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Abstract
The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently
associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight
probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de
novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each. Seven probands were
identically heterozygous for a recurrent substitution, p.(Val837Met), in TRPM3’s S4–S5 linker region, a conserved domain
proposed to undergo conformational change during gated channel opening. The eighth individual was heterozygous for a
proline substitution, p.(Pro937Gln), at the boundary between TRPM3’s flexible pore-forming loop and an adjacent alpha-
helix. General-population truncating variants and microdeletions occur throughout TRPM3, suggesting a pathomechanism
other than simple haploinsufficiency. We conclude that de novo variants in TRPM3 are a cause of intellectual disability and
epilepsy.

Introduction

The developmental and epileptic encephalopathies (DEE)
are a heterogeneous group of disorders characterized by
epilepsy with comorbid intellectual disability (ID). Rare
nonsynonymous coding variants in genes encoding ion
channels, cell-surface receptors, and other neuronally
expressed proteins are identifiable in one about quarter of
affected individuals [1–3]. Most identified variants in

individuals with DEE are in-frame, de novo, and recurrent
across unrelated kindreds [2].

Transient receptor potential (TRP) channels are a
superfamily of gated cation channels sensitive to a variety
of physical and chemical stimuli [4]. Seven subfamilies are
recognized [5]. TRP channels are implicated in several
Mendelian disorders, including polycystic kidney disease
(OMIM #613095), mucolipidosis type IV (#252650),
amyotrophic lateral sclerosis–dementia–parkinsonism
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complex (#105500), and others [5]. All TRP proteins share
a common six-transmembrane-helix architecture with four-
fold radial symmetry, distinct voltage-sensing and pore-
forming domains, and variable N- and C-terminal cyto-
plasmic tails [4]. Some TRP proteins mediate sensory sti-
muli, e.g., noxious heat (TRPV1, TRPM3, and TRPA1) and
cold (TRPM8); others are receptor-operated, and/or
responsive to cellular stimuli including osmolarity, intra-
cellular calcium, and/or chemical ligands [4].

In this study, we present eight individuals with a neu-
rodevelopmental phenotype comprising ID, hypotonia,
epilepsy (seven individuals), and a recognizable craniofacial
gestalt; exome sequencing showed de novo substitutions of
a TRP (melastatin-related) channel, TRPM3, in each. Seven
of eight probands were heterozygous for a recurrent sub-
stitution, NM_020952.4:c.2509G>A, NP_066003.3:p.
(Val837Met), altering a conserved residue previously
implicated in channel gating. We propose that de novo
substitutions of TRPM3 are a cause of ID and epilepsy.

Materials and methods

All procedures were in accord with the Declaration of
Helsinki. Following suitable informed consent, exome
sequencing of each proband plus their unaffected parents
was performed on an accredited clinical basis according to
standard protocols. Cohort assembly was accomplished by
distributed case-matching in GeneMatcher [6]. Clinical and
genetic data were provided by individual physician coau-
thors in accordance with local research and ethics require-
ments. The variants are deposited in ClinVar with accession
numbers SCV000891785 and SCV000891786.

Results

Clinical findings

The probands are eight unrelated individuals with a symp-
tom complex comprising moderate-to-severe global devel-
opmental delay (eight individuals), hypotonia or mixed tone
abnormality (eight individuals), electrographically con-
firmed epilepsy (seven individuals), and/or variable minor
anomalies (Table 1). Seizures corresponded to several
clinical types (absence, generalized tonic-clonic, infantile
spasms, and subclinical, including electrographic status
epilepticus of sleep), were noted in infancy or early child-
hood, and were generally responsive to standard medical
management. Electroencephalography showed nonspecific
epileptiform activity. Brain MRI was normal in six indivi-
duals, and showed nonspecific volume loss in two indivi-
duals. Other associated anomalies, each observed in a

minority of probands, included: Strabismus (four indivi-
duals), scoliosis (three individuals), talipes equinovarus
(two individuals), athetoid movements in infancy (two
individuals), C1 vertebral anomalies (two individuals),
pectus excavatum (one individual), cryptorchidism (one
individual), micropenis (one individual), and hip dysplasia
(one individual). There was no consistent growth pheno-
type. The craniofacial gestalt was nondysmorphic, although
shared features included a broad forehead, prominent nasal
root, bulbous nasal tip, short philtrum, micrognathia, and
prominent lobule of the ear (Fig. 1). One individual was
described to have a heightened threshold for pain; a second
individual had a history of repeated handwashing with
scalding water. In no case was altered heat or pain sensi-
tivity the primary reason for referral.

Genetic investigations

All individuals remained undiagnosed following standard
genetic investigations, including genomic microarray (eight
of eight individuals), Fragile X testing (six of eight indivi-
duals), and/or ID panel testing (three of eight individuals).
Each kindred (proband and parents) next underwent clinical
exome trio analysis, followed by distributed case-matching of
genetically and phenotypically like patients using Gene-
Matcher [6]. Interestingly, seven individuals (1–7) were each
heterozygous for the specific de novo substitution TRPM3
(NM_020952.4):c.2509G>A, NP_066003.3:p.(Val837Met).
This change is not represented in GnomAD, and is predicted
to be damaging (scaled CADD score 25.4; SIFT score 0.000;
PolyPhen-2 score 0.998) [7–10]. The ACMG categorization
of this variant is “pathogenic” on the basis of criteria PS2,
PS4, PM1, PM2, and PP3 [11]. The eighth (final) individual
was heterozygous for a private substitution, c.2810C>A, p.
(Pro937Gln), observed once in GnomAD (allele frequency:
3.98 × 10−6) and predicted to be damaging (scaled CADD
score 28.8; SIFT score 0.000; PolyPhen-2 score 1.000). This
variant meets ACMG criterion PS2, and is categorized as a
variant of unknown significance. Of note, review of the other
de novo coding variants in individual 8 further demonstrated
a heterozygous splice-acceptor site deletion in the DNA
damage-response protein DDB1 [(NM_001923.4):c.550-
4_554delCCAGGACCC]. Although DDB1 variants are not,
as far as we are aware, directly implicated in any human
disease, the TRPM3 variant in individual 8 remains an
unclassified variant pending additional reports.

Public databases confirm that heterozygous loss-of-
function variants of TRPM3 are observed in the general
population. For instance, heterozygous gnomAD truncating
variants occur in 18 of 25 canonical coding exons, and
truncating variants are nondepleted as a proportion of all
coding variants (ExAC pLI statistic= 0.00%) [7]. More-
over, in DGV [12], copy-loss CNVs intersect multiple
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constitutive coding exons of TRPM3. In contrast, the
gnomAD missense variation constraint metric for TRPM3
(Z=+3.18) suggests relative intolerance for in-frame
substitution. Because (i) TRPM3 variants were non-
randomly distributed in our cohort and (ii) functional
hemizygosity of TRPM3 appears tolerated in general-
population controls, we reasoned that simple haploinsuffi-
ciency was unlikely to be the mechanism of disease in our
cohort. To predict the functional consequences of the var-
iants in our patients, we modeled TRPM3 on the recently
determined structure [13] of TRPM7 (Fig. 2). Like other
TRP channels, TRPM7 is a radial tetramer with spatially
distinct voltage-sensing and pore-forming domains (enco-
ded by helices S1–S4 and S5, S6, respectively). Between
voltage-sensing and pore-forming domains resides the TRP
domain, a conserved “switch” region [13]. The model of
TRPM3 suggests at least four hypotheses regarding the
functional consequences of a valine-to-methionine sub-
stitution at position 837. Firstly, Val837 occupies a crucial
position in TRPM3’s S4–S5 linker, a conserved helix
which interacts with the TRP domain during gating
[13, 14]. In TRPM3, a hydrogen bond is predicted between
Val837 and Arg978 of the TRP domain; in TRPM7, the
analogous bond (Val982-Arg1115) is essential and even
conservative substitutions (e.g., p.Arg1115Gln) render the
channel inactive [13, 15]. Secondly, TRPM3 is unique
among TRP proteins in that its voltage-sensing domain
contains a second, non-canonical, permeation pathway
distinct from the central channel pore [16, 17]. Non-
canonical conductance in TRPM3 can be abolished by
mutations at any of the helix IV residues Trp827, Arg830,
and Asp833, or Gly836, the latter being immediately
adjacent to Val837 [17]. Thirdly, TRPM3 is among several
TRP proteins responsive to phosphoinositides, and Arg978
is one of three TRP domain residues essential for phos-
phoinositide responsiveness [15, 18]. Fourthly, the tetra-
meric structure of TRP channels presents the possibility of
structural dominant negativity by direct interaction of
mutant and nonmutant subunits.

The case for pathogenicity of the p.Pro937Gln variant,
observed only once in our cohort, is less clear. This sub-
stitution of a conserved, “helix-breaking” proline at the N-
terminal extreme of helix S6 is predicted to extend helix S6
by one half-rotation, shortening and reanchoring the flexible
pore-forming S5–S6 loop. This variant is regarded as a
variant of unclear clinical significance, pending confirma-
tion in additional probands.

Discussion

In this report, we present eight individuals with ID, hypo-
tonia, epilepsy (seven individuals), and de novoTa
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substitutions of TRPM3. The primary manifestations of this
disorder are nonspecific, and we anticipate that panel- or
exome-based sequencing is likely to be the typical means of
diagnosis. Notwithstanding a few prior reports describing
TRPM3 variation in humans, this study is the first to defi-
nitively assign a clinical phenotype to this gene in multiple
unrelated probands. In 2014, the substitution TRPM3
(NM_020952):c.195A>G, p.(Ile65Met) was identified in an
autosomal dominant glaucoma and cataract kindred linked
to 9p13-q21 [19]. Although the TRPM3 variant did cose-
gregate with the affected haplotype, the critical region was
large (~40Mb; 114 genes), and causality was not estab-
lished. Secondly, we are aware of a case report of brothers
with Becker muscular dystrophy, autism, and a partial
(nine-exon) TRPM3 deletion; however, the deletion did not
cosegregate with disease [20]. Thirdly and finally, we know
one prior report of a Kabuki-like syndrome in a single
individual with a ~1.3Mbp microdeletion encompassing
TRPM3 and three other genes; however, segregation was
not assessed, as parents were unavailable [21]. This report is
therefore the first to show a consistent TRPM3-related
clinical phenotype across multiple unrelated kindreds.

TRPM3 is highly expressed in the brain in humans and
other vertebrates [22]. In the developing rat brain, TRPM3
is initially restricted to neurons, but as myelination pro-
gresses expression shifts to oligodendrocytes, in which it
mediates a calcium current responsive to D-erythro-sphin-
gosine (a byproduct of myelin sphingolipid biosynthesis)
[23]. The patients in this study did not show differences in

cerebral myelination, although a minority of patients did
show nonspecific cerebral white matter volume loss.

A well-characterized function of TRPM3 in the literature
is its role in thermal nociception. Together with the cap-
saicin receptor, TRPV1, and the allyl isothiocyanate
(wasabi) receptor, TRPA1, TRPM3 is one of three TRP
channels required for noxious heat sensation in thermo-
sensory neurons [24]. In mouse, TRPM3 is expressed in
sensory neurons from dorsal root and trigeminal ganglia,
and Trpm3−/− mice display attenuated nocifensive behavior
after heat or dermal pregnenolone sulfate injection [25]. In
this study, abnormal pain perception was endorsed in two
individuals on specific questioning, but this feature was not
consistent across the entire cohort, nor was it the presenting
complaint in any patient. In the future, it may be interesting
to objectively assess thermal nociception in TRPM3 patients
by means of contact heat-evoked potentials, an electro-
physiological technique requiring specific apparatus una-
vailable for use in this report.

This report is congruent with that of Hamdan et al. [2],
who find that many of the identifiable variants in patients
with DEE are recurrent, frame-preserving, de novo sub-
stitutions in channels or receptors expressed at the neuronal
plasma membrane. Our findings suggest that TRPM3 is a
locus for ID and epilepsy, and should be included in genetic
panels targeting these indications.
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Fig. 1 Craniofacial morphology.
a Individual 1, (p.Val837Met),
age 12.5 years. b Individual 2,
(p.Val837Met), age 4.5 years. c
Individual 8, (p.Pro937Gln), age
10.8 years
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