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Abstract

SMAD4 pathogenic variants cause juvenile polyposis (JPS) and hereditary hemorrhagic telangiectasia (HHT), and 40% of
affected individuals also have thoracic aortic disease. At the same time, SMAD4 pathogenic variants have not been reported
in thoracic aortic disease families without JPS-HHT. A SMAD4 heterozygous variant, c.290G>T, p.(Arg97Leu), not present
in population databases and predicted to be damaging to protein function, was identified in a family with thoracic aortic
disease and no evidence of HHT or JPS. Cellular studies revealed that the SMAD4 p.(Arg97Leu) alteration increased
SMAD4 ubiquitination and 26S proteasome-mediated protein degradation. Smooth muscle cells (SMCs) infected with
lentivirus expressing the SMAD4 p.(Arg97Leu) variant demonstrated reduced contractile protein gene expression when
compared to that of wild-type SMADA4. In addition, two rare variants were identified in individuals with early age of onset of
thoracic aortic dissection. These results suggest that SMAD4 rare missense variants can lead to thoracic aortic disease in

individuals who do not have JPS or HHT.
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Introduction

The natural history of aneurysms involving the aortic root
and/or ascending aorta is to asymptomatically enlarge over
time until an acute tear in the intimal and medial layers
leads to an ascending aortic dissection [1-3]. A predis-
position for thoracic aortic aneurysms and dissections can
be inherited in an autosomal dominant manner in families
and may or may not be associated with syndromic features,
termed heritable thoracic aortic disease (HTAD). Rare
pathogenic variants that are highly likely to cause HTAD
have been identified in genes encoding proteins involved in
canonical TGF-B signaling (ITGFBR2, TGFBRI, TGFB2,
TGFB3, and SMAD3) [4-9]. TGF-§ signaling is initiated
when the cytokine binds to the TGF-f type II receptor on
the cell surface, which recruits and phosphorylates the TGF-
B type I receptor. The active type I receptor phosphorylates
SMAD?2 and SMAD3 (Mothers Against Decapentaplegic
Homolog 2 and 3 (MIM 601366 and MIM 603109),
respectively) at the C-terminus, which forms a complex
with SMADA4 and is translocated to the nucleus to alter gene
transcription. Pathogenic SMAD4 variants cause juvenile
polyposis (JPS) and hereditary hemorrhagic telangiectasia
(HHT), and 40% of affected individuals have thoracic aortic
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disease [10-12], but SMAD4 variants have not been
reported in thoracic aortic disease families without JPS—
HHT. We report here a family with HTAD segregating with
a SMAD4 missense variant that disrupts SMAD4 stability.
Furthermore, additional rare variants in SMAD4 were
identified in patients with early age onset of sporadic
thoracic aortic dissections (ESTAD).

Patients and methods
Patients

DNA samples were collected from affected individuals and
family members after obtaining informed consent and
human subject research approval from all participating
institutions, including the University of Texas Health Sci-
ence Center at Houston and Baylor College of Medicine.
Clinical data were obtained from medical records, and
phenotypic features were assessed in the SMAD4 variant
carriers by a clinical geneticist. Additional methods are
available in the online Supplementary material.

Results

Identification of SMAD4 pathogenic variants in
thoracic aortic disease patients

Exome-sequencing data from probands and family members
of 223 unrelated HTAD families (Supplementary Table 1),
defined as two or more members with thoracic aortic disease,
were analyzed for rare heterozygous variants as previously
described [13]. One SMAD4 (NM_005359.5) variant,
¢.290G>T p.(Arg97Leu)(ClinVar SCV000804195.1), was
identified in the proband and affected brother of family
TAA281; Sanger sequencing validated the variant and
confirmed it was inherited from proband’s affected father
(Fig. 1a). No other rare variants in known HTAD genes were
identified [14]. This variant is absent in the gnomAD data-
base and has a CADD score of 33 [15] (Supplementary
Table 2). The proband presented with an ascending aortic
dissection at the age of 24 years and underwent initial
ascending aortic repair, and subsequent aortic root and valve
replacement at the age of 34 years. Postoperative CT ima-
ging showed an aberrant right subclavian artery dilated at the
origin and markedly a tortuous distal thoracic and abdominal
aorta. Clinical examination by a geneticist was remarkable
for mild degree of esotropia, uvula with groove but not bifid,
mild scoliosis, and joint laxity. She died of ovarian cancer at
the age of 44 years. Her brother also presented with an
ascending aortic dissection at the age of 41 years and had a
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Fig. 1 SMAD4 rare variants identified in a family with heritable
thoracic aortic disease. a Pedigree of TAA281 with SMAD4 p.
(Arg97Leu) variant. The legend indicates the disease status and gen-
otypes of the family members. Arrow points to the proband. Asterisk
indicates the presence of a bicuspid aortic valve. The age at diagnosis
of aortic aneurysm or dissection (‘‘dx’’) and age at death (“‘d’’) are
shown in years. A dashed circle around a symbol indicates individuals
whose DNA was used for exome sequencing. b Schematic repre-
sentation of the SMAD4 domains and variants. The SMAD4 rare
missense variant identified in TAA281 is shown in red, the somatic
variant identified in pancreatic cancer in black, and missense variants
identified in individuals with early dissections are in blue above the
protein diagram. The blue triangles indicate the location of SMAD4
missense variants identified in patients with JPS or JPS-HHT. Aster-
isks indicate variants identified in the NHLBI ESP database

bicuspid aortic valve. Their father was diagnosed with an
ascending aortic aneurysm at the age of 75 years and
underwent an ascending aortic replacement. Complete
medical records from the proband and her father did not
identify any features of JPS, HHT, or Myhre syndrome.

Analysis of exome-sequencing data from 355 individuals
with aortic dissections <56 years of age with no family history
or syndromic features (ESTAD, Supplementary Table 1)
identified two additional rare nonsynonymous SMAD4 var-
iants, a c.70A>G p.(Met24Val)(ClinVar SCV000804196.1)
and c.736C>A, p.(Pro246Thr)(ClinVar SCV000804197.1)
[16]; these variants were validated by Sanger sequencing.
These variants have minor allele frequencies <5.0 x 10 in
the gnomAD database and CADD scores of >15 (Supple-
mentary Table 1). Variant p.(Met24Val) was identified in a
patient with a type A aortic dissection at the age of 37 and p.
(Pro246Thr) was identified in a patient with a type A aortic
dissection at 54 years old; these individuals did not have
features of HHT or JPS. Individual with the SMAD4 p.
(Pro246Thr) variant did not have any rare variants in known
HTAD genes, whereas the individual with the SMAD4 p.
(Met24Val) variant also had rare variants in MYHII
c3281C>T, p.(Alal094Val) and TGFBRI cA457G>A, p.
(Vall53Ile) (Supplementary Table 3).
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SMADA4 p.(Arg97Leu) alters protein stability and
decreases TGFp signaling

SMADA4 has two Mad Homology domains, MH1 and MH2,
and a region linking these domains (Fig. 1b). The SMAD4 p.
(Arg97Leu) variant is located in the MHI domain of
SMAD4 (Fig. 1b) and is immediately adjacent to a pre-
viously identified somatic SMAD4 variant, p.(Argl00Thr),
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found in a pancreatic cancer patient and previously shown
to decrease SMAD4 stability [17]. Given the proximity of
Arg97 to Argl00, we hypothesized that the p.(Arg97Leu)
variant affects SMAD4 protein stability in a similar way
[18]. To test this hypothesis, lentiviruses of control vector,
Flag-tagged wild type (WT) and Leu97 were infected in
HEK293T cells and an immortalized smooth muscle cell
(SMC) line (SMC11023) [19]. Quantitative RT-PCR
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<« Fig. 2 SMAD4 Leu97 reduces protein stability through increased

binding to SKP2. a Lentiviruses of control vector and Flag-tagged WT
and Leu97 SMAD4 were infected in HEK293T and SMC11023 fol-
lowed by real-time qPCR with GAPDH as internal control. SMAD4
WT and Leu97 have similar expression of mRNA. b In these same
cells, the protein level of SMAD4 Leu97 was significantly lower than
that of SMAD4 WT. The average protein levels over triplicate
experiments are shown on the graph. ¢ SMAD4 Leu97 variant protein
is unstable after cycloheximide treatment. HEK293T cells expressing
SMAD4 WT and Leu97 variant were treated with cycloheximide for
up to 8 h followed by immunoblot analyses with anti-Flag antibodies.
The levels of SMAD4 and GAPDH protein were quantified using
immunoblot assay. d MG132 partially rescued the degradation of
SMAD4 Leu97 variant. HEK293T cells expressing SMAD4 WT and
Leu97 variant were treated with MG132, for 8 h. A representative
experiment is shown on the left and quantification of three individual
experiments are shown at the right. e Leu97 variant increased the
ability of SMAD4 binding to HA-SKP2. HEK293T cells were co-
transfected with Myc-SMAD4 and HA-SKP2 followed by immuno-
precipitation with Myc beads. The SMAD4-bound SKP2 was detected
with anti-HA antibodies. f Ubiquitination of SMAD4 Leu97 is
increased compared to WT protein. HEK293T cells were co-
transfected with His-SMAD4, Flag-SKP2, and HA-ubiquitin fol-
lowed by immunoprecipitation with Ni-NTA agarose beads under
denatured conditions. The ubiquitination of Smad4 was detected with
anti-HA antibodies. Three individual experiments were performed and
one representative result is shown. Asterisks indicate a p value <0.05

(qPCR) showed similar levels of SMAD4 WT and Leu97
transcripts in both cell lines (Fig. 2a), but immunoblot
analyses demonstrated significantly reduced levels of
SMAD4 Leu97 compared to WT protein, suggesting that
the SMAD4 Leu97 variant reduced the stability of the
protein (Fig. 2b). After treating the HEK293T cells
expressing SMAD4 WT or Leu97 with a protein synthesis
inhibitor (cycloheximide) for up to 8 h, half of the SMAD4
Leu97 protein was degraded within 8 h, while the level of
WT protein was unchanged (Fig. 2c¢). Similar analyses of
SMAD4 Val24 and Thr246 indicated that these variants did
not lead to increased degradation of the protein (Supple-
mentary Fig. 1).

The ubiquitination and degradation of the SMAD4 var-
iant p.(Argl00Thr) identified in cancer cells is augmented
through the ubiquitin E3 ligase SKP2-mediated 26S pro-
teasome pathway [17, 18]. To determine if a similar path-
way is degrading the SMAD4 p.(Arg97Leu),
HEK293T cells expressing Flag-tagged WT or Leu97
SMAD4 were treated with a 26S proteasome inhibitor
(MG132) for 8h. Results showed that MG132 slightly
increased the levels for Leu97 SMAD4, suggesting that the
mutant SMAD4 degradation is partially mediated through
the 26S proteasome (Fig. 2d). To test whether SMAD4
Leu97 binds the E3 ubiquitin ligase SKP2 more efficiently,
HEK293T cells were co-transfected with HA-tagged SKP2
and Myc-tagged SMAD4 WT or Leu97, followed by
immunoprecipitation using anti-Myc antibodies. Sub-
sequent immunoblot analyses using anti-HA antibodies

showed increased SKP2 binding to SMAD4 Leu97 com-
pared to WT (Fig. 2e). To test whether SMAD4 Leu97
mutant increases its ubiquitination by SKP2-mediated 26S
proteasome, His-tagged SMAD4 and HA-tagged ubiquitin,
with and without Flag-tagged SKP2 were co-transfected in
HEK293T cells, followed by immunoprecipitation with
nickle beads to pull down the SMAD4 under denatured
conditions and immunoblot analyses done with both anti-
Flag and anti-HA antibodies. The results showed that the
ubiquitination of SMAD4 Leu97 was increased compared
to WT at baseline and further increased when SKP2 was
co-expressed (Fig. 2f). Thus, these results indicate that
the SMAD4 Leu97 variant increases binding to SKP2,
leading to increased ubiquitination and 26S proteosomal
degradation.

With TGFp activation of the type I and II receptors,
SMAD4 forms a complex with SMAD2/3 and translocates
into nucleus to increase the expression of genes by binding
to conserved SMAD binding elements (SBE) in promoter
regions. To test if any of the identified SMAD4 rare variants
disrupt TGFp signaling, these variants were expressed with
a 3TP-Lux plasmid which contains an SBE driving luci-
ferase expression with TGFf and a SMAD?2 construct in
COS7 cells. The results show that the luciferase activity
increases in response to TGFP1 treatment in cells expres-
sing increasing amounts of WT SMAD4, and similar
increased activity was found when SMAD4 Val24 and
Thr246 were expressed (Fig. 3a). In contrast, luciferase
activity was minimally increased when the SMAD4 Leu97
was expressed. Cyclin-dependent kinase 4 inhibitor B
(p15™K4B) has an SBE in its promoter region and is a well-
characterized early response gene of TGF signaling. SMCs
expressing SMAD4 WT and Leu97 variant were exposed to
TGFp1 for 4 h, and RNA harvested for gPCR analyses. The
induction of the expression of pl15™K*B was greater in
SMCs overexpressing WT SMAD4 than in cells expressing
Leu97 SMAD4 variant (Fig. 3b).

TGFp signaling drives SMC differentiation, which is
defined by high levels of SMC contractile genes, includ-
ing smooth muscle a-actin (ACTA2) and calponin
(CNN1). Previous studies have shown that SMCs
explanted from Smad4-deficient mice have decreased
expression of SMC differentiation markers, including
Acta2 [20]. To test whether the SMAD4 Leu97 variant
alters the expression of these genes, SMAD4 WT and
Leu97 variants were expressed in human immortalized
SMCs and then exposed to TGFf1 for 48 h. The result
showed that the expression and protein levels of ACTA2
and CNNI1 were increased in SMCs expressing WT
SMAD4 with exposure to TGFP1, but not increased
in SMCs expressing SMAD4 Leu97 (Fig. 3c, d). Thus, the
SMAD4 Leu97 variant reduces SMC differentiation with
exposure to TGFp1.
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Fig. 3 SMAD4 Leu97 variant reduces TGFp signaling. a The effect of
SMAD4 rare variants on the TGFp was assessed in COS7 cells sig-
naling. The SMAD4 activity of Leu97 alteration to induce 3TP luci-
ferase activity was reduced compared to WT. COS7 cells were co-
transfected with 3TP-lux plasmid and plasmids expressing WT or rare
variants in SMAD4, followed by TGFp1 treatment for 24 h. The 3TP
luciferase activities were measured with renilla luciferase as internal
control. The enhancement of luciferase activity in response to TGFp1
treatment in SMAD4 Leu97 was significantly lower than that of

Discussion

We demonstrate here that a rare heterozygous missense
variant in the MH1 domain of SMAD4 leads to an unstable
protein and segregates with thoracic aortic disease in the
absence of JPS-HHT in a HTAD family. The thoracic aortic
disease in this family first presented as either a type A
dissection or aneurysm and had a variable age of onset.
Pathogenic heterozygous variants in SMAD4 lead to a
spectrum of syndromes, including JPS, JPS with HHT, and
Myhre syndrome [11, 12, 21]. SMAD4 variants associated
with JPS or JPS-HHT are predicted to result in

SPRINGER NATURE

SMAD4 WT, Val24, Thr246. b Immortalized SMCs (SMC11023)
expressing control vector, SMAD4 WT or SMAD4 Leu97 were treated
with TGEB1 for 4 h and the expression of p15™&*" was measured by
real-time qPCR and with GAPDH as internal control. ¢, d SMAD4
Leu97 variant reduced TGFf1-induced smooth muscle specific gene
expression and protein levels. SMC11023 cells infected with control
vector, Flag-tagged SMAD4 WT or Leu97 variant were treated with
TGFp1 for 48 h followed by Western blot (c) and real-time qPCR (d).
Asterisks indicate a p value <0.05 when compared to the SMAD4 WT

haploinsufficiency or are missense variants located in the
MH?2 domain of SMAD4 (Fig. 1b). Functional studies show
that these missense SMAD4 variants reduce bone morpho-
genetic protein (BMP) signaling but to a lesser extent than
predicted for haploinsufficiency [22]. Pathogenic variants in
SMAD4 that lead to Myhre syndrome alter Arg496 or Ile500
in the MH2 domain and increase the stability of SMAD4 by
decreasing its ubiquitination and degradation, and thus most
likely increase signaling through SMAD4 [21]. In contrast,
SMAD4 p.(Arg97Leu) reduces the stability of SMAD4
protein by increasing binding to the ubiquitin E3 ligase
SKP2, which decreases TGFP signaling and SMC
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differentiation. Based on the decreased stability, this
SMAD4 variant should also cause JPS and HHT. It may be
that the cells altered in JPS and HHT do not degrade
SMAD4 using SKP2, and thus the mutant SMAD4 would
not be degraded more rapidly than WT in these cells.

SMAD4 variants, p.(Met24Val) and p.(Pro246Thr), were
identified in patients with early onset sporadic thoracic
aortic disease. Cell biology studies of these variants indi-
cated that they did not affect SMAD4 stability or TGFp
signaling (Fig. 3a; Supplementary Fig. 1). Futhermore, one
individual with SMAD4 variant p.(Met24Val) has additional
variants of uncertain significance in MYHII and TGFBRI,
known genes that lead to HTAD. These SMAD4 variants
did not disrupt SMAD4 stability or function and therefore
are less likely to predispose to thoracic aortic disease. At the
same time, we cannot exclude the possibility that the var-
iants altered a function of SMAD4 that was not assayed in
this study.

In summary, this study provides evidence that a rare
SMAD4 missense variant predisposes individuals to thoracic
aortic disease in the absence of JPS and HHT. We also
identified rare SMAD4 variants in patients with sporadic
thoracic aortic diseases but based on our assessment, these
variants did not alter protein function. Additional studies are
needed to validate and determine the frequency of SMAD4
variants leading to thoracic aortic disease in the absence of
features of JPS and HHT.
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