

Bennik and Vermunt (2015) Mode
1-step
3-step
3-step ML
3-step BCH

1-step
Any 3-steps

Normal
(multilevel)

Bakk and Vermunt (2016) 3-step ML
3-step BCH
LTB

3-step BCH Normal

3-step ML
3-step BCH
LTB

3-step BCH Bimodal

Bakk, Oberski, and
Vermunt (2016)

3-step BCH
3-step LTB
LTB

3-step BCH
LTB

Normal

Dziak, Bray, Zhang, Zhang,
and Lanza (2016)

3-step
3-step ML
3-step BCH
Inclusive 3-step
Quadratic 3-step

3-step BCH Normal
Binary
Skewed

No and Hong (2018) 1-step
3-step ML
3-step BCH
LTB

3-step ML
3-step BCH

Normal

(continued)
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item k is denoted by Yik . X represents the discrete latent class variable, with the total

number of classes denoted by T .

The full response vector can be divided into two parts: P X = tð Þ for the uncondi-

tional probability of membership in latent class t and P(YijX = t) for the conditional

class-specific distribution of the response vector Yi. The second part of the LC model

equation can be converted into Equation (2) under the assumption of the local inde-

pendence of the response variables within each class:

P YijX = tð Þ=
YK

k = 1
P Yik jX = tð Þ: ð2Þ

An extended LC model that contains the continuous distal outcome variable Zi can

be expressed as

P YijZið Þ=
XT

t = 1
P X = tð Þ

YK

k = 1
P Yik jX = tð Þf ZijX = tð Þ, ð3Þ

where f (ZijX = t) represents the class-specific distribution of the distal outcome,

which is defined as a univariate normal distribution within each class. As shown in

Equation (3), the inclusion of the distal outcome variable may distort classification

results by altering the latent class information due to the distal outcome serving as an

additional response variable (Bakk & Vermunt, 2016; Petras & Masyn, 2010).

Furthermore, when the assumption of normality within each class is violated for the

distal outcome, more classes are likely to be extracted (Bauer & Curran, 2003). To

overcome the disadvantages of simultaneous modeling using a one-step approach,

Table 1. Continued

Simulation study
Simulated

approaches Recommendation
Distal outcome

distribution

Bakk and Kuha (2018) 1-step
2-step
3-step
3-step ML
3-step BCH

2-step Normal
Skewed
Bimodal

Note. Distal outcome distribution = within-class distribution of distal outcomes; PC = pseudo-class draws

approach (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997); Mode = the use of mode between levels

in multilevel latent class analysis; ML = maximum likelihood–based approach (Vermunt, 2010); BCH =

BCH approach, named after the developers Bolck, Croon, and Hagennarrs (Vermunt, 2010; Bolck et al.,

2004); LTB = LTB approach, named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); 3-step

= stepwise mixture modeling approach (Bolck et al., 2004); 3-step ML = stepwise maximum likelihood

approach (Vermunt, 2010); 3-step BCH = stepwise BCH approach (Vermunt, 2010); 3-step LTB =

stepwise LTB approach (Bakk, Oberski, & Vermunt, 2016); Inclusive 3-step = 3-step approach based on

an inclusive model (Dziak et al., 2016); Quadratic 3-step = 3-step approach based on a quadratic model

(Dziak et al., 2016); 2-step = alternative stepwise mixture modeling approach (Bakk & Kuha, 2018).
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stepwise mixture modeling (i.e., three-step approaches) and other stepwise

approaches can be employed.

Approaches for Continuous Distal Outcomes

The mean of the distal outcome within each class can be estimated using one-step or

three-step approaches, but it has been shown in previous research that the one-step

approach can distort the LC solution and requires the strong assumption of normality

for the distal outcome within each class. To overcome these limitations, a three-step

approach (Vermunt, 2010) was developed in which the relationship between class

membership and the distal outcome is investigated using the class membership that

is assigned in the absence of the distal outcome in the first step of LCA.

The first step of the three-step approach is the construction of a measurement LC

model that contains categorical response variables to identify latent classes. In the

second step, subjects or individuals are assigned to each latent class based on their

responses, using either modal or proportional assignment. Posterior class member-

ship probability W is calculated by applying the parameters obtained in the first step

to Bayes’s theorem, as shown in Equation (4):

P(X = tjYi) =
P X = tð ÞP(YijX = t)

P Yið Þ
: ð4Þ

Information on the distribution of each latent class with a certain response pattern

can be derived from the posterior class membership probability W , establishing a

classification mechanism in which subjects or individuals who show similar response

patterns are classified into the same latent class.

The overall quality of the classification, which is expressed as the classification

error, is obtained in the second step of the three-step approach by averaging the prob-

abilities of assigned class membership s conditional on true class membership t, as

shown in Equation (5):

P W = sjX = tð Þ=
PN

i = 1 P X = tjYið ÞP W = sjYið Þ
NP X = tð Þ : ð5Þ

The association between class membership and the distal outcome is analyzed in the

final step of the three-step approach. The posterior class membership probability W is

used in conjunction with the classification error introduced in Equation (5) to obtain

P W = s, Zið Þ=
XT

t = 1

P X = tð Þf ZijX = tð ÞP w = sjX = tð Þ: ð6Þ

However, the estimates of the class-specific distal outcome means produced by

the three-step approach have been shown to exhibit bias in the direction of attenua-

tion, which has led to the development of alternative stepwise approaches that incor-

porate attenuation correction (Bolck et al., 2004), such as the ML approach
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(Vermunt, 2010), the BCH approach (Bolck et al., 2004; Vermunt, 2010), and the

LTB approach (Lanza et al., 2013).

The ML Approach. The ML approach estimates f ZijX = tð Þfrom Equation (6) freely

using maximum likelihood estimation while P(w = sjX = t) is fixed in the second step.

The parameter f ZijX = tð Þis estimated by maximizing the log-likelihood function:

LogLML =
X

i

log
X

i

P X = tð ÞP Z = zjX = tð ÞP W = sjX = tð Þ: ð7Þ

The distributional form of the distal outcome within each class needs to be speci-

fied for the estimation of class-specific distal outcome means, with a normal distribu-

tion typically selected. The variance of distal outcome Z can be either homoskedastic

or heteroskedastic; this is modeled using ML_E for equal variance across classes and

ML_U for unequal variance across classes.

The ML approach yields unbiased estimates for class-specific means only when

the assumption of normality is satisfied within each class (Bakk et al., 2013). If this

assumption is violated, the ML approach provides inaccurate information on class

membership due to the substantial distortion in the classification in the third step due

to the nonnormal distribution of the distal outcome (Asparouhov & Muthén, 2014b).

The BCH Approach. The BCH approach weighs the relationship between class mem-

bership and the distal outcome P W = s, Z = zð Þ using the elements of the inverse of

the matrix of classification error probabilities d�st, as shown in Equation (8):

P X = t, Z = zð Þ=
X

s

P W = s, Z = zð Þd�st: ð8Þ

From Equation (8), P W = s, Z = zð Þ can be decomposed as follows because it can be

obtained by considering all response patterns Y of all latent classes X :

P W = sjZið Þ=
XT

t = 1

X
Y

P X = tjZið ÞP Y jX = tð ÞP w = sjYð Þ

=
XT

t = 1

P X = tjZið Þ
X

Y

P Y jX = tð ÞP w = sjYð Þ

=
XT

t = 1

P X = tjZið ÞP w = sjX = tð Þ:

ð9Þ

The classification error P w = sjX = tð Þ serves as a regression weight in the relation-

ship between P W = sjZið Þ and P X = tjZið Þ (Vermunt, 2010). In order to identify the

association between class membership and the distal outcome P X = t, Z = zð Þ, the

BCH approach uses the inverse elements of the matrix of classification error

P w = sjX = tð Þ (Bakk & Vermunt, 2016).
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The pseudo-weighted log-likelihood function is maximized in the BCH approach

as in Equation (9), which was modified by Vermunt (2010). The pseudo-log-

likelihood function is expressed using the modified BCH approach as

LogLBCH =
X

i

X
s
wis

X
t
d�stlogP X = t, Z = zð Þ

=
X

i

X
t
w�itlogP X = t, Z = zð Þ,

ð10Þ

where wis denotes the class assignment weight, which is transformed into w�it, which

puts weight on T records per individual or subject. In the BCH approach, the robust

or sandwich standard error estimator is employed to account for multiple records.

In the BCH approach, the classification definition remains stable even when the

distal outcome distribution is misspecified. The robustness of a misspecified distribu-

tion can be attributed to weighted multiple group analysis, in which it is less likely

that a class shift will arise because of the groups corresponding to the latent classes

defined in advance (Asparouhov & Muthén, 2014b; Bakk et al., 2016).

Although the BCH approach outperforms other stepwise mixture modeling

approaches in the presence of heteroskedasticity across classes, it is possible that the

observations will have negative weights if the entropy is low, thus generating inad-

missible estimates for the distal outcome (Asparouhov & Muthén, 2014b).

The LTB Approach. The main difference between the LTB approach and the ML and

BCH approaches is whether the distributional assumptions of the distal outcome have

a strong effect on the estimation of the association between latent class membership

and the distal outcome. In the LTB approach, estimation is conducted using two steps.

In the first step of the LTB approach, the distal outcome Z serves as a covariate or

predictor in the latent class model. Inclusion of the distal outcome as a covariate pro-

duces the basic latent class model below:

P YijZið Þ=
XT

t = 1
P X = tjZið Þ

YK

k = 1
P Yik jX = tð Þ: ð11Þ

The probability of class membership given the covariate Z is denoted by P X = tjZið Þ,
which is summarized by a multinomial logistic regression model with intercepts at

and slopes bt for class t, as shown in Equation (12):

P X = tjZið Þ= eat + btZiPT
s = 1 eas + bsZi

: ð12Þ

Subsequently, the distal outcome means within each class are estimated based on

Bayes’s theorem, which is applied to obtain the class-specific distribution of the dis-

tal outcome f ZjX = tð Þ:

f ZjX = tð Þ= f Zð ÞP(X = tjZ)

P X = tð Þ : ð13Þ
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The LTB approach performs well in situations where the relationship between the

latent classes and distal outcome is a linear logistic one (Asparouhov & Muthén,

2014b; Bakk & Vermunt, 2016). Furthermore, it is known that the degree of bias is

likely to increase in the presence of heteroskedasticity using the LTB approach

(Asparouhov & Muthén, 2014b).

Method

Monte Carlo Simulation

This study aims to compare the robustness of previously recommended stepwise

approaches in dealing with distal outcomes in LCA under realistic conditions, that is,

assuming the heteroskedasticity and nonnormality of the class-specific means within

each class. To achieve this, Monte Carlo simulations were conducted under various

conditions.

Simulation Design and Population Values
Study 1. Data sets for Study 1 were generated from a four-class model with eight

observed indicators or response variables (Figure 1). To preserve consistency and

continuity, the model was designed to be similar to those of previous simulation stud-

ies (Asparouhov & Muthén, 2014b; Bakk et al., 2013; Bakk et al., 2016; Bakk &

Vermunt, 2016; Lanza et al., 2013). All of the indicators in the present study were

binary, while a continuous nonnormal distal outcome was used in the analysis model

for Study 1 to assess the simulation performance of the target approaches.

The model population values for Study 1 are summarized in Table 2. Class propor-

tion was equal across the four classes (i.e., 0.25 for each class) as in previous simula-

tion studies. The skewness and kurtosis of distal outcomes within each class were

varied so that there was a transition from low nonnormality in Class 2 to high non-

normality in Class 4. Variance among classes was set at 1 when determining perfor-

mance under equal variance, while a variance of 1, 4, 9, and 25 was set for each of

the four classes, respectively, to simulate unequal variance. Entropy, which is a

Figure 1. Research model for Study 1.
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measure of classification quality, was derived by varying the class-specific probabil-

ities of each observed indicator, as shown in Table 2.

Study 2. Study 2 investigated the situation where a predictor is introduced to mixture

modeling with the distal outcome. The analysis model for Study 2 is presented in

Figure 2.

All simulation conditions were the same as those in Study 1. The inclusion of a

predictor requires thresholds for that predictor to be assigned in order for multinom-

inal logistic regression to run. A normal auxiliary variable was generated as a predic-

tor of the latent class, with Class 4 used as a reference group for multinominal

logistic regression.

Manipulated Simulation Conditions

To compare the robustness of stepwise mixture modeling with distal outcomes in

LCA under conditions that are realistic for many types of applied research, four com-

ponents of the simulation shown to be strongly associated with modeling perfor-

mance in previous simulation studies were manipulated: mixture modeling approach

(ML_E, ML_U, BCH, and LTB), variance (homoskedasticity and heteroskedasti-

city), total sample size (100, 200, 500, and 1,000), and entropy (.5, .6, .7, and .8).

Except for sample size, these conditions were all set to be similar to those in previ-

ous studies in order to reflect realistic research conditions.

Data Generation and Analysis
Data Generation. Data generation was conducted using two steps: generating data

with a normally distributed distal outcome in Step 1 and transforming the distal out-

come into a nonnormal distribution in Step 2 by increasing the skewness and kurto-

sis. The 500 sample data sets for each simulation condition were all created with the

Table 2. Population Values for Studies 1 and 2.

Class 1 Class 2 Class 3 Class 4

Class proportion .25 .25 .25 .25
Skewness (Z) 0 –2 –2 –3
Kurtosis (Z) 0 7 15 21
Mean (Z) –1 –0.5 0.5 1
Threshold (X), Threshold (Z) 0.5 0.3 0.2 —
Variance (Z) Equal 1 1 1 1

Unequal 1 4 9 25
Entropy .5, .6, .7, .8

Note. Threshold (X) is for Study 1 and Threshold (Z) is for Study 2. The reference class for predictor (X)

is Class 4.
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distal outcome distributed normally within each class for the first phase of data gen-

eration. In total, 64,000 data sets for each study were generated in Step 1 of the data

generation process.

Data Transformation. To investigate and compare the performance of the mixture

modeling approaches when the distal outcome is characterized by heteroskedasticity

and nonnormality, a situation which is considered standard in applied research, the

distal outcomes from each data set generated in Step 1 of data generation were trans-

formed into a nonnormal distribution that followed the skewness and kurtosis values

defined in the population values and that was either homoskedastic to test the effect

of equal variance or heteroskedastic to test the effect of unequal variance.

Fleishman’s cubic transformation (Fleishman, 1978; Vale & Maurelli, 1983;

Wicklin, 2013) was applied to give the distal outcome a nonnormal distribution. In

Fleishman’s method, a cubic transformation is applied to a univariate standard nor-

mal distribution so that a nonnormal distribution with a given skewness and kurtosis

can be obtained, as defined by the polynomial below:

Y = � c2 + c1Z + c2Z2 + c3Z3, ð14Þ

where Y denotes a nonnormal distribution, with the expected skewness and kurtosis

attained by transforming normal distribution Z with the cubic coefficients c1, c2, and

c3. Table 3 shows the cubic coefficients for Fleishman’s transformation employed in

this research.

To test the effect of heteroskedasticity, a linear transformation of the distal out-

come was carried out to produce the desired variances for the distal outcome within

each class, as shown in Table 3. Fleishman’s transformation and linear transforma-

tion were applied simultaneously in Step 2 of the data generation process. The trans-

formation was conducted with SAS 9.4 for Windows (SAS Institute, Cary NC) using

SAS/IML functions that implement Fleishman’s cubic transformation and linear

transformation.

Figure 2. Research model for Study 2.
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External Monte Carlo Simulation. Monte Carlo simulations can be conducted internally

or externally with Mplus (Muthén & Muthén, 1998-2015). In this research, external

Monte Carlo simulations in which the transformed data sets were analyzed individu-

ally and the results were summarized were implemented in R 3.2.4 (R Core Team,

2016) with the MplusAutomation package (Hallquist & Wiley, 2016).

Evaluation Criteria

The bias in within-class mean estimation, the mean squared error (MSE) of the esti-

mated means, and the nonconvergence rate (NCR) were examined in order to com-

pare the robustness of the target stepwise approaches in testing the association

between class membership and distal outcomes.

Bias in Within-Class Mean Estimation. The bias in within-class mean estimation pro-

vides information on the degree to which the estimated class-specific means differ

from the true population values. How accurately the approaches of interest examined

the association between latent class membership and the distal outcome could thus

be inferred from their bias values.

Let û denote the estimated within-class mean for a certain class for one of the tar-

get approaches, and r represents the number of replications. For a particular latent

class under a certain simulation condition, class-specific mean bias can be modeled

using

Bias û
� �

=
XR

r = 1

ûr � u
� �

u

 !
=R: ð15Þ

In the present research, this formula represents the averaged differences between the

estimated within-class mean for a distal outcome and the true population value across

500 replications. The value calculated using this formula is referred to as the propor-

tional bias.

Table 3. Fleishman’s Transformation Cubic Coefficients.

Class Skewness Kurtosis c1 c2 c3

1 0 0 — — —
2 22 7 0.761585275 20.260022598 0.053072274
3 22 15 21.202197410 20.456105414 0.220734564
4 23 21 20.681632225 20.637118193 0.148741042

Note. In SAS, a univariate normal distribution has a skewness of 0 and kurtosis of 0; c1, c2, and c3: cubic

coefficients for Fleishman’s transformation.
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A cutoff point for the absolute bias of 0.10, which is lower than what is generally

considered a tolerable degree of bias, was applied in this research. (Bandalos, 2006;

Muthén & Muthén, 2002).

Mean Squared Error. Both the accuracy and consistency of estimated values can be

investigated by comparing the MSE under the same conditions because the MSE

simultaneously reflects the biasedness and the variance of the estimates across repli-

cations based on the following equation:

MSEûr
= Bias ûr

� �� �2
+ Var ûr

� �
, ð16Þ

where û represents the estimated class-specific means and r denotes the number of

replications. In this research, the MSE was compared between the simulation condi-

tions. It was expected that less biased estimates would have lower MSE values.

Nonconvergence Rate. The stability of the target approaches was measured using the

NCR. When predicting a distal outcome based on latent class membership informa-

tion, the higher the NCR, the lower the stability of the modeling approach. The NCR

is expressed as the ratio of the number of nonconverging simulations to the number

of total simulations:

NCRAP =
RAP � CRAP

RAP

, ð17Þ

where R denotes the number of total simulations for modeling approach AP, and CR

represents the number of converging simulations.

Results

Study 1
Bias in Within-Class Mean Estimation. Table 4 shows the bias in within-class mean esti-

mation and the MSE across different simulation conditions averaged over 500 repli-

cations. A general change in bias with changes in simulation conditions, including

sample size and classification quality, can be observed in Figure 3a for homoskedas-

tic variance and Figure 3b for heteroskedastic variance.

Under homoskedasticity, it can be seen that the bias in class-specific mean estima-

tion generally decreased with larger sample size and higher entropy. While the esti-

mates obtained using the LTB approach were less biased than those obtained using

the other approaches under almost all conditions, the level of bias in within-class

mean estimation among the ML_E, ML_U, and BCH approaches was similar.

Unlike the case with homoskedasticity, the LTB estimates were increasingly

biased as the sample size increased under heteroskedasticity, as were the estimates

for the ML_E approach. At the same time, the degree of bias fell as classification

quality increased. On the other hand, lower levels of bias were identified in the
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estimates from the ML_U and BCH approaches under unequal variance. In fact,

under heteroskedasticity, the bias in the estimation of within-class means using

ML_U and BCH was the lowest of the approaches.

Little difference in bias among the approaches was detected under equal variance.

However, as Figure 3c indicates, the bias in class-specific mean estimation increased

in relation to nonnormality of the distal outcome. The LTB approach produced the

Table 4. Bias in Within-Class Mean Estimation and Mean Squared Error in Study 1.

Bias Mean squared error

Variance Sample size Entropy ML_E ML_U BCH LTB ML_E ML_U BCH LTB

Equal 100 .5 20.399 20.391 20.396 20.308 0.281 0.282 0.281 0.266

.6 20.252 20.245 20.246 20.168 0.176 0.181 0.181 0.168

.7 20.176 20.172 20.175 20.123 0.116 0.118 0.119 0.110

.8 20.120 20.123 20.120 20.085 0.079 0.082 0.083 0.075

200 .5 20.311 20.197 20.309 20.171 0.198 0.160 0.206 0.170

.6 20.202 20.112 20.203 20.114 0.112 0.096 0.119 0.088

.7 20.103 20.053 20.105 20.047 0.060 0.059 0.066 0.050

.8 20.053 20.027 20.054 20.020 0.036 0.036 0.040 0.031

500 .5 20.181 20.237 20.174 20.061 0.102 0.143 0.115 0.074

.6 20.078 20.135 20.075 20.018 0.041 0.063 0.049 0.026

.7 20.017 20.062 20.016 0.011 0.019 0.027 0.024 0.014

.8 20.011 20.036 20.008 0.001 0.013 0.015 0.015 0.011

1,000 .5 20.099 20.125 20.092 20.009 0.053 0.072 0.067 0.024

.6 20.025 20.051 20.022 0.003 0.015 0.021 0.021 0.009

.7 20.017 20.007 0.005 0.009 0.019 0.009 0.010 0.006

.8 20.002 20.004 0.002 0.001 0.006 0.006 0.007 0.005

Unequal 100 .5 20.496 20.404 20.446 20.381 20.946 11.490 11.381 38.014

.6 20.130 20.062 20.097 0.115 15.545 10.021 10.330 34.829

.7 20.037 20.087 20.115 0.275 18.140 8.775 9.634 33.488

.8 20.142 20.095 20.146 0.130 14.963 8.735 9.669 27.081

200 .5 20.293 20.127 20.326 0.230 11.167 5.873 6.760 57.891

.6 20.235 20.033 20.184 0.386 11.980 5.136 6.064 52.841

.7 0.038 0.004 20.023 0.315 9.931 4.303 5.396 48.596

.8 0.047 20.003 0.011 0.586 7.233 3.414 4.113 25.067

500 .5 20.076 20.033 20.144 1.062 8.826 2.394 3.433 98.486

.6 0.179 20.029 20.041 1.341 9.434 1.675 2.450 90.287

.7 0.228 0.062 0.080 1.402 7.770 1.704 2.218 58.601

.8 0.122 0.040 20.015 0.655 4.202 1.529 1.796 20.262

1,000 .5 0.251 0.009 20.067 2.049 11.219 0.930 1.818 121.753

.6 0.428 0.023 20.021 2.708 10.169 0.838 1.284 95.383

.7 0.347 0.073 0.045 1.805 4.660 0.788 0.980 41.859

.8 0.183 0.008 0.021 0.618 2.472 0.727 0.836 12.591

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after

the developers Bolck, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach,

named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); ML_E = ML approach assuming

equal variance among classes; ML_U = ML approach assuming unequal variance among classes.
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Figure 3. (a) Absolute bias in Study 1 (under equal variance). (b) Absolute bias in Study 1
(under unequal variance). (c) Absolute bias across classes in Study 1 (under unequal variance).
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highest levels of bias, while the ML_U and BCH yielded relatively lower levels under

heteroskedasticity. It can be seen that the violation of the normality assumption for

the distal outcome distorted the estimated within-class means, which interacted with

heteroskedasticity across the latent classes.

Mean Squared Error. Under homoskedasticity (Figure 4a), the MSE decreased with an

increase in sample size and entropy increasing for all conditions. The estimates using

Figure 4. (a) Mean squared error in Study 1 (under equal variance). (b) Mean squared error
in Study 1 (under unequal variance).

Shin et al. 1171



the LTB approach were less biased than those of other approaches, though the differ-

ences between approaches were not substantial. Under heteroskedasticity (Figure 4b),

the estimates using the ML_E, ML_U, and BCH approaches also had a lower MSE

with an increase in sample size and entropy. The LTB approach was also sensitive to

the sample size, but in the opposite direction (i.e., MSE increased with increasing

sample size). However, as with the other approaches, LTB estimates had a lower

MSE when entropy was higher. Of the approaches simulated under unequal variance,

the ML_U and BCH approaches had the lowest MSE.

Similar to the results of the bias, the MSE was higher when the distal outcome

was nonnormal and the variance was unequal. The MSE values from the LTB under

unequal variance were the highest of the four approaches, while the other three

approaches were similar in their MSE values under heteroskedasticity. In contrast,

MSE values under homoskedasticity were not discernibly different between the

approaches when the distal outcome had a nonnormal distribution.

Nonconvergence Rate. The NCRs for Study 1 under both equal and unequal variance

are presented in Table 5. Under both forms of variance, BCH and LTB converged in

100% of simulations, which illustrates that the two approaches are highly stable when

examining the association between class membership and a continuous nonnormal

distal outcome.

Under homoskedasticity, 0.2% of the simulations using the ML_U approach were

nonconverging when the sample size was 200 and the entropy was .5 or .6. Under

heteroskedasticity, simulations with smaller sample sizes and lower entropy exhibited

a higher nonconvergence rate across the simulation conditions when ML_E and

ML_U were used, except for a sample size of 100 with ML_E. For all conditions

under unequal variance, the nonconvergence rate of ML_U was higher than that of

ML_E. In summary, the robustness of ML_E when analyzing the association between

class membership and the distal outcome cannot be guaranteed with small samples

and low classification quality.

Study 2
Bias in Within-Class Mean Estimation. The bias in within-class mean estimation and

MSE for the simulation conditions for Study 2 exhibited a similar pattern to that

found in Study 1 (Table 6).

Under homoskedasticity, the degree of bias in the class-specific distal outcome

means was similar for all four approaches examined in Study 2 (Figure 5a). As the

sample size and entropy increased, the estimates became less biased for all

approaches. The BCH approach exhibited a slightly higher estimate bias than did

ML_E and ML_U, while the LTB approach had the lowest bias. However, the differ-

ence in bias among the approaches was minor overall.

Under heteroskedasticity (Figure 5b), the mean estimation bias for ML_U

decreased as the sample size and entropy increased, as in Study 1. In contrast, the

estimates with the ML_E, BCH, and LTB approaches under unequal variance were
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generally more biased with larger samples and higher entropy. Overall, bias under

heteroskedasticity was lowest for BCH estimates and highest for LTB estimates.

The results for bias when the distal outcome had a nonnormal distribution were

similar to those in Study 1, though the overall degree of bias was higher in Study 2.

It is assumed that the introduction of the predictor variable affected the estimation of

the distal outcome. Nonnormality appeared to have little influence on bias under

Table 5. Nonconvergence Rate in Study 1.

Estimation approach

Variance Sample size Entropy ML_E ML_U BCH LTB

Equal 100 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0

200 .5 0.0 0.2 0.0 0.0
.6 0.0 0.2 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0

500 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0

1,000 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0

Unequal 100 .5 2.2 11.6 0.0 0.0
.6 4.0 8.4 0.0 0.0
.7 6.2 2.8 0.0 0.0
.8 6.2 0.8 0.0 0.0

200 .5 9.8 23.6 0.0 0.0
.6 9.8 13.4 0.0 0.0
.7 8.2 2.8 0.0 0.0
.8 5.4 1.2 0.0 0.0

500 .5 19.6 24.2 0.0 0.0
.6 12.8 8.0 0.0 0.0
.7 7.6 1.6 0.0 0.0
.8 3.2 0.0 0.0 0.0

1,000 .5 15.8 18.4 0.0 0.0
.6 9.2 1.6 0.0 0.0
.7 3.6 0.0 0.0 0.0
.8 0.8 0.0 0.0 0.0

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after

the developers Bolck, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach,

named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); ML_E = ML approach assuming

equal variance among classes; ML_U = ML approach assuming unequal variance among classes.
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equal variance while, as shown in Figure 5c, the degree of bias in class-specific mean

estimation rose as the degree of nonnormality of the distal outcome increased under

unequal variance. In addition, bias using LTB was higher than for the other

approaches under heteroskedasticity, indicating that LTB was the least robust

approach under the most realistic conditions.

Table 6. Bias in Within-Class Mean Estimation and Mean Squared Error in Study 2.

Bias Mean squared error

Variance Sample size Entropy ML_E ML_U BCH LTB ML_E ML_U BCH LTB

Equal 100 .5 20.427 20.433 20.436 20.331 0.333 0.356 0.329 0.328

.6 20.295 20.299 20.317 20.224 0.204 0.235 0.218 0.206

.7 20.212 20.221 20.236 20.157 0.139 0.172 0.154 0.140

.8 20.138 20.155 20.172 20.107 0.097 0.125 0.108 0.100

200 .5 20.341 20.371 20.361 20.191 0.230 0.287 0.244 0.215

.6 20.207 20.218 20.235 20.098 0.130 0.171 0.146 0.126

.7 20.115 20.133 20.154 20.037 0.077 0.117 0.091 0.082

.8 20.061 20.086 20.110 20.019 0.054 0.088 0.066 0.062

500 .5 20.217 20.236 20.237 20.018 0.145 0.207 0.150 0.152

.6 20.106 20.105 20.136 0.029 0.065 0.118 0.072 0.078

.7 20.040 20.061 20.080 0.032 0.037 0.083 0.042 0.054

.8 20.016 20.026 20.063 0.020 0.030 0.064 0.034 0.042

1,000 .5 20.142 20.143 20.153 0.051 0.104 0.221 0.091 0.122

.6 20.056 20.074 20.081 0.047 0.043 0.096 0.042 0.065

.7 20.021 20.032 20.059 0.030 0.028 0.070 0.029 0.048

.8 20.009 20.008 20.055 0.018 0.024 0.058 0.027 0.037

Unequal 100 .5 20.027 20.407 20.269 0.009 25.634 21.224 13.298 42.274

.6 20.102 20.425 20.251 0.221 16.216 16.737 12.057 40.826

.7 0.266 20.240 20.052 0.347 16.047 15.133 11.417 36.397

.8 0.434 20.196 0.024 0.623 16.269 11.923 10.166 25.876

200 .5 20.020 20.727 20.193 0.462 10.916 19.402 8.209 72.673

.6 0.340 20.512 20.011 0.940 11.895 13.762 6.988 50.538

.7 0.704 20.261 0.129 1.492 13.141 9.115 6.092 42.862

.8 0.925 20.178 0.179 1.687 13.834 6.639 5.628 33.028

500 .5 0.436 20.816 0.037 1.662 8.472 13.953 4.709 77.265

.6 0.770 20.491 0.160 2.721 10.388 6.816 3.570 64.227

.7 1.174 20.329 0.219 3.293 10.987 3.813 2.805 47.579

.8 1.253 20.275 0.255 2.898 10.773 2.869 2.528 39.944

1,000 .5 0.758 20.916 0.205 2.841 8.341 12.149 2.728 88.742

.6 1.233 20.389 0.279 4.411 9.001 3.559 1.938 63.036

.7 1.447 20.305 0.284 4.146 9.774 2.279 1.655 54.450

.8 1.416 20.248 0.284 3.480 9.131 1.813 1.489 46.292

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after

the developers Bock, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach,

named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); ML_E = ML approach assuming

equal variance among classes; ML_U = ML approach assuming unequal variance among classes.
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Figure 5. (a) Absolute bias in Study 2 (under equal variance). (b) Absolute bias in Study 2
(under unequal variance). (c) Absolute bias across classes in Study 2 (under unequal variance).
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Mean Squared Error. Under homoskedasticity (Figure 6a), the MSE for all approaches

decreased with an increase in both sample size and classification quality, while the

difference in MSE between the approaches was not large. However, under heteroske-

dasticity (Figure 6b), MSE patterns varied between the approaches. LTB estimates

tended to have a higher MSE with larger sample sizes, while ML_U and BCH esti-

mates exhibited a similar pattern to those generated under equal variance (i.e., a

Figure 6. (a) Mean squared error in Study 2 (under equal variance). (b) Mean squared error
in Study 2 (under unequal variance).
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smaller MSE with larger sample sizes and entropy). Overall, BCH estimates had the

lowest MSE under heteroskedasticity.

The overall MSE values in Study 2 were higher than those in Study 1. It could be

because the inclusion of the predictor variable affected the estimation process for the

latent class model. However, MSE patterns were similar between the two studies,

with little difference observed between the approaches in their MSE values under

equal variance and distal outcome nonnormality leading to considerable differences

between the models under unequal variance. Overall, the higher the degree of non-

normality, the higher the MSE for the approaches. LTB produced the highest MSE,

thus exhibiting weak stability in terms of LCA modeling with distal outcomes.

Nonconvergence Rate. Table 7 illustrates the NCR for Study 2 under both homoske-

dasticity and heteroskedasticity. BCH and LTB led to convergence in 100% of the

simulations, but the ML approach often failed to converge when the distribution of

the distal outcome was nonnormal.

Under equal variance, few ML_E simulations led to nonconvergence for sample

sizes below 500 with low entropy, especially below .6. On the other hand, the major-

ity of ML_U simulations exhibited nonconvergence with a decrease in sample size

and entropy.

Under unequal variance, the total NCR with the ML_E approach was higher than

under equal variance. However, ML_U still exhibited a higher rate of nonconver-

gence than did ML_E under heteroskedasticity. Overall, it can be seen that noncon-

vergence becomes more of an issue as the sample size and entropy decreases. In

summary, nonconvergence was more likely using the ML_U approach under unequal

variance.

Conclusion and Discussion

LCA is a form of mixture modeling that accounts for unobserved population hetero-

geneity in observed response variables using latent classes and that has been widely

employed in applied research in a diverse range of fields. By establishing typological

classification based on a set of observed indicators and exploring relational associa-

tions between latent class membership and distal outcomes, which can be considered

an external or auxiliary variable, LCA modeling can be employed to investigate a

great variety of research questions.

When incorporating distal outcomes as external variables in LCA modeling, step-

wise mixture modeling approaches, such as the three-step ML approach, the three-

step BCH approach, and the LTB approach, have been generally recommended

because their performances have been reported to be robust and stable in several pre-

vious simulation studies. However, most previous simulation research has been con-

ducted under relatively ideal situations in which the factors that strongly influence

the performance of mixture modeling approaches when a distal outcome is incorpo-

rated were set at optimal levels.
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In the present study, the robustness of four LCA approaches (ML_E, ML_U,

BCH, and LTB) in examining the association between latent class membership and a

continuous distal outcome was investigated under more realistic conditions, includ-

ing relatively smaller sample sizes and increasing levels of skewness and kurtosis

within each latent class for the distal outcome variable. A total of 500 sample data

sets consisting of a combination of two class-specific variance types

Table 7. Nonconvergence Rate in Study 2.

Estimation approach

Variance Sample size Entropy ML_E ML_U BCH LTB

Equal 100 .5 0.4 8.4 0.0 0.0
.6 0.6 6.0 0.0 0.0
.7 0.0 7.2 0.0 0.0
.8 0.0 4.6 0.0 0.0

200 .5 1.4 30.8 0.0 0.0
.6 0.0 27.6 0.0 0.0
.7 0.0 22.2 0.0 0.0
.8 0.0 14.4 0.0 0.0

500 .5 1.0 65.2 0.0 0.0
.6 0.2 53.8 0.0 0.0
.7 0.0 32.4 0.0 0.0
.8 0.0 10.6 0.0 0.0

1,000 .5 0.0 83.4 0.0 0.0
.6 0.0 74.2 0.0 0.0
.7 0.0 38.2 0.0 0.0
.8 0.0 9.8 0.0 0.0

Unequal 100 .5 3.2 4.8 0.0 0.0
.6 3.0 3.4 0.0 0.0
.7 2.4 1.4 0.0 0.0
.8 1.8 1.0 0.0 0.0

200 .5 6.4 19.2 0.0 0.0
.6 2.8 7.6 0.0 0.0
.7 1.2 2.6 0.0 0.0
.8 1.4 0.6 0.0 0.0

500 .5 6.8 24.2 0.0 0.0
.6 0.6 16.4 0.0 0.0
.7 0.2 3.6 0.0 0.0
.8 0.2 0.4 0.0 0.0

1,000 .5 3.6 7.6 0.0 0.0
.6 0.0 1.4 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after

the developers Bolck, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach,

named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); ML_E = ML approach assuming

equal variance among classes; ML_U = ML approach assuming unequal variance among classes.
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(homoskedasticity and heteroskedasticity), four sample sizes (100, 200, 500, and

1,000), and four entropy levels (.5, .6, .7, and .8) were generated and tested using the

four LCA modeling approaches to estimate the distal outcome in two studies.

The BCH approach exhibited the most robust and stable performance of the four

approaches analyzed. The BCH approach generally produced less bias than the

ML_E, ML_U, and LTB approaches under all investigated conditions. The robust-

ness of the BCH approach can be attributed to the weighting method it employs in

the estimation of class-specific means, with classification errors on an individual

level taken into account. Its robustness was proven when it exhibited the lowest over-

all MSE values, a measure which quantifies the degree to which the estimated class-

specific means and those of the true population differ. The stability of the BCH

approach was confirmed when all of the simulations using this approach completely

converged, while the ML_E and ML_U approaches led to cases of nonconvergence.

Although the BCH approach yielded unbiased estimates under most of the simula-

tion conditions, careful application should be considered in problematic situations

where the total sample size is below 200 and the expected classification quality is

below .6 in terms of entropy. This is because, in these situations, even the BCH

approach can produce biased estimates of class-specific means. Nevertheless, the

BCH approach is superior to the other approaches in that it is able to estimate the

association between class membership and distal outcomes with the most stability.

On the other hand, the bias in the estimates of the class-specific means using

ML_E and ML_U differed with the type of class-specific variance. While both

ML_E and ML_U performed similarly to the BCH approach under homoskedasticity,

the ML_E approach under heteroskedasticity produced increasingly biased estimates

as the sample size and classification quality increased, which directly contrasted with

the general pattern of bias in this research. It is assumed that the low robustness of

ML_E stems from its assumption of equal variance within each latent class, which

conflicts with the heteroskedastic variance in the data set. This inferior performance

by ML_E is supported by the MSE results. The overall MSE for ML_E was higher

than that of ML_U, indicating that the variance in the estimated class-specific means

was significant. The NCR was also generally high for the ML_E approach.

In contrast, the ML_U approach exhibited a robustness and stability that was com-

parable to BCH in all simulation conditions, even under heteroskedasticity, in terms

of both bias and MSE. However, the analysis of NCRs in both Study 1 and Study 2

found that ML_U could not handle heteroskedasticity or the nonnormal distribution

of distal outcomes. Thus, it is generally recommended that the ML_E and ML_U

approaches be used with caution for small sample sizes and cases of low entropy.

Of the four LCA mixture modeling approaches investigated in this research, over-

all bias and MSE were highest for LTB, particularly, under heteroskedasticity.

However, the LTB approach performed well when the variance in the distal outcome

within each latent class was equal, generating a relatively low bias and MSE. The

fact that the LTB approach was more biased under heteroskedasticity than the other

three-step approaches is consistent with previous research (Asparouhov & Muthén,
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2014b; Bakk & Vermunt, 2016; No & Hong, 2018). Even though LTB has an advan-

tage in that no strong distributional assumptions have to be postulated, applied

researchers should be cautious with its use. In particular, the LTB approach should

be considered strictly nonapplicable when there are multiple distal outcomes.

Table 8 summarizes the performance of the four mixture modeling approaches

investigated in this research. It shows that the BCH was the most robust and stable

approach in that its biasedness and MSE were within a satisfactory range and all

simulations converged without any problems.

Future research should investigate the robustness and stability of the ML and BCH

approaches with multiple distal outcomes and/or categorical distal outcomes, which

may lead to different results to those presented in the present research. Furthermore,

the effect of negative weighting (Asparouhov & Muthén, 2014b) and the underesti-

mation of the standard error in small samples with low entropy on the performance of

the approaches are also interesting research directions for the future. Recently

improved LTB approaches that expand the logistic component of the model with

quadratic and higher order terms (Bakk et al., 2016) or which correct standard error

underestimation using bootstrap or jackknife standard error should also be explored

with Monte Carlo simulation. In terms of simulation research models, longitudinal

mixture modeling, growth mixture modeling, and latent transition analysis, which are

employed to reveal population heterogeneity over time, could also be further exam-

ined. In addition, the performance of multilevel class-analysis models (Bennink,

Croon, & Vermunt, 2013, 2015) could be investigated under the detailed simulation

conditions outlined in this research.

With its diverse and more realistic simulation conditions, it is expected that this

study will offer researchers useful guidance in terms of selecting LCA mixture mod-

eling approaches for the analysis of distal outcomes. The main contribution of this

study is that the nonnormality of the distal outcome was manipulated according to the

Table 8. Comparison of Mixture Modeling Approach Performance.

Criteria Variance condition

ML_E ML_U BCH LTB

S1 S2 S1 S2 S1 S2 S1 S2

Bias Equal g g g g g g g g
Unequal g g g g g g ng ng

MSE Equal g g g g g g g g
Unequal g g g g g g ng ng

Convergence Equal g g ng ng g g g g
Unequal ng ng ng ng g g g g

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after

the developers Bolck, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach,

named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); MSE = mean squared error; S1 =

Study 1; S2 = Study 2; g = ‘‘good,’’ indicating that the performance of the approach was good; ng = ‘‘not

good,’’ indicating that the performance of the approach was not good.
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degree of skewness and kurtosis, something that few studies have addressed. By tak-

ing skewness and kurtosis into account, researchers can conduct analysis that reflects

realistic research situations, in which it is more likely for the distal outcome to have a

skewed nonnormal distribution and a certain degree of kurtosis. This study thus offers

clear guidelines for selecting the most robust approach for mixture modeling with dis-

tal outcomes in terms of outcome distribution, classification quality, and total sample

size. In particular, the BCH approach is the most strongly recommended of the four

tested models for the analysis of the association between latent class and distal out-

comes, except for situations in which none of the approaches performed well (i.e., a

total sample size less than 200 and an entropy less than .6).

LCA modeling with distal outcomes offers a greater range of research opportuni-

ties for many applied researchers, especially in the educational field, which is pri-

marily interested in the underlying characteristics of learners. By classifying and

predicting results using LCA, educational researchers can broaden their research on

unobserved learner characteristics. This study thus provides useful guidelines for the

use of LCA with distal outcomes.
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