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Abstract

Taste receptor type 1 (T1r) is responsible for the perception of essential nutrients, such as

sugars and amino acids, and evoking sweet and umami (savory) taste sensations. T1r

receptors recognize many of the taste substances at their extracellular ligand-binding

domains (LBDs). In order to detect a wide array of taste substances in the environment, T1r

receptors often possess broad ligand specificities. However, the entire ranges of chemical

spaces and their binding characteristics to any T1rLBDs have not been extensively ana-

lyzed. In this study, we exploited the differential scanning fluorimetry (DSF) to medaka

T1r2a/T1r3LBD, a current sole T1rLBD heterodimer amenable for recombinant preparation,

and analyzed their thermal stabilization by adding various amino acids. The assay showed

that the agonist amino acids induced thermal stabilization and shifted the melting tempera-

tures (Tm) of the protein. An agreement between the DSF results and the previous biophysi-

cal assay was observed, suggesting that DSF can detect ligand binding at the orthosteric-

binding site in T1r2a/T1r3LBD. The assay further demonstrated that most of the tested L-

amino acids, but no D-amino acid, induced Tm shifts of T1r2a/T1r3LBD, indicating the broad

L-amino acid specificities of the proteins probably with several different manners of recogni-

tion. The Tm shifts by each amino acid also showed a fair correlation with the responses

exhibited by the full-length receptor, verifying the broad amino-acid binding profiles at the

orthosteric site in LBD observed by DSF.

Introduction

Taste perception starts with specific molecular interactions between taste substances and taste

receptors in the oral cavity. Various chemicals evoking taste sensation are categorized into five

basic taste modalities and perceived by distinct receptors specialized to each modality [1, 2].

Among the five modalities, sweet, umami, and salty tastes are generally recognized as
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preferable tastes and induce positive hedonic responses, while bitter and sour tastes primitively

induce negative hedonic responses to animals, including humans [3].

Among the preferable taste modalities, sweetness and umami are perceived by taste recep-

tor type 1 (T1r) proteins conserved among vertebrates [4]. T1rs are class C G protein-coupled

receptors (GPCRs) [5], which commonly function as homo- or heterodimeric receptors [6].

Specifically, in mammals, T1r2/T1r3 heterodimer serves as a sweet taste receptor, while T1r1/

T1r3 heterodimer serves as an umami taste receptor [7–9]. These receptors recognize major

taste substances by the ligand binding domains (LBDs) located at the extracellular region [10].

T1r LBDs share an architecture known as the Venus flytrap module (VFTM) characteristic to

the extracellular domains of class C GPCRs, and taste substances bind to the cleft between the

bilobal subdomains composing the VFTM (Fig 1A) [11].

Notably, in T1rLBDs, the ligand-binding sites, referred to as the orthosteric binding sites,

need to accommodate taste substances covering the most part of the chemical spaces present-

ing the taste modality, because a single kind of receptor is responsible for the perception of a

single modality. Indeed, the orthosteric binding sites in many T1rLBDs bind a wide array of

chemicals; the site in human T1r2/T1r3 sweet receptor binds various mono- to oligosaccha-

rides as glucose, fructose, and sucrose, and artificial sweeteners as dipeptide derivatives (aspar-

tame, neotame) or sultames (Acesulfame-K, saccharin) [10], while those in mouse T1r1/T1r3

and some of the fish T1rs bind a wide array of amino acids [9, 12, 13]. The broad ligand-bind-

ing capabilities of the orthosteric sites in T1rs contrast with those in other class C GPCRs, such

as metabotropic glutamate receptors or γ-aminobutyric acid (GABA) receptor B, which are

more or less specific to their intrinsic agonist molecules, glutamate or GABA, respectively

[14, 15].

The details of molecular interactions between T1rs and taste substances have long been

unknown, due to the lack of structural information of T1rLBDs. The T1rLBD heterodimers,

including human proteins, are difficult for recombinant expression and large-scale prepara-

tion [16], hampering the structural analyses. Recently, by extensive expression screening

Fig 1. Amino acid binding to medaka T1r2a/T1r3LBD. (A) Crystallographic structure of medaka T1r2a/T1r3LBD in complex with L-glutamine (PDB

ID: 5X2M) and a schematic drawing of the entire T1r receptor. The orthosteric binding sites in T1r2a and T1r3 are highlighted with dashed boxes. (B)

Thermal melt curves of T1r2a/T1r3LBD (top) and their derivatives (bottom) in the presence of 0.1 ~ 300 μM L-glutamine, measured by DSF.

https://doi.org/10.1371/journal.pone.0218909.g001
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among vertebrate T1rLBDs, we solved the first crystallographic structures of the heterodimeric

LBDs of T1r2-subtype a (T1r2a)/T1r3 LBD from medaka fish, O. latipes, an amino acid-taste

receptor (Fig 1A) [11]. In the crystallographic structures, binding of taste-substance amino

acids was observed at the orthosteric binding sites in T1r2a/T1r3LBD. The binding sites

indeed possess favorable structural characteristics to accommodate various amino acids, such

as a large space covered with a surface mosaically presenting negatively, positively and

uncharged regions. Nevertheless, the entire ranges of chemical spaces and their binding char-

acteristics to the orthosteric sites in T1r2a/T1r3, as well as any other T1rs, have not been exten-

sively analyzed. So far, we have employed two kinds of methodologies: isothermal titration

calorimetry for direct measurement of the binding heat generated by interactions between the

T1rLBD protein and a taste substance; and a Förster resonance energy transfer (FRET) analysis

using the T1rLBD-fluorescent protein fusions for indirect measurement of the conformational

change of the protein accompanied by ligand binding [17]. However, the two methods are

sample and time consuming, and only five amino acids were so far subjected to structural and

biophysical analyses to examine interactions with T1r2a/T1r3LBD. In order for the extensive

ligand binding analyses of the protein, an assay method with higher throughput is required.

In this study, we employed a thermal shift assay analyzed by differential scanning fluorime-

try (DSF) for ligand binding analysis of T1r2a/T1r3LBD [18]. The DSF measures a thermal

unfolding of a protein by detecting the change of fluorescence intensity of an environmen-

tally-sensitive fluorescence dye binding to hydrophobic regions of the protein exposed to the

solvent during its denaturation [19, 20]. Because a ligand binding to the protein generally

changes its thermal stability, DSF is applicable to a ligand-binding assay. Among various assay

methodologies, DSF can serve as a high-throughput method since it requires a small amount

of protein for a measurement (~ 1 μg), and multiple parallel measurements are feasible by the

use of conventional real-time PCR equipment. The results in this study showed that the bind-

ing of the agonist amino acids induced thermal stabilization of T1r2a/T1r3LBD, which can be

detected by DSF, indicating that the method can serve as a high-throughput ligand binding

assay for T1rLBDs. The DSF displayed that a wide array of L-amino acids bind to the orthos-

teric site in T1r2a/T1r3LBD, regardless of their physicochemical properties.

Materials and methods

Sample preparation

The protein sample was prepared as described previously [11, 17]. Briefly, Drosophila S2 cells

(Invitrogen) stably expressing C-terminal FLAG-tagged T1r2aLBD and T1r3LBD [11, 21]

were cultured in ExpressFiveSFM (LifeTechnologies) for five days at 27 ˚C. The T1r2a/

T1r3-LBD protein was purified from the culture medium by the use of ANTI-FLAG M2 Affin-

ity Gel (SIGMA). The purified protein was dialyzed against the assay buffer (20 mM Tris-HCl,

300 mM NaCl, 2 mM CaCl2, pH 8.0).

Differential scanning fluorimetry

The protein sample (~1 μg) was mixed with Protein Thermal Shift Dye (Applied Biosystems)

and 10~10,000 μM concentration of each amino acid in 20 μL of assay buffer and loaded to a

MicroAmpR Fast Optical 48-Well Reaction Plate (Applied Biosystems). Specifically, to mini-

mize the changes of the chemical and optical condition, the amino acid solutions were pre-

pared by the exact same buffer used for the final dialysis of the protein, followed by the re-

adjustment of the pH to ~ 8.0 by addition of either NaOH or HCl, and mixed with the protein

diluted with the same buffer.

Ligand binding of taste receptor analyzed by differential scanning fluorimetry
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Fluorescent intensity was measured by the StepOne Real-Time PCR System (Applied Bio-

systems). The temperature was raised from 25 ˚C to 99 ˚C with a velocity of 0.022 ˚C/sec. The

reporter and quencher for detection were set as “ROX” and “none”, respectively. Apparent

melting transition temperature (Tm) was determined by the use of the maximum of the deriva-

tives of the melt curve (dFluorescence/dT) by Protein Thermal Shift Software version 1.3

(Applied Biosystems).

We confirmed that the sample in a different buffer system (e.g. HEPES) gave consistent

results with those under the condition in this study for several representative ligands (S1 Fig).

Data analysis

The apparent dissociation constant (Kd-app) derived from the DSF results was estimated based

on Eq 1 proposed by Schellman [22], assuming that the unfolding of the protein is reversible:

DTm ¼ Tm � T0 ¼
TmT0R
DH0

lnð1þ
½L�

Kd� app
Þ ð1Þ

where [L] is the ligand concentration; Tm and T0 are the apparent melting transition tempera-

tures in the presence and absence of the ligand; R is the gas constant; ΔH0 is the enthalpy of

unfolding at T0, assuming that there are no significant variations under the tested conditions.

If the melt curves show biphasic profiles, the second (or the right side) Tm values were adopted

for calculation, as described in the Results section.

For multiple regression analyses shown in Fig 2B, the apparent Tm values determined at

different ligand concentrations were fitted to Eq 1 by using KaleidaGraph (Synergy Soft-

ware), assuming that the change of the dissociation constant accompanied by the Tm shift is

negligible. For fitting, T0 was fixed at 326.2 K, the experimentally determined value by DSF in

the same experimental set (s.e.m. 0.2 K, n = 7), and Kd-app and ΔH0 values were set as

variables.

For S1 Table, Kd-app was estimated using the apparent Tm values determined at a single

ligand concentration by substituting T0 and ΔH0 in Eq 1 with 326.1 K, determined at the same

experimental set (s.e.m. 0.1 K, n = 20), and 72.1 kcal mol-1, the average of the fitted values of

the multiple regression analyses described above (s.e.m. 7.2 kcal mol-1, n = 5), respectively.

The derived Kd-app values for L-glutamine, alanine, arginine, glutamate, and glycine were

found to show good agreement with those determined by FRET, within 0.55 ~ 1.55 fold of the

FRET EC50 values, if they were determined using the ΔTm values in the range of 6 ~ 11 K (S1

Table). On the other hand, ΔTm below 1 K or above 11 K resulted in larger deviations, such as

below 0.5 fold or above 3 fold of the EC50 values. Because ΔTm values for most amino acids at

10 mM concentration were observed in the range of 2 ~ 11 K, Kd-app values derived from the

results at 10 mM were used for the further analysis, with the following exceptions. For L-ala-

nine and L-glutamine, the results at 1 mM and 0.1 mM were adopted, because ΔTm values

were observed in the range of 6 ~ 11 K and the resulted Kd-app values showed the closer agree-

ment with the FRET EC50 values compared to the results at 10 mM. The amino acids indicat-

ing the thermal destabilization, L-lysine and D-alanine, were not included in the further

analyses.

The relationship between the side chain structures and pKd-app (= log 1/Kd-app) values for

15 L-amino acids, excluding L-proline, was quantitatively analyzed using the classical quantita-

tive structure-affinity relationships (QSAR) technique [23]. Classical QSAR analyses were

performed using QREG ver. 2.05 [24]. The physicochemical parameters of amino acid α-sub-

stituent groups used for the analysis were listed in S3 Table.

Ligand binding of taste receptor analyzed by differential scanning fluorimetry
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Fig 2. Dose-dependent Tm changes of T1r2a/T1r3LBD by the addition of amino acids. (A) Thermal melt curves of

T1r2a/T1r3LBD and their derivatives in the presence of 1 ~ 10,000 μM concentrations of L-alanine, arginine,

glutamate, and glycine, measured by DSF. (B) Dose-dependent Tm changes of T1r2a/T1r3LBD by addition of L-

glutamine, alanine, arginine, glutamate, and glycine. Six technical replicates for L-glutamine and 4 technical replicates

for the others were averaged and fitted to Eq 1 in Materials and Methods. Error bars, s.e.m.

https://doi.org/10.1371/journal.pone.0218909.g002
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Receptor response assay

The Ca2+-flux assay was performed using Flip-In 293 cell line (Life Technologies) stably

expressing full-length T1r2a, T1r3, and Gα16-gust44 as described previously [11, 17]. The

response stimulated by either 5 or 10 mM amino acid was represented asΔRFU (delta relative

fluorescence unit) defined as the maximum fluorescence intensity induced by the addition of

the amino acid, subtracted with that of an assay buffer in the absence of amino acid. The esti-

mated EC50 values, EC50-est, were calculated using the Hill equation as follows:

DRFU ¼
DRFUmax � ½L�
EC50� est þ ½L�

where [L], ΔRFU, ΔRFUmax were substituted by either 5 or 10 mM, ΔRFU values at 5 or 10

mM, and 104.3, the maximum ΔRFU value observed in the same set of experiments (by addi-

tion of 5 mM L-glutamine, a saturated concentration observed in previous studies [11, 17]; s.e.

m. 4.24, n = 12). pEC50-app (= log 1/EC50-est) values for 13 or 15 amino acids, estimated from

the results at 5 mM or 10 mM results, respectively, by excluding those giving negative ΔRFU

values, were compared with pKd-app values.

Results

T1r2a/T1r3LBD exhibited thermal stabilization by binding a taste

substance amino acid

An essential prerequisite for DSF application to a ligand binding assay is that the protein

should show a shift of thermal melt curves accompanied by the ligand addition, i.e., the protein

should be either thermal stabilized or destabilized by ligand binding. In order to examine

whether DSF is applicable to ligand binding analysis of T1r2a/T1r3LBD, we analyzed its ther-

mal melt curves with various concentrations of L-glutamine, the amino acid taste substance to

medaka T1r2a/T1r3LBD with the highest affinity to the protein so far analyzed [11].

T1r2a/T1r3LBD showed a thermal melt curve with a monophasic transition, with a single

maximum in its derivatives, in the absence of amino acids (Fig 1B). The transition temperature

of melting (Tm) was determined by the derivative of the melt curve and estimated as

53.0 ± 0.07 ˚C. The addition of L-glutamine shifted the melt curves toward the higher tempera-

ture side and changed the curve profiles with apparently biphasic transitions, with two maxima

in their derivatives. In the biphasic melt curves in the presence of L-glutamine, the higher con-

centration of the ligand added, the higher temperature shifts were observed at the second (or

the right side) Tm, as the increase of Tm (ΔTm) of 8.7 ± 0.1 ˚C in the presence of 300 μM L-glu-

tamine, while the first (or the left side) Tm was observed as about 50 ˚C and did not exhibit

clear thermal shifts. The results indicated that a taste-substance amino acid binding to T1r2a/

T1r3LBD induces the thermal stabilization of the protein, at least at the structural portion

showing the melting transition at a higher temperature side observed at the second Tm.

DSF results displayed the binding of taste substance amino acid at the

orthosteric sites in T1r2a/T1r3LBD

Agonist-binding to the orthosteric sites in class C GPCRs is known to induce the conforma-

tional change of LBDs, either or both of the cleft closure of the VFTM architecture within a

subunit or the dimer rearrangement [14]. These conformational changes are considered to

induce receptor activation [25]. The crystallographic analyses of medaka T1r2a/T1r3LBD dis-

played that L-glutamine, alanine, arginine, glutamate, and glycine bind to the orthosteric sites

[11], and the binding actually induced the conformational change of the protein as judged by

Ligand binding of taste receptor analyzed by differential scanning fluorimetry
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FRET changes in accordance with the addition of the ligands [17]. In order to verify whether

the Tm shift observed by DSF monitors the ligand binding at the orthosteric sites, we compared

the DSF results in the presence of the above five amino acids with the reported results analyzed

by the FRET measurement.

All five amino acids previously confirmed the binding to T1r2a/T1r3LBD induced the ther-

mal stabilization of the protein, with changing the melt curve profiles as biphasic transitions

(Fig 2A). We plotted the Tm values (if the melt curves are biphasic, the second Tm values as

described above) in the presence of 8 or 9 different concentrations of amino acid in Fig 2B.

For comparison with the previous FRET results, the apparent dissociation constant (Kd-app)

for each amino acid was estimated using a simple thermodynamic model [22] (Table 1). The

Kd-app values determined by DSF showed fair agreement with EC50 values for the FRET

changes with the addition of the amino acids. The results suggest that the thermal stabilization

of T1r2a/T1r3LBD by the addition of amino acids detected by DSF is attributed to the ligand

bindings at the orthosteric sites.

T1r2a/T1r3LBD has a broad L-amino acid binding profile irrespective of

the physicochemical properties of their α-substituent groups

We extended the DSF analysis to the other amino acids to explore the ligand specificity of

T1r2a/T1r3LBD. Most of the L-amino acids tested induced the shifts of Tm toward the higher

temperatures (Fig 3 and S2 Fig). A wide array of L-amino acids, with various physicochemical

properties in terms of size, hydrophobicity/hydrophilicity, and charge, induced thermal stabili-

zation of the protein. The results clearly indicate the broad specificity of T1r2a/T1r3LBD to L-

amino acids. There are only two exceptions among those tested, L-aspartate and lysine, which

shifted the melt curves toward the lower temperature side (S2 Fig), thereby suggesting the ther-

mal destabilization of the protein.

In contrast to binding abilities of L-amino acids to T1r2a/T1r3, a representative D-amino

acid, D-alanine, did not induce a significant Tm shift by adding up to 10 mM, despite the fact

that its enantiomer L-alanine exhibited large Tm shifts (Figs 2 and 3). These results indicate

that the protein has specificity to L-amino acids, as observed on the conformation changes of

LBD indicated by FRET changes [11].

In order to verify the amino acid binding profiles of T1r2a/T1r3LBD observed by DSF

described above, the results were compared with the response assay using the full-length recep-

tor. The T1r2a/T1r3 receptor from O. latipes reportedly responds to a wide array of L-amino

acids [12]. We confirmed the broad specificity on L-amino acid responses of this receptor by

Table 1. Kd-app and EC50 values for the amino-acid binding to T1r2a/T1r3LBD estimated by different biophysical

methods.

Amino acid DSF

Kd-app (μM)†
FRET

EC50 (μM)‡

L-Gln 30.9 ± 5.8 11.5 ± 3.4

L-Ala 54.1 ± 24.5 141 ± 37

L-Arg 131 ± 66 190 ± 35

L-Glu 422 ± 211 1070 ± 382

Gly 3570 ± 4090 6180 ± 3320

†The values are fitted parameters ± s.e. to the equation curves reported in Schellman [22]. Six technical replicates for

L-glutamine and 4 technical replicates for the others were averaged and used for fitting.
‡The values are reported in Nuemket, Yasui, et al. [11].

https://doi.org/10.1371/journal.pone.0218909.t001
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use of the same gene clones used for the DSF analyses (AB925918 and AB925919; Fig 3B and

S2 Table). In contrast, D-alanine induced significantly weak responses compared to its enantio-

mer L-alanine (Fig 3B), as D-glutamine reported previously [11].

Because of the limitation of the experimental system, which does not allow full exploration

to high amino-acid concentrations to determine the EC50 values of low-affinity ligands [11],

the relationships between the DSF results and the response assay results were assessed by use

of a couple of alternative parameters. If we compared the observed Tm shifts (ΔTm) of the LBD

Fig 3. Amino-acid binding profiles of T1r2a/T1r3LBD, analyzed by DSF. (A) Thermal stabilization of T1r2a/T1r3LBD by the addition of various

amino acids. Average ΔTm in the presence of 0.1, 1, and 10 mM of each amino acid are shown. Error bars, s.e.m. (n = 4). (B) Responses of the T1r2a/

T1r3 full-length receptor to various amino acids in 5 or 10 mM concentration monitored as an elevation of intracellular Ca2+ elevation. The average

ΔRFU (difference in fluorescence intensity of the calcium indicator) and s.e.m. of 6 technical replicates for each amino acid are shown.

https://doi.org/10.1371/journal.pone.0218909.g003
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at 10 mM amino acid analyzed by DSF with the observed responses (ΔRFU) by addition of the

same ligand concentration, both values showed a moderate positive correlation (n = 18,

r = 0.700; S3 Fig). In addition, we estimated the binding affinities and the potencies of the

receptor responses from the DSF and the response assay results at a single concentration,

respectively (S1 and S2 Tables), and confirmed that the p-scaled values of both also showed a

moderate positive correlation (n = 15, r = 0.769 or n = 13, r = 0.748; S3 Fig). These results indi-

cated the correlation between the amino-acid binding profiles of T1r2a/T1r3LBD observed by

DSF and the receptor response profiles of the full-length T1r2a/T1r3 and confirmed the broad

amino-acid specificity of this protein.

In the DSF analyses, while most of the L-amino-acids induced thermal stabilization of

T1r2a/T2r3LBD, the extent of Tm shifts of each amino acid was varied, suggesting their differ-

ent affinities to the protein. In order to assess whether there are any determinant chemical

properties for the affinity to the protein, classical QSAR of amino acids were performed. The

relationship between the Kd-app values, determined above, with various parameters used in

classical QSAR, such as hydrophobicity, hydration, polarity, hydropathy, charge, and volume

of the substituent groups, was inspected (S1 and S3 Tables). However, as far as analyzed, no

equation showing a significant correlation with the affinities to T1r2a/T1r3LBD was obtained.

The result suggests that the amino acid specificity of T1r2a/T1r3LBD is unlikely governed by a

single or a combination of some physicochemical properties of a ligand but could be affected

by multiple structural and physicochemical factors of both the protein and the ligand.

Discussion

Chemosensory receptors, including taste receptors, are required to recognize a wide array of

chemicals in the environment. The crystal structure of T1r2a/T1r3LBD from O. latipes showed

that the orthosteric ligand-binding pockets shared favorable structural characteristics to

accommodate various amino acids [11]. In this study, we first verified a correlation between

the ligand-induced thermal stabilization of T1r2a/T1r3LBD analyzed by DSF and the ligand

binding to the orthosteric site at the LBD. Furthermore, we showed a broad amino acid spec-

trum of the binding capability by T1r2a/T1r3LBD. Consistent with the previous knowledge

about class C GPCR that the ligand binding at the orthosteric site induces receptor responses

[6], DSF results exhibited a correlation with amino acid responses analyzed by the calcium

influx assay using the full-length receptor.

Amino acid specificity of T1r2a/T1r3LBD

The DSF results showed the differences in the extent of Tm shifts induced by each amino acid,

indicating their different affinities. The results suggest that the manner of recognition of the α-

substituent groups of ligand amino acids by T1r2a/T1r3LBD is not identical but varied.

Indeed, it is intriguing that two pairs of basic or acidic amino acids, arginine and lysine or glu-

tamate and aspartate, gave opposite effects to the protein; the former thermally stabilized the

protein while the latter destabilized the protein (Fig 3A).

In this study, we could not find any significant quantitative relationships between the physi-

cochemical properties of the amino acids and their affinities with the protein. This is consistent

with the structural observation of the ligand binding-pocket in T1r2a/T1r3LBD: there are no

apparent structural characteristics or functional groups to determine specificity to the α-sub-

stituent groups of the bound amino acid in the protein, and the substituent groups of the dif-

ferent amino acids take different conformations [11]. Therefore it is likely that T1r2a/

T1r3LBD has multiple different manners of recognition of the α-substituent groups, and this

property is also favorable for achieving the broad amino-acid perceptibility.
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Another important structural characteristics of the ligand binding-pocket in T1r2a/

T1r3LBD is that the α-substituent groups of the bound amino acid are recognized in hydrated

states, and almost all interactions between the groups and the protein are made through water

molecules [11]. Similar interactions were observed on the bacterial periplasmic oligopeptide-

binding protein OppA, also able to bind peptides with widely varying amino acid sequences

[26]. An extensive thermodynamic analysis of OppA revealed that the peptide-protein interac-

tions clearly showed the enthalpy-entropy compensation phenomenon [26], where the

enthalpy and entropy changes by the interactions are correlated and give opposite effects on

the free energy [27]. A similar phenomenon might occur on T1r-amino acid binding and

could make the contributions of each physicochemical property of the ligand to the free energy

obscure.

However, it should be noted that the estimations of binding affinities in this study are indi-

rect and approximate. In addition, the reason why lysine or aspartate induced thermal destabi-

lization is unclear. Further structural and precise interaction analyses are required to elucidate

the determinant of the ligand specificity of the receptor.

Thermodynamic properties of T1r2a/T1r3LBD

The DSF results not only provide information about the ligand binding to T1r2a/T1r3LBD,

but also the thermodynamic properties of the protein itself. It is noteworthy that the protein

shows biphasic melt curves, highlighted by the presence of two maxima in their derivatives, in

the presence of a high concentration of amino acids (Figs 1 and 2, and S2 Fig). The profiles

contrast with a previous report that human and mouse T1r2LBD, prepared as a single subunit

by E. coli expression, showed two-state transitions between apo and ligand-bound forms by

differential scanning calorimetry (DSC), indicating monophasic melting of the protein [28].

Several cases showing biphasic unfolding characteristics were reported, such as high-affinity

ligand binding [29], an increase of the free ligand during the unfolding of the protein caused

by the release of the ligand from the denatured protein [30], and the presence of multiple

structural regions with lower and higher stabilities [31]. While the former two cases unlikely

occurred on T1r2a/T1r3LBD, because the biphasic features in those cases were observed at low

concentrations of the ligands, the last case might conform with this protein.

T1r2a/T1r3LBD is composed of multiple structural elements, potentially showing different

thermal stabilities: individual subunits, T1r2a and T1r3, which further consist of two subdo-

mains LB1 and LB2, with the orthosteric amino-acid binding sites in between the subdomains,

and the dimerization of the two subunits through intermolecular interaction between LB1 of

each subunit, further connected by an intermolecular disulfide bond at a loop region atop the

dimer [11]. The transition at the higher temperature side observed in this study, indicated as

the second Tm, likely reflected the unfolding accompanied with the destruction of the amino-

acid binding site determining the receptor specificity, because the extent of Tm shifts correlated

with the extent of the conformational change of the LBD and the receptor responses (Table 1

and Fig 3). The site is most probably the orthosteric site in T1r2aLBD because the orthosteric

amino-acid binding site in T1r2a shows discriminative ligand recognition manners compared

to that in T1r3, although the latter site also shares amino-acid binding capability as observed

in the crystallographic analysis [11]. However, since this transition was observed as a single

phase, it is difficult to distinguish the effects of the ligand binding at the sites in T1r2aLBD and

T1r3LBD separately. Therefore, it is also possible that the destructions of the binding sites in

the two subunits occur independently but overlapped in the analyses, or occur cooperatively.

On the other hand, because the transition at the lower temperature side did not show the

thermal stabilization associated with the addition of amino acid, it is unlikely associated with
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the destruction of the known amino-acid binding sites in T1r2a/T1r3LBD. We speculate that

one of the candidate events related to this transition might be dimer decomposition. It has

been reported that the extracellular domain of another class C GPCR, metabotropic glutamate

receptor 2 dimer, is in a fast dynamic exchange between different conformational states

regardless of the presence of agonist or antagonist, although the ligands change the conforma-

tional equilibriums [32], as is also observed in other GPCRs [33]. If the decomposition of the

dimerization of T1r2aLBD and T1r3LBD is triggered not by a certain conformational state but

by conformational exchange, then the speculation is in accord with the DSF results. The specu-

lation is also in accord with the previous observation that a single subunit of T1r2LBD showed

monophasic melting profiles [28].

Future applicability to taste assays

From a practical point of view, this study indicates the future applicability of DSF to a quanti-

tative assay method for taste substances that induce gustation by T1r receptors, i.e., sweet and

umami. Effective assay methods to evaluate taste qualities and intensities are required for basic

taste research in academia as well as for new taste-substance development in food industries.

Currently, taste evaluation in these industries is mainly dependent on rating by human partici-

pants. Such sensory evaluations are scientifically verified by in vivo animal behavior tests or in
vitro analyses as calcium influx assays using receptor-expressing cells with cytosolic calcium

indicators or biomimetic sensors specialized to the detection of taste substances in research

institutes, which are equipped with special devices or facilities that are required for the analy-

ses. Compared to these methods, protein-based binding assays are advantageous to feasibility,

reproducibility, and scalability. So far, protein-based assays of T1rs were attempted by the use

of single subunit T1rLBDs obtained by refolding inclusion bodies expressed in E. coli, and they

were applied to intrinsic tryptophan fluorescence measurement, circular dichroism measure-

ment, isothermal titration calorimetry (ITC), NMR, and DSC [28, 34, 35]. We applied T1r2a/

T1r3LBD from O. latipes, a sole T1rLBD heterodimer protein amenable for recombinant pro-

tein preparation at present, to ITC and a FRET analysis previously [11, 17]. However, all of

these methods are either sample or time consuming, and not trivial. In contrast, DSF can serve

as a high-throughput binding assay by comparing the relative extent of the thermal stabiliza-

tion of the protein.

However, a couple of points should be kept in mind for applying the method for an actual

taste assay. The target site for some taste substances or inhibitors for T1rs, such as a sweet pro-

tein brazzein, cyclamate, and lactisole, are known to bind to the sites other than LBD of T1rs,

such as transmembrane domain or the cysteine-rich domain, the downstream region of LBD

at the extracellular side [10, 36, 37]. In such cases, the ligand binding is unable to be detected

by DSF using LBD. In addition, since there are no known antagonists for T1r2a/T1r3 from O.

latipes, we could not test whether agonists and antagonists can be distinguished by the use of

DSF results. Various types of actions of amino acids, such as allosteric or inhibitory actions,

might underlie a non-strict correlation between the ligand binding and receptor responses

observed in this study, in addition to the situation that the comparisons were performed with

the alternative or estimated values.

Nevertheless, DSF using T1rLBD is expected to serve as an effective screening method to

find chemicals potentially serving as taste substances for T1rs at the first stage of research, fol-

lowed by further analyses to clarify their actual activities. Since the binding manner of taste

substances at the orthosteric site in LBD is likely common to T1rs, the method may be useful

for sweet or umami substance screening if recombinant protein preparation of human

T1rLBD is achieved in future.
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Supporting information

S1 Fig. Confirmation of the thermal stabilization of T1r2a/T1r3LBD in 20 mM HEPES--

NaOH, 300 mM NaCl, 2 mM CaCl2, pH 7.5. The average ΔTm of T1r2a/T1r3LBD in the pres-

ence of 0.1, 1, and 10 mM of L-glutamine, L-alanine, and D-alanine are shown. Error bars, s.e.

m. (n = 4). The T0 in this condition was determined as 56.3 ± 0.06 ˚C (n = 12). Please also see

Fig 3A.

(PDF)

S2 Fig. Thermal melt curves of T1r2a/T1r3LBD (top) and their derivatives (bottom) in the

presence of 0.1, 1, and 10 mM of amino acids measured by DSF.

(PDF)

S3 Fig. Correlation between the DSF results and the response assay results. (A) The thermal

stabilization of LBD in the presence of 10 mM of amino acid, shown in ΔTm, is plotted on the

full-length receptor responses to the same concentration of amino acid, shown in ΔRFU. (B)

The affinities to the LBD estimated by the DSF (pKd-app = log 1/Kd-app) were plotted on the

estimated amino acid potencies for the receptor activation (pEC50-est = log 1/EC50-est, esti-

mated from the responses at 10 mM concentration). (C) The affinities to the LBD estimated by

the DSF (pKd-app) were plotted on the estimated amino acid potencies for the receptor activa-

tion (pEC50-est, estimated from the responses at 5 mM concentration).

(PDF)

S1 Table. ΔTm and derived Kd-app values estimated from the DSF results of T1r2a/T13LBD

at a single ligand concentration.

(PDF)

S2 Table. ΔRFU and derived EC50-est values derived from the response assay of T1r2a/T13.

(PDF)

S3 Table. Affinities to mfT1r2a/T1r3LBD derived from the DSF results and physicochemi-

cal parameters for the α-substituent group of amino acids.

(PDF)
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