Skip to main content
. Author manuscript; available in PMC: 2019 Oct 4.
Published in final edited form as: Struct Equ Modeling. 2016 Apr 21;23(4):601–614. doi: 10.1080/10705511.2016.1158655

Table 3.

Parameter estimates from the traditional three-step approach

Study conditions Estimated parameters
No. C on z x
with z
y on z Class 1 Class 2 Step-1 Step-3
Intercept
00=.00)
Slope
10=.20)
Intercept
01=.50)
Slope
11=.70)
Class mean
0=.00)
C on z (γ0) Int.Prob
0=.00)

1 0 0 0 −.01 (.05) .20 (.04) .50 (.04) .70 (.03) −.02 (.25) −.02 (.25) −.01 (.08)
2 0 .5 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .02 (.24) .07 (.41) .02 (.27)
3 0 0 .5 −.03 (.11) .19 (.06) .50 (.06) .70 (.06) −.07 (.43) −2.73 (.65) −.46 (.77)
4a 0 .5 .5 −.02 (.09) .45 (.06) .51 (.06) .95 (.05) −.02 (.42) −2.53 (2.20) .51 (1.46)
5 −.69 0 0 .00 (.05) .20 (.04) .50 (.04) .70 (.03) .00 (.23) −.70 (.12) .00 (.25)
6 −.69 .5 0 .02 (.07) .20 (.06) .48 (.03) .69 (.03) −.26 (.30) −.40 (.34) −.25 (.35)
7 −.69 0 .5 −.17 (.10) .20 (.05) .66 (.05) .70 (.04) −.02 (.29) −3.73 (.50) −.26 (.62)
8 −.69 .5 .5 −.20 (.17) .44 (.06) .61 (.05) .93 (.05) −.38 (.38) −2.16 (.75) −.45 (.64)
9 −1.1 0 0 .00 (.05) .20 (.04) .50 (.03) .70 (.03) .01 (.26) −1.09 (.16) .01 (.30)
10 −1.1 .5 0 .04 (.10) .20 (.07) .47 (.04) .69 (.03) −.37 (.34) −.70 (.32) −.37 (.40)
11 −1.1 0 .5 −.24 (.09) .20 (.04) .72 (.05) .70 (.04) −.01 (.24) −3.89 (.43) −.18 (.54)
12 −1.1 .5 .5 −.33 (.24) .45 (.07) .64 (.05) .91 (.05) −.54 (.42) −2.29 (.64) −.73 (.66)
a

Note.Three cases with extreme value for the C on z class probability (< −10) are excluded from calculating the mean of the parameter estimates.