Skip to main content
. 2019 Apr 12;79(6):1156–1183. doi: 10.1177/0013164419839770

Table 5.

Nonconvergence Rate in Study 1.

Estimation approach
Variance Sample size Entropy ML_E ML_U BCH LTB
Equal 100 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0
200 .5 0.0 0.2 0.0 0.0
.6 0.0 0.2 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0
500 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0
1,000 .5 0.0 0.0 0.0 0.0
.6 0.0 0.0 0.0 0.0
.7 0.0 0.0 0.0 0.0
.8 0.0 0.0 0.0 0.0
Unequal 100 .5 2.2 11.6 0.0 0.0
.6 4.0 8.4 0.0 0.0
.7 6.2 2.8 0.0 0.0
.8 6.2 0.8 0.0 0.0
200 .5 9.8 23.6 0.0 0.0
.6 9.8 13.4 0.0 0.0
.7 8.2 2.8 0.0 0.0
.8 5.4 1.2 0.0 0.0
500 .5 19.6 24.2 0.0 0.0
.6 12.8 8.0 0.0 0.0
.7 7.6 1.6 0.0 0.0
.8 3.2 0.0 0.0 0.0
1,000 .5 15.8 18.4 0.0 0.0
.6 9.2 1.6 0.0 0.0
.7 3.6 0.0 0.0 0.0
.8 0.8 0.0 0.0 0.0

Note. ML = maximum likelihood–based approach (Vermunt, 2010); BCH = BCH approach, named after the developers Bolck, Croon, and Hagennarrs (Bolck et al., 2004; Vermunt, 2010); LTB = LTB approach, named after the developers Lanza, Tan, and Bray (Lanza et al., 2013); ML_E = ML approach assuming equal variance among classes; ML_U = ML approach assuming unequal variance among classes.