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Abstract
Predicting metabolizer phenotype (MP) is typically performed using data from a single gene. Cytochrome p450 family
2 subfamily D polypeptide 6 (CYP2D6) is considered the primary gene for predicting MP in reference to approximately 30%
of marketed drugs and endogenous toxins. CYP2D6 predictions have proven clinically effective but also have well-
documented inaccuracies due to relatively high genotype–phenotype discordance in certain populations. Herein, a pathway-
driven predictive model employs genetic data from uridine diphosphate glucuronosyltransferase, family 1, polypeptide B7
(UGT2B7), adenosine triphosphate (ATP)-binding cassette, subfamily B, number 1 (ABCB1), opioid receptor mu 1
(OPRM1), and catechol-O-methyltransferase (COMT) to predict the tramadol to primary metabolite ratio (T:M1) and the
resulting toxicologically inferred MP (t-MP). These data were then combined with CYP2D6 data to evaluate performance of
a fully combinatorial model relative to CYP2D6 alone. These data identify UGT2B7 as a potentially significant explanatory
marker for T:M1 variability in a population of tramadol-exposed individuals of Finnish ancestry. Supervised machine
learning and feature selection were used to demonstrate that a set of 16 loci from 5 genes can predict t-MP with over 90%
accuracy, depending on t-MP category and algorithm, which was significantly greater than predictions made by CYP2D6
alone.

Introduction

Pharmacogenetic studies typically rely on targeted mono-
genic genotyping approaches (i.e., detection of targeted
single-nucleotide variants (SNVs) from one gene) to char-
acterize the way populations or individuals respond to drugs
[1–4]. The cytochrome p450 family 2, subfamily D, poly-
peptide 6 (CYP2D6) locus is a gene routinely used to

predict metabolism of various compounds due to its invol-
vement in phase I metabolism of approximately 30% of
marketed drugs and endogenous toxins [3, 5–7]. CYP2D6
genotype–phenotype correlations have demonstrated rela-
tively high efficacy in various clinical applications, how-
ever, notable genotype–phenotype discordance is
documented [8–10]. It is understood that drug ADME-R
(absorption, distribution, metabolism, excretion, and
response) are dependent upon protein pathways, not the
activity of a single protein. Consequently, one-gene one-
phenotype predictive models do not utilize extended
ADME-R information. Altar et al. demonstrated that com-
binatorial approaches (i.e., genetic data from multiple pro-
teins) to predicting metabolizer phenotype (MP) have
significantly more efficacious patient outcomes when
compared to a single-gene single-phenotype model for
psychiatric compounds [11, 12]. Pathway-driven pharma-
cogenetic studies have been performed in relatively few
drug classes and typically utilize relatively few loci (i.e.,
genes or SNVs) [13–15], but the success of this type of
model has not been evaluated for extended metabolic
pathways (e.g., one or two genes versus multiple genes
representing various stages of ADME-R).

CYP2D6 is readily implicated in O-demethylation of
tramadol to form O-desmethyltramadol (M1). Tramadol is
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among the most widely prescribed opioid analgesics in the
United States and as such contributes to the critical public
health opioid usage and distribution crisis [16, 17]. Given
the overwhelmingly high tramadol-related deaths in the
United States (over 19,000; see https://www.kff.org/other/
state-indicator/opioid-overdose-deaths-by-type-of-opioid),
it is essential that predictive models include as much data as
possible to address the degree of CYP2D6 genotype–phe-
notype discordance observed in individuals and in some
populations. It is reasonable to hypothesize that a combi-
natorial predictive model of tramadol metabolism using
genetic information from proteins representative of phase II
metabolism, active metabolite distribution, and neuro-
transmitter and analgesia propagation would provide a more
complete picture of how an individual responds to tramadol.

Supervised machine learning identifies underlying rela-
tionships describing the interaction between a known out-
come variable (i.e., MP) and highly dimensional
explanatory variables (i.e., genotypes). To our knowledge,
machine learning is not readily used to identify loci for
predicting patient MP but may offer considerable advan-
tages for pathway-driven pharmacogenetic analyses via
feature selection. Herein, a pathway-driven predictive
model of tramadol ADME-R was evaluated to identify
features (i.e., single nucleotide [SNPs] and/or insertion/
deletion polymorphisms) capable of classifying members of
a deceased, tramadol-exposed Finnish population into tox-
icologically inferred MP (t-MP) categories. The genetic data
from uridine diphosphate glucuronosyltransferase, family 1,
polypeptide B7 (UGT2B7), adenosine triphosphate (ATP)-
binding cassette, subfamily B, number 1 (ABCB1), opioid
receptor mu 1 (OPRM1), and catechol-O-methyltransferase
(COMT) were used in combination with CYP2D6 data [18]
and demonstrate increased prediction accuracy and corre-
lation coefficients for the t-MP and T:M1 outcome vari-
ables, respectively. These predictions were made using a
substantially reduced number of loci (16 and 33 for t-MP
and T:M1, respectively) offering promise for design and
clinical implementation of accurate and reproducible tra-
madol response models.

Subjects and methods

Subjects

A total of 208 DNA samples from deceased, tramadol-
exposed individuals of Finnish ancestry were used in this
study. Samples were collected in Finland between 2001 and
2012 according to the ethical handling of human subjects
policies at the University of Helsinki and transferred to the
University of North Texas Health Science Center

(Institutional Review Board protocol 2016-051). Samples
were stored on Whatman® FTA® cards (GE Healthcare Life
Science, Marlborough, MA, USA) [19]. Each sample was
accompanied by comprehensive toxicology results including
measurements for over 100 routinely tested compounds,
primary and secondary cause of death (CoD), manner of
death (MoD), age, and sex. Sample inclusion was determined
based on toxicological detection of tramadol and its primary
metabolite O-desmethyltramadol. Using analysis of variance,
there were no detectable relationships between the presence/
absence of these compounds or the concentration of each
compound and T:M1 ratio used to classify each subject.
Model-based clustering of each sample was performed in R
using the mclust package (version 5.2.3) [20] and the T:M1
ratio for each sample. Additional information on sample
collection, toxicological analyses, and DNA extraction and
quantitation were described by Wendt et al. [18].

Marker selection, library preparation, and massively
parallel sequencing

A TruSeq® Custom Amplicon (TSCA) Low Input library
preparation panel (Illumina®, Inc.) was designed using the
Illumina DesignStudio™ (see https://www.illumina.com/
informatics/sample-experiment-management/custom-assay-
design.html; accessed June 2017). The exons of four
pharmacogenes (UGT2B7, ABCB1, OPRM1, and COMT)
were targeted for kit design (Table 1). These genes were
selected based on previous work highlighting their potential
to predict opioid response outcomes [13, 14, 21].

Library preparation was performed using 10 ng of
genomic DNA and followed the manufacturer’s recom-
mended protocol. Two modifications were made to the
TSCA Low Input protocol: (1) during the Remove
Unbound Oligos step, sample purification beads were
allowed to dry for 1 min instead of the indicated 5 min;
and (2) prior to library cleanup, the hybridization plate
was placed on a magnetic stand for 2 min before 45 μL of
supernatant were transferred to the cleanup plate.
Cleaned-up library traces were spot-checked using the
Agilent 2200 TapeStation (Agilent Technologies, Wald-
bronn, Germany) using the Agilent 2200 High Sensitivity
D1000 ScreenTape System according to the manu-
facturer’s recommended protocol (see https://support.
illumina.com/content/dam/illumina-support/documents/
documentation/chemistry_documentation/samplepreps_
truseq/truseqcustomamplicon/truseq-custom-amplicon-
low-input-reference-guide-1000000002191–04.pdf;
accessed July 2017). Sample libraries were normalized
and pooled in batches of 32 and sequenced on the MiSeq
(Illumina) using the MiSeq Reagent kit v2 (500 cycles)
with 2 × 250 bp read length.
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Alignment, variant analysis, and machine learning

Resulting .fastq files were locally aligned to the hg19/
GRCh37 reference genome using the Burrows-Wheeler
Aligner and SamTools [22–24]. Variant calling was per-
formed in Genome Analysis ToolKit (GATK) [25].
Resulting .vcf files were, or were converted to, standard
input for VCFtools [26], Genome-wide Complex Trait
Analysis [27], PLINK [28], IMPUTE2 v2.3.2 [29], and
various in-house Excel-based workbooks. Variants may be
accessed from ClinVar under submission number
SUB4785168.

Supervised machine learning was performed in the
Waikato Environment for Knowledge Analysis as
described previously [18, 30, 31] using four classifiers:
regularized multinomial logistic regression (RMLR;
t-MP only), 1-nearest neighbor (1NN; t-MP and T:M1),
random forest (RF; t-MP and T:M1), and linear regres-
sion (LR; T:M1 only). Feature selection and leave-one-
out cross-validation were used to reduce the size of the
model and assess model accuracy, respectively. Note
that leave-one-out cross-validation also minimizes the
effects of overfitting the model by training a given
model in the absence of one sample and evaluating

model accuracy on the left-out sample. Unless otherwise
stated, sample n− 1 (i.e., 207-fold) cross-validation was
performed.

Results

Samples

The cohort in this study represents a larger sampling of
deceased tramadol-exposed individuals of Finnish ancestry
than reported previously [18]. International Classification of
Diseases, Tenth Revision (ICD-10) CoD codes (see Inter-
national Statistical Classification of Diseases and Related
Health Problems Tenth Revision [ICD-10]-WHO Version
for 2016. http://apps.who.int/classifications/icd10/browse/
2016/en#/I; accessed 21 Apr 2017) and a more generalized
manner of death (MoD) (e.g., disease, trauma, suicide,
medical treatment, or undetermined) were assigned to each
individual at the time of medico-legal autopsy (Table 2) The
average measured concentrations of tramadol and M1 and
T:M1 ratio were 4.04 mg/l ± 5.94, 0.447 ± 0.769 mg/l, and
11.6 ± 18.3, respectively. There was no significant differ-
ence in mean T:M1 between males (12.8 ± 25.0; N= 127;

Table 2 Significant pairwise linkage disequilibria (LD; padj < 9.21 × 10–10) between single-nucleotide variants (SNVs) in different genes of interest
for only those pairs of SNVs with at least 25 genotypes (i.e., 50 alleles) contributing to the LD pattern and r2 values ≥ 0.65

Locus 1 (hg19/GRCh37) rs Number (locus 1) Locus 2 (hg19/GRCh37) rs Number (locus 2) r2

NC_000004.11:g.69962282G>A – NC_000006.11:g.154360666C>T rs199648369 0.656

NC_000004.11:g.69978303C>G – NC_000007.13:g.87214698A>G – 1

NC_000004.11:g.69962733C>T – NC_000006.11:g.154412616T>A – 1

NC_000004.11:g.69962733C>T – NC_000006.11:g.154360678C>A rs1297476429 1

NC_000004.11:g.69962676C>T rs14712761 NC_000007.13:g.87224929T>C – 1

NC_000004.11:g.69963152T>C rs1386213886 NC_000007.13:g.87214721G>A – 1

NC_000004.11:g.69963152T>C rs1386213886 NC_000006.11:g.154412881A>C – 1

NC_000004.11:g.69962733C>T – NC_000007.13:g.87224962T>C – 1

Table 1 Design strategy for a TruSeq Custom Amplicon Low Input library preparation panel targeting the exons of UGT2B7, ABCB1, OPRM1,
and COMT

Gene Chromosome Ampliconsa Gap coordinates (hg19/GRCh37) Gap details

UGT2B7 4 24 – –

ABCB1 7 90 87,197,059–87,197,105; 87,198,648–
87,198,648; 87,191,244–87,191,244;
87,180,975–87,180,975; 87,145,948–
87,145,986; 87,133,754–87,133,770

Transcript NM_000927 intron 6, Transcript
NM_000927 intron 6, Transcript NM_000927 intron
8, Transcript NM_000927 intron 10, Transcript
NM_000927 exon 25, Transcript NM_000927 exon
29

OPRM1 6 74 – –

COMT 22 28 19,938,573–19,938,580 Transcript NM_001135161 exon 1

Design resulted in 98% overall coverage of desired targets. A full list of amplicons is provided in Supplemental Table S1; note that due to optimal
amplicon sizing, certain portions of intronic regions may have been captured within an amplicon
aOne pair of probes designed to target each amplicon
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mean age 52.2 years ± 17.9) and females (10.9 ± 12.3; N=
81; mean age 60.0 years ± 18.3).

Assuming unequal variance, five clusters were identified,
using the R package mclust [20], and used to sort each
sample into a t-MP category based on the following
thresholds: poor metabolizers (PM; T:M1 ≥ 50; N= 5),
intermediate metabolizers (IM; 50 > T:M1 ≥ 20; N= 20),
slow normal metabolizers (NM-S; 20 > T:M1 ≥ 8; N= 67),
fast normal metabolizers (NM-F; 8 > T:M1 ≥ 3; N= 91),
and ultra-rapid metabolizers (UM; 3 > T:M1 ≥ 1; N= 25).

Library preparation panel and sequencing
performance

The massively parallel sequencing (MPS) panel targeted
216 exonic amplicons with a probe-based chemistry
(Tables S1 and S2). Based on requirements for probe pla-
cement, some intronic regions also were obtained. The
average amplicon length was 177 bases ± 6.84. Note that
ABCB1 and COMT had small gaps after panel design
(Table 1) resulting in lack of genotype data for two exonic
SNPs observed once in the Exome Aggregation Consortium
and 1000 Genomes Project databases (1kGP) [32]. Variant
effect prediction indicated possibly damaging consequences
of ABCB1 gap variant NC_000007.13:g.87145971C>G
(SIFT: 0; PolyPhen-v2: 0.995) [33, 34].

Single-nucleotide variants

After application of a 10× locus read-depth threshold, the
average alternate allele frequency of 8546 SNVs was
0.0300 ± 0.0876. After Bonferroni correction (padj_heter-
ozygous_loci= 3.59 × 10–5; ~70 deviations expected due to
chance alone), 8 loci significantly deviated from expecta-
tions of Hardy-Weinberg equilibrium, all of which exhib-
ited significant excess heterozygosity in this Finnish
population, suggesting relatively little population sub-
structure in this cohort.

After correction for multiple testing (padj= 2.42 × 10−6),
14 SNVs were significantly associated with the rate of tra-
madol O-demethylation (Fig. 1a and Table 3). Two pairs
of loci exhibited significant linkage disequillibria
(NC_000007.13:g.87229006T >G/NC_000022.10:g.199384
32G >A [N= 164 and 147 genotypes, respectively] and
NC_000004.11:g.69972849T > C/NC_000022.10:g.1993843
2G>A [N= 150 and 147 genotypes, respectively]).

The SNP heritability (h2) of t-MP and T:M1 was inferred
using the --reml command in GATK with individual and
pairwise combinations of two, three, four, and all five genes
(Fig. 1b). In general, the variability of t-MP was poorly
explained regardless of gene or gene combination. How-
ever, after correction for multiple testing (padj= 0.00161),
the SNVs from UGT2B7 (h2T:M1= 0.821; p= 1.22 × 10−6)

and the combination of SNVs from CYP2D6/UGT2B7
(h2T:M1= 0.786; p= 4.04 × 10−4) significantly explained
relatively large proportions of the variation in T:M1 with
relatively little error (0.0594 and 0.0758 for UGT2B7 and
CYP2D6/UGT2B7, respectively).

Predicting t-MP

Predictions of t-MP and T:M1 were performed in two
phases: (1) classification of MP using combined unphased
genotype data from UGT2B7, ABCB1, OPRM1, and
COMT; and (2) classification with computationally phased
genotypes from the same four genes. In general, unphased
genotypes predicted t-MP and T:M1 variables with less
accuracy and lower correlation coefficients than the
phased genotype models. The results presented herein
focus on predictions of t-MP and T:M1 using phased
genotype data.

The 208 tramadol-exposed individuals of Finnish
ancestry used for classification represent five classes of t-
MP. Using three supervised machine learning models, t-MP
prediction accuracies were relatively low with mean
accuracies of 19.2% ± 39.7 (RF), 20.4% ± 23.0 (1NN), and
25.2% ± 15.6 (RMLR), which are not better than random
chance (20.9%, 10%-trimmed mean). These accuracies
represent poor prediction of all five t-MPs, with lack of a
true positive prediction for the t-IM and t-PM categories in
all three models. Overall, the RMLR classifier predicted t-
MP with significantly higher accuracies than the 1NN or RF
classifiers (p < 0.001).

Feature selection was used to evaluate classification
accuracies as a reduced number of SNVs are provided for
each model. The models were evaluated with features used
in >0, >12, >25, >50, and >75% of cross-validation folds
(Fig. 2). Classification accuracies generally increased for all
five t-MP categories with the RMLR classifier out-
performing the LR and 1NN models. RMLR predicted
the t-MP variable with mean accuracies for t-UM, t-NM-F,
t-NM-S, and t-IM that were 1.22- (25.6% ± 2.19), 3.35-
(70.1% ± 2.38), 2.64- (55.2% ± 4.47) and 2.01-fold
(42.0% ± 2.74) greater than random chance (20.9%; 10%-
trimmed mean), respectively. Note that t-PMs were not
reliably predicted with any algorithm.

The RMLR classifier relies on regularization to reduce
model complexity after proportionally penalizing the squared
effect of each feature on the outcome. For this classifier, ridge
regularization parameters ranging from 1 × 10−10 to 0.01 were
evaluated. The mean root mean squared error (RMSE) of
these assessments changed negligibly with modified ridge
parameter (mean RMSE 0.408 ± 0.007) while model accuracy
increased (maximum number of correctly classified indivi-
duals was 65.4%). Note that while feature selection provided
no notable increase in t-PM classification accuracy, reducing
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RMLR model complexity (ridge parameter ≤1 × 10−4)
increased t-PM classification accuracy to 20%.

Wendt et al. [18] previously described t-MP classifica-
tion using CYP2D6 alone. That study analyzed a subset of
the current sample set (N= 44/208 individuals), which had
genetic data for a fully comprehensive t-MP prediction.
Note that because of limited sampling, this cohort repre-
sented only four MP categories (i.e., t-PMs were not
observed) and used 43-fold cross-validation. Using a com-
prehensive, pathway-driven model with all 10,421 SNVs
from CYP2D6 [18], UGT2B7, ABCB1, OPRM1, and
COMT, accuracy of the RF, 1NN, and RMLR classifiers
modestly increased to 27.3%, 27.3%, and 20.5%, respec-
tively. Feature selection increased these classification
accuracies with the RMLR classifier again outperforming
the 1NN and RF models in overall accuracy (mean of
60.6% ± 19.1 overall; 61.5% for t-UM, 75.0% for t-NM-F,
72.7% for t-NM-S, and 33.3% for t-IM; Fig. 3a). Relative to
the CYP2D6 predictions, the pathway-driven model using
CYP2D6, UGT2B7, ABCB1, OPRM1, and COMT together
provided significantly higher classification accuracies for t-
MP (p= 0.0190; paired t-test). The maximum classification
accuracy reached 93.8% using only 16 SNVs.

Predicting T:M1

Supervised machine learning was performed on the T:M1
outcome variable in the same manner as t-MP except that
the LR classifier was used instead of RMLR. The average
difference between actual and predicted T:M1 (ΔT:M1)
using 8546 phased SNVs from UGT2B7, ABCB1, OPRM1,
and COMT was −1.54 ± 17.6, indicating overall under-
estimation of T:M1. The 1NN classifier underestimated
T:M1 with significantly greater magnitude than the RF
and LR classifiers (p < 1 × 10−20) with mean ΔT:M1 of
−5.89 ± 18.9 (1NN), 0.191 ± 19.0 (LR), and −0.581 ± 18.8
(RF).

The same five feature inclusion thresholds were eval-
uated for the T:M1 variable (Fig. 4). Overall, T:M1 was
modestly predicted regardless of feature inclusion strin-
gency or supervised machine learning algorithm used. The
average correlation coefficients between actual and pre-
dicted T:M1 were not significantly different regardless of
feature inclusion stringency; however, the correlation
coefficients from the LR classifier (r2= 0.113 ± 0.0212)
were significantly lower than those of the 1NN (r2=
0.277 ± 0.0520) and RF (r2= 0.284 ± 0.0307) classifiers.

Fig. 1 a Association between the tramadol to O-desmethyltramadol
ratio (T:M1) for individual genotypes at UGT2B7, ABCB1, OPRM1,
and COMT. A dashed horizontal line indicates the threshold for sig-
nificance after correction for multiple testing (−log10(padj)= 5.62); loci
are labeled if they exceed the significance threshold and have regres-
sion coefficients ≥ 0.45 (arbitrarily selected to avoid locus label over-
lap). b Heritability summary of restricted maximum likelihood (--reml
in Genome-wide Complex Trait Analysis) analyses, with the first 20

eigenvectors as covariates, of the toxicologically inferred metabolizer
phenotype (t-MP; solid gray triangles) and the associated t-MP (T:M1;
solid black circles) phenotypes. A dashed horizontal line indicates the
threshold for significance after correction for multiple testing (−log10
(padj)= 2.79); two data points are labeled, indicating that the indivi-
dual (UGT2B7) and combined (CYP2D6/UGT2B7) genotype infor-
mation significantly explained a relatively high proportion of
phenotypic variance

A pathway-driven predictive model of tramadol pharmacogenetics 1147
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The maximum observed correlation coefficient was 0.383
with the 1NN classifier.

T:M1 predictions with CYP2D6 alone and the pathway-
driven model were evaluated. For 44 samples and the full
set of genotype data without feature selection (NSNVs=
10,421), the pathway-driven model (mean ΔT:M1=
–1.35 ± 12.8) yielded a significantly lower ΔT:M1 than the
CYP2D6 model (mean ΔT:M1=−6.79 ± 34.9; p=
0.0293). This observation was especially true for the
LR classifier (ΔT:M1pathway=−0.101 ± 12.3 and ΔT:
M1CYP2D6=−20.1 ± 56.2), which had a significantly
decreased ΔT:M1 with the pathway-driven model (p < 0.01).
Note that the 1NN classifier performed less well with
pathway-driven data (ΔT:M1=−4.40 ± 13.6) relative to the
CYP2D6 data (ΔT:M1=−1.10 ± 14.3). This observation
holds true for the LR classifier using the >12, >25, >50, and
>75% feature inclusion thresholds with significant improve-
ments of the pathway-driven models relative to the equivalent
feature inclusion model using CYP2D6 alone (p < 0.00330).

Discussion

This study evaluated a combinatorial, pathway-driven
pharmacogenetic model of tramadol O-demethylation
using a custom TSCA Low Input library preparation panel
targeting the exons of UGT2B7, ABCB1, OPRM1, and

COMT, which are responsible for various stages of tramadol
ADME-R. Note that while exons were targeted for panel
design, optimization of amplicon size involved capturing
some intronic loci. While not specifically interrogated here,
there are common and intronic, promoter, enhancer, and/or
silencer SNVs that have been implicated in variable gene
expression, splicing, and/or post-translational modifications
that need to be explored further to develop fully pathway-
driven models of drug-specific and drug-class ADME-R
[35]. Utilizing comprehensive MPS (referred to as next-
generation sequencing by Ingelman-Sundberg et al. [35]) to
detect and incorporate rare variants could be valuable for
increasing ADME-R prediction accuracies, which is sup-
ported by the work presented here.

Fourteen SNVs were significantly associated with T:M1;
however, only one of these (NC_000007.13:
g.87178819C>T) was predicted to alter protein function by
causing a valine to isoleucine amino-acid change adjacent to
the ATP-binding cassette signature sequence, between the
signature and Q-loop. This locus was observed with an
allele frequency of 0.000200 in the 1kGP (South Asian
super-population only) but was not present in the Sequen-
cing Initiative Suomi (SISu; Finnish population only; see
Sequencing Initiative Suomi project (SISu), Institute for
Molecular Medicine Finland, University of Helsinki, Fin-
land. URL: http://sisuproject.fi [SISu v4.1, May, 2018]).
Combined Annotation Dependent Depletion indicates this

Fig. 2 Summary of machine learning classification accuracies for four
metabolizer phenotype clusters (t-UM ultra-rapid, t-NM-F normal/
extensive [fast], t-NM-S normal/extensive [slow], t-IM intermediate)
using phased UGT2B7, ABCB1, OPRM1, and COMT data aligned to
the hg19/GRCh37 reference genome for varying feature selection
stringencies (features used in greater than 0, 12, 25, 50, and 75% of

cross-validation folds) compared to the accuracy of the model using all
genotype data from UGT2B7, ABCB1, OPRM1, and COMT. Three
machine learning algorithms are depicted: 1-nearest neighbor (1NN),
random forest (RF), and regularized multinomial logistic regression
(RMLR); dashed lines represent the average predictive accuracy due to
random chance (20.9%; 10%-trimmed mean)

1150 F. R. Wendt et al.
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locus as one of the top 0.1–1% most deleterious substitu-
tions in the human genome with SIFT and PolyPhen-v2
providing agreeable predictions [33, 34, 36]. Its position
within the binding pocket of ABCB1 is quite close to
crosslinked regions of the domain; though charge is not
disrupted by the change of valine to isoleucine, the extra
methyl group of isoleucine may sterically hinder appro-
priate crosslinking between nucleotide binding domains 1
and 2 [37–39].

The t-MP variable was relatively poorly explained by the
genetic data from CYP2D6, UGT2B7, ABCB1, OPRM1, and
COMT (10,421 SNVs) with restricted maximum likelihood
analysis for all combinations of genes (i.e., singlets, pairs,
trios, etc.). Interestingly, T:M1 was highly explained by
genetic variation at UGT2B7 and the combination of
UGT2B7-CYP2D6, which was likely an artifactual inflation
of the poor explanation of T:M1 by CYP2D6 relative to

UGT2B7. This is an interesting observation since CYP2D6
data alone are routinely relied upon for predicting drug
response. CYP2D6 information is typically used as a pre-
dictor for the ratio of drug concentration to active metabo-
lite concentration [1, 4, 5, 40, 41], thereby guiding safer
first-pass drug doses in place of solely trial-and-error. While
CYP2D6 is considered a front-end indicator of drug to
metabolite ratio, UGT2B7 is responsible for efficient glu-
curonidation of the metabolite, facilitating its biliary
excretion. Increased or decreased activity of UGT2B7 may
be associated with fast or slow excretion of a metabolite,
respectively, influencing patient outcomes (i.e., slow glu-
curonidation of morphine via UGT2B7 may result in
accumulation of morphine and its associated toxicity). The
data herein suggest that UGT2B7 may serve as an equally,
or more, informative back-end indicator of the same phe-
notype predicted frequently by CYP2D6.

Fig. 3 Summary of machine learning classification accuracies for
metabolizer phenotype (t-UM ultra-rapid; t-NM normal/extensive, t-
IM intermediate; a) and the tramadol to O-desmethyltramadol ratio (T:
M1; b) using phased CYP2D6 [18], UGT2B7, ABCB1, OPRM1, and
COMT data aligned to the hg19/GRCh37 reference relative to using
CYP2D6 alone. In a, varying feature selection stringencies (i.e., fea-
tures used in greater than 0, 12, 25, 50, and 75% of cross-validation

folds) and supersized machine learning algorithms (i.e., 1-nearest
neighbor (1NN), random forest (RF), and regularized multinomial
logistic regression (RMLR)) were used; dashed lines represent the
average predictive accuracy due to random chance (39.9% for pathway
model and 23.8% for CYP2D6 model; 10%-trimmed mean). Note the
cube root scale in b with standard error shown in gray shading along
the length of each robust linear regression

A pathway-driven predictive model of tramadol pharmacogenetics 1151



Three supervised machine learning algorithms were used
to predict t-MP and T:M1. In general, t-MP was predicted
well using the combination of UGT2B7, ABCB1, OPRM1,
and COMT genotype information. Classification accuracies
were especially high for the t-NM-F and t-NM-S categories,
demonstrating reliable detection of normal versus non-
normal metabolizers. Predicting the direction of non-
normality was less successful; however, the highest fea-
ture inclusion stringency increased classification accuracies
of the t-UM, t-IM, and t-PM categories. Overall, t-PM was
poorly predicted with these SNVs using all three models. It
is important to note that this MP is regularly characterized
by a variety of structural aberrations and while SNV pre-
dictions may have been poor, large cohorts of known PMs
may enable SNV models in the absence of structural
information. T:M1 was poorly predicted using the three
selected algorithms; however, predicting this outcome
variable was noticeably, and significantly, algorithm-
dependent. While using multiple machine learning algo-
rithms and feature inclusion criteria may be seen as biased,
this approach may be beneficial for future application and
possible best practices for clinical implementation of pre-
dictive models based on genotyping approaches. The data
presented using a pathway-driven predictive model of tra-
madol ADME-R demonstrated clear algorithm differences
with the RF and 1NN classifiers exhibiting the highest
correlation coefficients between predicted and actual T:M1.
While the RF classifier produced some of the highest t-MP
prediction accuracies, it failed to reliably predict the
extreme categories (i.e., t-PM, t-IM, and t-UM); on the

other hand, the RMLR classifier predicted t-MP quite well
across a range of categories.

A subset of samples were assayed in a truly combina-
torial fashion, with full genotype data for CYP2D6,
UGT2B7, ABCB1, OPRM1, and COMT. By applying the
RMLR, 1NN, RF, and LR classifiers to this subset of
samples, it was demonstrated that a pathway-driven model
of tramadol ADME-R more accurately predicts outcome
than a CYP2D6-driven model. The predictive models pre-
sented here for T:M1 and t-MP achieved high accuracies
depending on category and algorithm used; however, the
power of this approach is represented by the number of loci
used to predict either outcome variable. Relative to a model
using 10,421 SNVs (maximum accuracy of 68.8%), t-MP
can be predicted with up to 93.8% accuracy using 16 SNVs
(651-fold reduction in SNVs) and T:M1 can be predicted
with a correlation coefficient up to 0.329 with 33 SNVs
(316-fold reduction in SNVs; Table 4). While it is possible
that large feature reduction facilitated overfitting, leave-one-
out cross-validation and model-dependent regularization
were used to reduce these effects.

The current clinical standard of CYP2D6 genotyping has
inaccuracies in multiple ancestral populations and/or dis-
eased populations, which in itself warrants exploration of
alternative or additional predictions of phenotype. We have
demonstrated that the performance of a pathway-driven
predictive model of tramadol ADME-R, using rare and
common genetic variants, was relatively low; however,
utilizing pathway information may outperform the current
clinical standard. It is likely that a more broadly applicable

Fig. 4 Summary of tramadol O-demethylation (T:M1 ratio) predictions
using three supervised machine learning algorithms (1-nearest neigh-
bor [1NN], linear regression [LR], and random forest [RF]) and five
feature inclusion criteria (i.e., features included in >0, >12, >25, >50,
and >75% of cross-validation folds) relative to the prediction using

genotype data from 8546 loci in UGT2B7, OPRM1, ABCB1, and
COMT for phased and unphased hg19/GRCh37 data. The dashed lines
represent the average predictive accuracy due to random chance
(0.112; 10%-trimmed mean). The individual data points contributing
to these correlation coefficients are shown in Figure S1

1152 F. R. Wendt et al.
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predictive model will employ additional DNA elements
(i.e., introns, promoters, enhancers, silencers, distant reg-
ulatory elements, etc.), including common and rare variants.
The data described here demonstrate the feasibility of
pathway-driven models and serve as a foundation to build
clinically applicable assays relying on protein pathway
information rather than single-gene predictions of complex
drug metabolism phenotypes. Additional DNA elements
could be explored for development of relatively small,
accurate, and easily implemented MPS library preparation
panels for clinical application of drug response models.

Acknowledgements The authors thank Jenny Atanasov and Mehdi
Keddache from Illumina, Inc. and Cydne Holt, John Walsh, and
Kameran Wong from Verogen, Inc. for library preparation product
support, and Jerry Boonyaratanakornkit and Wahaj Zuberi from Exact
Diagnostics for their technical assistance generating TruSeq data. We
also thank Medicinska Understödsföreningen Liv och Hälsa r.f. and
Helsinki University Doctoral Programme in Population Health for
support for AS and A-LR, respectively.

Funding Support for this work was provided by the Center for Human
Identification at the University of North Texas Health Science Center.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS.
Prediction of CYP2D6 phenotype from genotype across world
populations. Genet Med. 2017;19:69–76.

2. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome
P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects
and functional diversity. Pharm J. 2005;5:6–13.

3. Leppert W. CYP2D6 in the metabolism of opioids for mild to
moderate pain. Pharmacology. 2011;87:274–85.

4. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A.
Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6
at global and microgeographic scales. Pharmacogenet Genomics.
2009;19:170–9.

5. Koski A, Sistonen J, Ojanpera I, Gergov M, Vuori E, Sajantila A.
CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite
ratios in a series of medicolegal autopsies. Forensic Sci Int.
2006;158:177–83.

6. Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A. Post-mortem
SNP analysis of CYP2D6 gene reveals correlation between gen-
otype and opioid drug (tramadol) metabolite ratios in blood.
Forensic Sci Int. 2003;135:9–15.

7. Mas S, Gasso P, Torra M, Bioque M, Lobo A, Gonzalez-Pinto A,
et al. Intuitive pharmacogenetic dosing of risperidone according to
CYP2D6 phenotype extrapolated from genotype in a cohort of
first episode psychosis patients. Eur Neuropsychopharmacol.
2017;27:647–56.

8. De Andres F, Teran S, Hernandez F, Teran E, LL A. To genotype
or phenotype for personalized medicine? CYP450 drugTa

bl
e
4
(c
on

tin
ue
d)

G
en
e

hg
19
/G
R
C
h3
7

G
en
om

e
re
fe
re
nc
e

cD
N
A

po
si
tio

n
rs

N
um

be
r

A
lte
rn
at
e
D
N
A

ch
an
ge
s
(R
ef
>
A
lt)

Δ
A
m
in
o
ac
id

a
C
A
D
D

(P
hr
ed
)

S
IF
T
(S
co
re
)
P
ol
yP

he
n-
v2

(S
co
re
)

U
se
d
to

pr
ed
ic
t

C
O
M
T

N
C
_0
00
02
2.
10
:

g.
19
95
75
37
G
>
A

N
G
_0
11
52
6.
1:
g.
33
27
5G

>
A

N
M
_0
00
75
4.
3:
c.

*1
27
8G

>
A

–
–

–
10
.1

–
–

T
:M

1

C
Y
P
2D

6
N
C
_0
00
02
2.
10
:

g.
42
52
23
12
T
>
C

N
G
_0
08
37
6.
3:
g.
86
82
G
>
A

N
M
_0
00
10
6.
5:
c.
*7
5
+

18
9G

>
A

rs
11
63
90
39
2

–
–

2.
19

–
–

T
:M

1
an
d

t-
M
P

C
Y
P
2D

6
N
C
_0
00
02
2.
10
:

g.
42
52
82
24
G
>
A

N
G
_0
08
37
6.
3:
g.
27
75
C
>
T

N
M
_0
00
10
6.
5:
c.
-

14
26
C
>
T

rs
28
58
85
94

–
–

1.
33

–
–

t-
M
P

t-
M
P
to
xi
co
lo
gi
ca
lly

in
fe
rr
ed

m
et
ab
ol
iz
er

ph
en
ot
yp

e,
C
A
D
D

C
om

bi
ne
d
A
nn

ot
at
io
n
D
ep
en
de
nt

D
ep
le
tio

n
a E
xo

n
po

si
tio

ns
ar
e
as

fo
llo

w
s:

U
G
T
2B

7
N
M
_0

01
07

4.
2:
c.
-4
6_

72
1
(e
xo

n
1)
,
N
M
_0

01
07

4.
2:
c.
72

2_
87

0
(e
xo

n
2)
,
N
M
_0

01
07

4.
2:
c.
87

1_
10

02
(e
xo

n
3)
,
N
M
_0

01
07

4.
2:
c.
10

03
_1

09
0
(e
xo

n
4)
,

N
M
_0

01
07

4.
2:
c.
10

91
_1

31
0
(e
xo

n
5)
,
13

11
_*

25
1
(e
xo

n
6)
;
O
P
R
M
1

N
M
_0

01
14

52
79

.2
:c
.-
52

3_
-1

(e
xo

n
1)
,
N
M
_0

01
14

52
79

.2
:c
.1
_1

45
(e
xo

n
2)
,
N
M
_0

01
14

52
79

.2
:c
.1
46

_5
69

(e
xo

n
3)
,

N
M
_0

01
14

52
79

.2
:c
.5
70

_9
22

(e
xo

n
4)
,
N
M
_0

01
14

52
79

.2
:c
.9
23

_1
44

3
(e
xo

n
5)
,
N
M
_0

01
14

52
79

.2
:c
.1
44

4_
*7

38
;
A
B
C
B
1
N
M
_0

00
92

7.
4:
c.
-4
93

_-
33

1
(e
xo

n
1)
,
N
M
_0

00
92

7.
4:
c.
-3
30

_-
7
(e
xo

n
2)
,
N
M
_0

00
92

7.
4:
c.
-6
_6

8
(e
xo

n
3)
,
N
M
_0

00
92

7.
4:
c.
69

-1
17

(e
xo

n
4)
,
N
M
_0

00
92

7.
4:
c.
11

8_
28

6
(e
xo

n
5)
,
N
M
_0

00
92

7.
4:
c.
28

7_
33

8
(e
xo

n
6)
,
N
M
_0

00
92

7.
4:
c.
33

9_
53

0
(e
xo

n
7)
,

N
M
_0

00
92

7.
4:
c.
53

1_
70

2
(e
xo

n
8)
,
N
M
_0

00
92

7.
4:
c.
70

3_
82

7
(e
xo

n
9)
,
N
M
_0

00
92

7.
4:
c.
82

8_
99

9
(e
xo

n
10

),
N
M
_0

00
92

7.
4:
c.
10

00
_1

11
3
(e
xo

n
11

),
N
M
_0

00
92
7.
4:
c.
11

14
_1

22
4
(e
xo

n
12

),
N
M
_0

00
92

7.
4:
c.
12

25
_1

35
0
(e
xo

n
13

),
N
M
_0

00
92

7.
4:
c.
13

51
_1

55
4
(e
xo

n
14

),
N
M
_0

00
92

7.
4:
c.
15

55
_1

72
5
(e
xo

n
15

),
N
M
_0

00
92

7.
4:
c.
17

26
_1

88
7
(e
xo

n
16

),
N
M
_0

00
92

7.
4:
c.
18

88
_2

06
4
(e
xo

n
17

),
N
M
_0

00
92

7.
4:
c.
20

65
_2

21
1
(e
xo

n
18

),
N
M
_0

00
92

7.
4:
c.
22

12
_2

31
9
(e
xo

n
19

),
N
M
_0

00
92

7.
4:
c.
23

20
_2

39
7
(e
xo

n
20

),
N
M
_0

00
92

7.
4:
c.
23

98
_2

48
2
(e
xo
n
21

),
N
M
_0

00
92

7.
4:
c.
24

82
_2

68
5

(e
xo

n
22

),
N
M
_0

00
92

7.
4:
c.
26

86
_2

78
6
(e
xo

n
23

),
N
M
_0

00
92

7.
4:
c.
27

87
_2

92
7
(e
xo

n
24

),
N
M
_0

00
92

7.
4:
c.
29

28
_3

08
4
(e
xo

n
25

),
N
M
_0

00
92

7.
4:
c.
30

85
_3

28
2
(e
xo

n
26

),
N
M
_0

00
92

7.
4:

c.
32

83
_3

48
9

(e
xo

n
27

),
N
M
_0

00
92

7.
4:
c.
34

90
_3

63
6

(e
xo

n
28

),
N
M
_0

00
92

7.
4:
c.
36

37
_*

38
0

(e
xo

n
29

);
C
O
M
T

N
M
_0

00
75

4.
3:
c.
-2
49

_-
92

(e
xo

n
1)
,
N
M
_0

00
75

4.
3:
c.
-9
1_

-1
(e
xo

n
2)
,

N
M
_0

00
75

4.
3:
c.
1_

28
9

(e
xo

n
3)
,
N
M
_0

00
75

4.
3:
c.
29

0_
48

3
(e
xo

n
4)
,
N
M
_0

00
75

4.
3:
c.
48

4_
61

5
(e
xo

n
5)
,
N
M
_0

00
75

4.
3:
c.
61

6_
*1

23
9;

C
Y
P
2D

6
N
M
_0

00
10

6.
5:
c.
-9
0_

18
0

(e
xo

n
1)
,

N
M
_0

00
10

6.
5:
c.
18

1_
35

2
(e
xo

n
2)
,
N
M
_0

00
10

6.
5:
c.

35
3_

50
5

(e
xo

n
3)
,
N
M
_0

00
10

6.
5:
c.
50

6_
66

6
(e
xo

n
4)
,
N
M
_0

00
10

6.
5:
c.
66

7_
84

3
(e
xo

n
5)
,
N
M
_0

00
10

6.
5:
c.
84

4_
98

5
(e
xo

n
6)
,

N
M
_0

00
10

6.
5:
c.
98

6_
11

73
(e
xo

n
7)
,
N
M
_0

00
10

6.
5:
c.
11

74
_1

31
5
(e
xo

n
8)
,
N
M
_0

00
10

6.
5:
c.
13

16
_*

75
(e
xo

n
9)

A pathway-driven predictive model of tramadol pharmacogenetics 1155



metabolizing enzyme genotype-phenotype concordance and dis-
cordance in the ecuadorian population. OMICS. 2016;20:699–
710.

9. Gaedigk A, Bradford LD, Marcucci KA, Leeder JS. Unique
CYP2D6 activity distribution and genotype-phenotype dis-
cordance in black Americans. Clin Pharmacol Ther. 2002;72:76–
89.

10. Shiran MR, Chowdry J, Rostami-Hodjegan A, Ellis SW, Lennard
MS, Iqbal MZ, et al. A discordance between cytochrome P450
2D6 genotype and phenotype in patients undergoing methadone
maintenance treatment. Br J Clin Pharmacol. 2003;56:220–4.

11. Altar CA, Carhart J, Allen JD, Hall-Flavin D, Winner J, Dechairo
B. Clinical utility of combinatorial pharmacogenomics-guided
antidepressant therapy: evidence from three clinical studies. Mol
Neuropsychiatry. 2015;1:145–55.

12. Altar CA, Carhart JM, Allen JD, Hall-Flavin DK, Dechairo BM,
Winner JG. Clinical validity: combinatorial pharmacogenomics
predicts antidepressant responses and healthcare utilizations better
than single gene phenotypes. Pharm J. 2015;15:443–51.

13. Baber M, Chaudhry S, Kelly L, Ross C, Carleton B, Berger H,
et al. The pharmacogenetics of codeine pain relief in the post-
partum period. Pharm J. 2015;15:430–5.

14. Bastami S, Gupta A, Zackrisson AL, Ahlner J, Osman A,
Uppugunduri S. Influence of UGT2B7, OPRM1 and ABCB1 gene
polymorphisms on postoperative morphine consumption. Basic
Clin Pharmacol Toxicol. 2014;115:423–31.

15. Sistonen J, Madadi P, Ross CJ, Yazdanpanah M, Lee JW,
Landsmeer ML, et al. Prediction of codeine toxicity in infants and
their mothers using a novel combination of maternal genetic
markers. Clin Pharmacol Ther. 2012;91:692–9.

16. Seya MJ, Gelders SF, Achara OU, Milani B, Scholten WK. A first
comparison between the consumption of and the need for opioid
analgesics at country, regional, and global levels. J Pain Palliat
Care Pharmacother. 2011;25:6–18.

17. Solanki DR, Koyyalagunta D, Shah RV, Silverman SM, Man-
chikanti L. Monitoring opioid adherence in chronic pain patients:
assessment of risk of substance misuse. Pain Physician. 2011;14:
E119–31.

18. Wendt FR, Novroski NMM, Rahikainen AL, Sajantila A,
Budowle B. Supervised classification of CYP2D6 genotype and
metabolizer phenotype with postmortem tramadol-exposed Finns.
Am J Forensic Med Pathol. 2019;40:8–18.

19. Rahikainen AL, Palo JU, de Leeuw W, Budowle B, Sajantila A.
DNA quality and quantity from up to 16 years old post-mortem
blood stored on FTA cards. Forensic Sci Int. 2016;261:
148–53.

20. Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering,
classification and density estimation using gaussian finite mixture
models. R J. 2016;8:289–317.

21. Owusu Obeng A, Hamadeh I, Smith M. Review of opioid phar-
macogenetics and considerations for pain management. Pharma-
cotherapy. 2017;37:1105–21.

22. Li H. A statistical framework for SNP calling, mutation discovery,
association mapping and population genetical parameter estima-
tion from sequencing data. Bioinformatics. 2011;27:2987–93.

23. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

24. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,
et al. The sequence alignment/map format and SAMtools.
Bioinformatics. 2009;25:2078–9.

25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K,
Kernytsky A, et al. The genome analysis toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010;20:1297–303.

26. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo
MA, et al. The variant call format and VCFtools. Bioinformatics.
2011;27:2156–8.

27. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for
genome-wide complex trait analysis. Am J Hum Genet.
2011;88:76–82.

28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
et al. PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am J Hum Genet. 2007;81:559–75.

29. Howie BN, Donnelly P, Marchini J. A flexible and accurate
genotype imputation method for the next generation of genome-
wide association studies. PLoS Genet. 2009;5:e1000529.

30. Schmedes SE, Woerner AE, Budowle B. Forensic human identi-
fication using skin microbiomes. Appl Environ Microbiol. 2017.

31. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL,
Stephens KM, et al. Targeted sequencing of clade-specific mar-
kers from skin microbiomes for forensic human identification.
Forensic Sci Int Genet. 2018;32:50–61.

32. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM,
Korbel JO, et al. A global reference for human genetic variation.
Nature. 2015;526:68–74.

33. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A,
et al. The Ensembl Variant Effect Predictor. Genome Biol.
2016;17:122.

34. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F.
Deriving the consequences of genomic variants with the Ensembl
API and SNP Effect Predictor. Bioinformatics. 2010;26:2069–70.

35. Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM.
Integrating rare genetic variants into pharmacogenetic drug
response predictions. Hum Genomics. 2018;12:26.

36. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shen-
dure J. A general framework for estimating the relative patho-
genicity of human genetic variants. Nat Genet. 2014;46:310–5.

37. Dhaliwal AK, Mohan A, Gill KS. Comparative analysis of
ABCB1 reveals novel structural and functional conservation
between monocots and dicots. Front Plant Sci. 2014;5:657.

38. Loo TW, Bartlett MC, Clarke DM. The “LSGGQ” motif in each
nucleotide-binding domain of human P-glycoprotein is adjacent to
the opposing walker A sequence. J Biol Chem. 2002;277:41303–6.

39. Sauna ZE, Ambudkar SV. About a switch: how P-glycoprotein
(ABCB1) harnesses the energy of ATP binding and hydrolysis to
do mechanical work. Mol Cancer Ther. 2007;6:13–23.

40. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ,
Leeder JS. The CYP2D6 activity score: translating genotype
information into a qualitative measure of phenotype. Clin Phar-
macol Ther. 2008;83:234–42.

41. Sistonen J, Sajantila A, Lao O, Corander J, Barbujani G, Fuselli S.
CYP2D6 worldwide genetic variation shows high frequency of
altered activity variants and no continental structure. Pharmaco-
genet Genomics. 2007;17:93–101.

1156 F. R. Wendt et al.


	A pathway-driven predictive model of tramadol pharmacogenetics
	Abstract
	Introduction
	Subjects and methods
	Subjects
	Marker selection, library preparation, and massively parallel sequencing
	Alignment, variant analysis, and machine learning

	Results
	Samples
	Library preparation panel and sequencing performance
	Single-nucleotide variants
	Predicting t-MP
	Predicting T:M1

	Discussion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




