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Abstract

Purpose of review: The influence of environmental factors on Type 2 diabetes (T2D) risk is 

now well recognized and highlights the contribution of epigenetic mechanisms. This review will 

focus on the role of epigenetic factors in the risk and pathogenesis of T2D.

Recent findings: Epigenetic dysregulation has emerged as a key mechanism underpinning the 

pathogenesis of T2D and its complications. Environmental variations, including alterations in 

lifestyle, nutrition, and metabolic demands during prenatal and postnatal life, can induce 

epigenetic changes that may impact glucose homeostasis and the function of different metabolic 

organs. Accumulating data continues to uncover the specific pathways that are epigenetically 

dysregulated in T2D, providing an opportunity for therapeutic targeting.

Summary: Environmental changes can disrupt specific epigenetic mechanisms underlying 

metabolic homeostasis, thus contributing to T2D pathogenesis. Such epigenetic changes can be 

transmitted to the next generation, contributing to the inheritance of T2D risk. Recent advances in 

epigenome wide association studies and epigenetic editing tools presents the attractive possibility 

of identifying epimutations associated with T2D, correcting specific epigenetic alterations, and 

designing novel epigenetic biomarkers and interventions for T2D.
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Introduction

Type 2 diabetes (T2D) is defined by hyperglycemia, and results from metabolic syndrome 

and inadequate insulin availability in response to relative insulin resistance. T2D is fast 

turning into a global pandemic [1]. T2D and chronic hyperglycemia can also lead to 

significantly increased rates of multiple micro- and macrovascular complications such as 

retinopathy, nephropathy and neuropathy, as well as atherosclerosis [2, 3].

T2D pathogenesis has a strong hereditary component, such that family history of disease 

confers a much higher risk of developing T2D [4, 5]. This recognition has led to an intense 

search for genetic factors responsible for T2D pathogenesis. While genome-wide association 

studies have identified multiple loci associated with T2D risk [6], genetic factors account for 

only a small fraction of diabetes associated with family history [7]. Furthermore, adult-onset 

diabetes was recently recognized to be a heterogeneous disease with five subgroups differing 

in disease progression and complications risk [8]. The incidence of T2D has increased 

drastically in the past few decades, coincident with the increase in food availability, 

sedentary lifestyle, and obesity [9]. However, this time span is unlikely to cause significant 

changes in the human genome. Altogether, this points to a strong influence of environmental 

factors and gene-environment interactions on obesity and T2D risk [10].

The effect of environmental factors including diet, physical activity, circadian rhythms, 

stress, temperature etc. on gene expression can be mediated by epigenetic mechanisms, 

which dictate how cells respond and adapt to their environment [11]. Epigenetic changes 

refer to mitotically or meiotically heritable changes in gene function without alterations in 

the underlying DNA sequence. Epigenetic regulation of gene expression occurs through 

changes in chromatin accessibility, mediated by the individual or combinatorial involvement 

of multiple mechanisms such as DNA cytosine methylation, histone post-translational 

modifications, and noncoding RNAs [3, 12]. Environmental changes can drive transient or 

persistent changes in the epigenome, which may alter gene expression and cellular 

phenotypes. For example, metabolic variations can directly alter the epigenome, given that 

many enzymatic regulators of epigenetic modifications require metabolic intermediates as 

cofactors [13]. Epigenetic mechanisms play a critical role in governing the expression of key 

genes involved in the development and homeostasis of metabolic organs, such as the 

pancreatic insulin-producing beta cells [14]. An altered metabolic state can thus affect the 

epigenome and phenotype of different organs, and contribute to the development of T2D and 

its multiple peripheral complications [3]. The present review focuses on the epigenetic basis 

of glucose homeostasis in health and diabetes, and potential implications for epigenetic 

biomarkers and therapies.

Developmental origins of T2D risk: the contribution of epigenetics

A strong case for the involvement of epigenetic factors in T2D is made by studies on the 

effect of maternal and intrauterine nutrition and growth retardation on diabetes development 

in multiple species [15]. Studies on the Dutch Hunger Winter famine have shown that 

intrauterine malnutrition and low birth weight leads to an increased likelihood for 

developing diabetes in subsequent generations [16]. This phenomenon, referred to as the 
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“thrifty phenotype hypothesis”, proposes that under-nutrition during development leads to 

permanent changes in glucose homeostasis [17]. Similarly, maternal over-nutrition (such as a 

high-fat diet) and gestational diabetes can also adversely affect the metabolic health of the 

offspring [15]. Impaired glucose homeostasis in the parent has been shown to alter the 

metabolic program in the offspring coincident with very specific epigenetic changes, 

suggesting an epigenetic basis for the transmission of metabolic disease risk [16, 18, 19]. 

Thus, factors such as poor maternal health, as well as over- and under-nutrition during the 

fetal and postnatal growth phase can impact the development and function of key metabolic 

organs, and predispose the offspring to metabolic syndrome and diabetes in early or later life 

[11, 15]. Environmentally induced epigenetic alterations can also occur in the germline, and 

may therefore be potentially transmitted to subsequent generations, contributing to the 

(epigenetic) inheritance of diabetes risk (reviewed in [20]).

While the contribution of maternal health to disease risk in the offspring is well recognized 

(reviewed in [15]), recent data suggest that the epigenome of male germ cells is also altered 

by nutritional imbalance during intrauterine life [21], and can influence gene regulation 

during the development of the offspring. Paternal diet has been shown to influence 

cholesterol and lipid metabolism in the offspring [18]. Over- and under-nutrition, as well 

obesity in the paternal generation leads to reprogramming of the sperm epigenome, resulting 

in a trans-generational influence on metabolic homeostasis in the offspring [22, 23]. These 

studies suggest that parental metabolic environment and lifestyle can induce 

transgenerational changes in epigenome and metabolic fitness. Disturbances in the 

epigenetic regulation of imprinted genes (genes with differential allelic regulation based on 

parental origin) can further dictate the pattern of inheritance of diabetes risk [24]. Epigenetic 

factors may therefore not only mediate the effect of environmental factors on the 

development of T2D and its various complications, but also contribute to the transmission of 

disease risk to subsequent generations (Figure 1).

Epigenetic mechanisms of beta cell homeostasis and failure

Failure of beta cells to compensate for insulin resistance is central to the pathogenesis of 

T2D, and involves the progressive impairment of beta-cell identity, function, and survival. 

These aspects of beta cell homeostasis are governed by epigenetic mechanisms (reviewed in 

[14]), suggesting that epigenetic changes driven by adverse metabolic environment can 

potentially induce beta cell failure. A large body of evidence shows that stage-specific 

patterning of DNA methylation, histone modifications, and chromatin architecture is 

essential for pancreas lineage specification and endocrine differentiation [25–28]. Studies 

using human embryonic stem-cell differentiation have shown that epigenetic priming of 

lineage-specific enhancers dictates the stage-specific developmental competence and 

response to inductive signals throughout pancreatic differentiation [29].

Epigenetic regulation also plays a pivotal role in the establishment and maintenance of 

cellular identity and functional maturity of beta cells. DNA methylation patterning regulates 

the alpha-versus beta-cell fate choice by repressing the expression of the alpha-cell lineage 

determining transcription factor Arx in beta cells [30]. The DNA methyltransferase Dnmt1 

maintains the methylated and repressed state of Arx locus during beta cell replication. 
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Accordingly, loss of Dnmt1 in beta cells leads to induction of Arx expression due to 

promoter de-methylation, driving the trans-differentiation of beta-to alpha-cells [31]. DNA 

methylation also serves to establish the metabolic program that allows the establishment of 

glucose-stimulated insulin secretion (GSIS) in postnatal beta cells towards a functionally 

mature beta-cell phenotype [32]. A comparison of human alpha- and beta-cell DNA 

methylation profiles shows that differential methylation patterns are largely concentrated in 

enhancer regions, indicating putative roles of these regions in regulating cell identity [33]. 

Epigenetic regulation via micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) has 

also been implicated in islet development and functional maturation [34–36]. Mice lacking 

the miRNA processing enzyme Dicer in the pancreatic, endocrine, or beta cell lineages 

display severe beta cell deficits [37, 38]. In addition, changes in the beta-cell miRNA 

landscape in response to postnatal nutrient shifts are essential for beta cell functional 

maturation [39]. Similarly, the lncRNA blinc1 regulates beta-cell differentiation and function 

through its effect on specific islet transcription factors located in its genomic neighborhood 

[40]. Epigenetic mechanisms also control beta cell replication and expansion during 

postnatal growth, adaptation, and aging via the regulation of cell-cycle inhibitors such as 

p27Kip1 and p16Ink4a, and pro-replication imprinted genes such as the maternally imprinted 

lncRNA H19 [41–44]. The replicative and adaptive capacity of beta cells declines with age. 

Epigenetic regulation of p16Ink4a expression is also central to the Platelet Derived Growth 

Factor (PDGF) and Transforming Growth Factor-beta (TGF-beta) dependent control of age-

related changes in beta cell replication [45, 46]. Furthermore, aging induces profound beta 

cell specific changes in the epigenetic states of genes involved in beta cell replication and 

function, such as Cdkn1a, Ccnd3, Plk1, Abcc8, and Kcnj11 [47]. Aging is a well-known risk 

factor for T2D, and it is likely that the age-dependent epigenetic changes in beta cell 

homeostasis play an instrumental role in this process.

The significance of epigenetic regulation of islet homeostasis is further highlighted by 

imprinting disorders such as the Beckwith-Wiedemann Syndrome (BWS) and Transient 

Neonatal Diabetes Mellitus (TNDM) (reviewed in [48]). In BWS, imprinting defects lead to 

lack of cell-cycle inhibitor CDKN1C (p57Kip2), leading to unrestrained beta cell 

proliferation, and consequent excessive beta cell mass, hyperinsulinemia, and hypoglycemia. 

Similarly, in TNDM, imprinting defects lead to the overexpression of two genes, namely 

ZAC and HYMAI, leading to hypoinsulinemia in neonatal life, which resolves subsequently 

[48]. Variants of imprinted genes GRB10 (regulates insulin signaling) and KCNQ1 (K
+channel subunit, regulates insulin secretion) are also associated with increased T2D risk 

[49, 50], and islets from human subjects with T2D display differential methylation of 

KCNQ1 [51]. Human islets from donors with T2D display altered imprinting of the DLK1-
MEG3 locus, which has important pathophysiological consequences. Hypermethylation of 

the MEG3 promoter in T2D islets leads to downregulation of a cluster of miRNAs which 

regulate genes involved in beta cell function and survival [52]. Locus-specific changes in 

histone modifications in T2D islets de-repress Neuropeptide Y (NPY) in beta cells, leading 

to impaired function. NPY is abundant in neonatal beta-cells, and is epigenetically repressed 

in beta cells during their functional maturation. Epigenetic dysregulation of NPY in diabetic 

beta cells leads them to resemble the functionally immature fetal beta cells [53]. These data, 

combined with the role of epigenetic mechanisms in beta cell identity, suggest that 
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epigenetic dysregulation plays an important role in the loss of mature beta cell identity in 

diabetes, a phenomenon referred to as de-differentiation [54]. Recent work demonstrating 

the role of polycomb repressive complex 2 (PRC2)-dependent epigenetic regulation in beta 

cell identity, and the loss of PRC2-dependent gene repression in T2D islets further supports 

this idea [55].

A combination of sophisticated high-throughput sequencing techniques and powerful 

integrative data analysis approaches has led to a surge of epigenome-wide association 

studies (EWAS) in T2D cohorts to gain more insights into disease pathology [56–58]. 

Studies focusing on genome-wide profiling of DNA methylation in human islets from 

control and T2D donors show large-scale, but specific changes in the islet methylome in 

diabetes, translating into differential expression of loci critical for insulin secretion, 

adaptation, and survival [51, 59, 60]. Importantly, motifs for key islet transcription factors 

such as MAFA, PDX1, and RFX6, are enriched within the differentially methylated regions 

in T2D islets, suggesting dysregulation of islet transcriptional networks. These data indicate 

that epigenetic changes in diabetic islets lead are at least in part responsible for defects in 

beta cell function and survival in T2D (Table 1). Furthermore, environmentally induced 

epigenetic changes in the islets can be perpetuated trans-generationally, leading to increased 

T2D risk (reviewed in [15]). For example, the epigenetic landscape of genes related to beta-

cell replication, function, and survival undergo profound changes in the progeny exposed to 

intrauterine growth retardation (IUGR) [61]. Altogether, these studies support the view that 

epigenetic alterations underlie beta cell defects in T2D, can be triggered by environmental 

factors, and transmitted to subsequent generations, contributing to T2D risk.

Epigenetics of insulin resistance: the effect of obesity and metabolic health

The postprandial release of insulin ensures metabolic homeostasis by promoting nutrient 

uptake and storage in several tissues. Insulin promotes muscle glucose uptake, hepatic 

glycogen synthesis, and triglyceride synthesis, and suppresses lipolysis in adipose tissue. 

Insulin resistance refers to the impairment of such peripheral cellular responses to insulin, 

and can result from obesity, metabolic syndrome and chronic over-nutrition [62]. 

Epigenome-wide profiling has been very informative in elucidating novel epigenetic 

mechanisms underlying insulin resistance across metabolic tissues, especially in the context 

of obesity (Table 1). Recent EWAS data show that body mass index (BMI; a key measure of 

adiposity), is associated with large-scale changes in DNA methylation patterns in 

lymphocytes [63]. Additional EWAS studies using blood genomic DNA from various 

cohorts have demonstrated key DNA methylated sites associated with T2D, fasting blood 

glucose and HbA1c levels [64].

DNA methylation profiling of adipose tissue shows that the differentially methylated regions 

associated with obesity mark genes involved in lipid and lipoprotein metabolism, nutrient 

transport, inflammation, and T2D risk, and such alterations in the DNA methylation patterns 

are predictive of future development of T2D [65–67]. High throughput analysis of DNA 

methylation in adipose samples from patients pre- and post-gastric bypass surgery identified 

obesity-related differentially methylated regions that overlapped with 27 genetic T2D risk 

loci, implicating a cross-talk between genetics and epigenetic risk factors [68]. These data 
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suggest that the epigenome is highly sensitive to body weight changes in either direction, 

and such epigenetic changes may be predictive of T2D risk. The importance of DNA 

methylation in metabolic homeostasis is further underscored by recent data implicating the 

DNA methyltransferase Dnmt3a in regulating insulin sensitivity in adipose tissue [69]. 

Epigenomic profiling of multiple histone modifications has also been instrumental in the 

identification of key enhancer elements and nuclear receptor pathways (glucocorticoid and 

vitamin D receptor) that drive insulin resistance in adipocytes, in response to cues such as 

steroid exposure and inflammation [70].

Studies using epigenetic and transcriptomic analysis of skeletal muscle in the context of 

newly diagnosed T2D and a family history of T2D show key differences in the muscle 

transcriptional program and insulin signaling, with some of the differentially regulated 

regions associated with T2D risk SNPs [71, 72]. Diet-induced obesity in the grand-paternal 

generation can lead to the transgenerational reprogramming of unfolded protein response 

(UPR) in skeletal muscle in the F2 (grand-child) generation [73].

The liver epigenome is also sensitive to obesity and hyperglycemia, as shown by large-scale 

epigenetic profiling. Obesity and T2D are associated with methylation changes at regions 

associated with T2D risk, and reprogram the liver epigenome towards increased glycolysis 

and lipolysis, which may promote the development of insulin resistance [74].

Collectively, these studies point to epigenetic dysregulation across multiple tissues as an 

underlying phenomenon in insulin resistance and T2D. Furthermore, they suggest that loci 

affected by both genetic and epigenetic changes may have a higher association with disease 

risk, or that epigenetics may confer functionality/causality to disease-related SNPs.

Epigenetics as a mediator of environmental influences on T2D risk

Changes in diet, including the fat content and composition have a strong impact on the 

adipose and muscle epigenome, especially at regions associated with metabolism [75, 76]. 

Besides diet, other environmental factors such as seasonal variation, exercise, and sleep can 

also shape the epigenome and metabolic homeostasis. Variations in temperature, such as 

heat or coldexposure, have been shown to change the epigenome and phenotype of beige 

adipocytes, to allow metabolic adaptation to temperature changes [77]. Cold exposure also 

induces epigenetic reprogramming in the sperm, with the offspring showing improved 

adaptation to over-nutrition and hypothermia [78]. Lifestyle interventions such as acute and 

chronic exercise lead to reprogramming of the DNA methylome in subcutaneous white 

adipose tissue (sWAT) and skeletal muscle in sedentary humans, affecting several genes 

involved in regulating adipogenesis, mitochondrial function, contraction, and inflammation 

[71, 79, 80]. Circadian rhythm is another critical environmental factor that directly affects 

the epigenome, as exemplified by the inherent histone acetyltransferase (HAT) activity of 

CLOCK (a core molecular component of the circadian clock). There is a strong link between 

metabolic and nutrient shifts, circadian clock, and epigenome, such that the feeding-fasting 

behavior regulates circadian gene-expression patterns to adapt to the diurnal variations in 

nutrient availability (reviewed in [81]). For example, an RNA-binding protein NONO serves 

as a novel epigenetic regulator of genes involved in glucose and lipid metabolism in the liver 
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in response to nutrient availability [82]. The link between circadian clock and metabolism is 

further strengthened by data showing that circadian disruption is a major risk factor for T2D 

[83]. In line with this, time restricted feeding has been shown to prevent metabolic syndrome 

in mice harboring disruptions in the clock machinery [84]. Thus, circadian disruption can 

alter the cellular metabolic and epigenetic landscape, and consequently impair adaptation to 

nutrient availability, predisposing to an increased risk of T2D. Together, these studies show 

that adverse environmental and lifestyle changes can contribute to T2D pathogenesis as well 

as the inheritance of T2D risk [85] (Figure 1).

Epigenetic dysregulation as a mediator of diabetes complications

A significant number of patients with T2D develop serious secondary health problems that 

can severely impair quality of life, and increase morbidity and mortality. These include 

microvascular complications such as retinopathy, nephropathy and neuropathy, and 

macrovascular diseases such as atherosclerosis and hypertension [3]. Hyperglycemia and 

consequent metabolic dysregulation is one of the major triggers for vascular complications 

of diabetes, and can lead to vascular damage through multiple pathways, such as increased 

cellular stress, accumulation of advanced glycation end-products (AGEs), dysregulation of 

profibrotic and inflammatory pathways downstream of Transforming growth factor-beta 

(TGF-β, NF-κB, and angiotensin-II (AngII) [2]. These cellular alterations lead to 

upregulation of genes involved in growth, inflammation, apoptosis, and fibrosis resulting in 

endothelial dysfunction, vascular smooth muscle and renal cell growth and fibrosis, 

macrophage infiltration, inflammation and ultimately to multiple complications across 

different organs [2].

Epigenetic profiling studies have enhanced our understanding of the mechanisms underlying 

diabetes-related complications (reviewed in [3, 86], summarized in Table 2). A comparison 

of genome-wide DNA methylation data from renal tubules in humans with chronic kidney 

disease including diabetic nephropathy and control subjects shows significant differences in 

DNA methylation at loci involved in fibrosis [87], highlighting the significance of epigenetic 

dysregulation in diabetic nephropathy. Furthermore, EWAS of DNA methylation in human 

peripheral blood samples show specific and predictive changes in DNA methylation 

associated with the decline of renal function in diabetic nephropathy [88, 89]. TGF-β 
signaling plays a crucial pathologic role in diabetic nephropathy, and both DNA methylation 

and key histone modifications have been implicated in driving TGF-β dependent activation 

of genes associated with renal fibrosis (reviewed in [3, 86]). Enrichment of activating 

histone modifications at promoters of fibrotic genes associated with diabetic nephropathy are 

also observed in vivo in rodent models of diabetes [3]. A high glucose milieu has been 

shown to disrupt the DNA methylation patterns of key loci involved in endothelial and 

neuronal complications, in primary vascular cells and Schwann cells, respectively [90, 91]. 

Epigenetic dysregulation is also implicated in the disruption of redox homeostasis, 

extracellular matrix, and inflammation in retinal endothelial cells (RECs), in a model of 

diabetic retinopathy [92]. Genome-wide comparison of activating and repressive histone 

marks in monocytes cultured under high glucose conditions as well as monocytes from 

diabetic patients with controls further highlights large-scale changes in the epigenome in 

diabetes [93]. Similarly, in vascular smooth muscle cells (VSMCs), epigenetic changes in 
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key histone modifications mediate the upregulation of inflammatory gene expression in 

response to hyperglycemic conditions in vitro and in mouse models of T2D [94].

Non-coding RNAs (miRNAs and lncRNAs) have also been identified as key epigenetic 

players in the development of diabetes complications (reviewed in [86, 95–97]). For 

example, the miR-216/miR-217 cluster promotes TGF-β dependent activation of Akt kinase 

and subsequent changes in extracellular matrix (ECM) gene expression and hypertrophy in 

mesangial cells by targeting PTEN (an inhibitor of Akt) [98]. Endoplasmic reticulum (ER)-

stress induces lnc-MGC in mesangial cells treated with high glucose or TGF-β, as well as in 

the glomeruli of diabetic mice to mediate early events in diabetic nephropathy [99]. 

Similarly, upregulation of lncRNA Dnm3os in the macrophages of diabetic mice, as well as 

in monocytes from patients with T2D promotes inflammatory gene expression. Dnm3os 

interacts with the nucleolar protein, nucleolin, in macrophages and disruption of this 

interaction under diabetic conditions allows Dnm3os to enhance histone H3K9 acetylation at 

promoters of target inflammatory genes [100]. In VSMC, AngII, which is associated with 

numerous diabetic vascular complications, activates enhancers and super-enhancers 

associated with target genes, including lncRNAs, related to VSMC dysfunction [101]. In rat 

and human VSMCs, AngII also upregulates a novel lncRNA Giver which induces VSMC 

growth and oxidant stress [102]. Together these studies illustrate the emerging importance of 

lncRNAs in diabetic complications, as well the epigenetic cross talk between the non-coding 

RNA and chromatin layers.

The importance of epigenetic regulation in the pathogenesis of diabetes complications is 

also evident from the phenomenon of metabolic memory, which underlies the long-term 

protection from intensive glycemic control, or conversely the continued progression of 

diabetes complications even upon achieving glycemic control. Metabolic memory refers to 

the observation that cells somehow retain the memory of prior exposure to hyperglycemic 

milieu, even after normoglycemia is attained. This phenomenon has been observed in 

experimental models as well as in clinical trials such as the Diabetes Control and 

Complications Trial (DCCT), and the long-term follow-up observational Epidemiology of 

Diabetes Interventions and Complications (EDIC) study [3, 103]. Even though all subjects 

maintained similar intensive glycemic control (HbA1c) in the EDIC phase, those with prior 

history of conventional glycemic control during the DCCT phase had higher risk of 

developing diabetes complications compared to subjects who received intensive glycemic 

control throughout [103]. Studies in T2D patients have similarly demonstrated that the 

benefits of intensive glycemic control lasted long after the completion of such a regimen 

[104]. These data suggest that epigenetic alterations conferred by prolonged exposure to 

hyperglycemic milieu may be responsible for the metabolic memory of dysfunction in target 

tissues. Accordingly, epigenetic profiling of multiple histone modifications and DNA 

methylation in blood monocytes from the DCCT/EDIC cohorts demonstrates clear 

epigenetic differences at key genes involved in inflammation between subjects on 

conventional control vs. intensive control [3, 105]. Notably, DNA methylation profiling of 

whole blood genomic DNA collected at the end of DCCT (~1993) and monocyte DNA 

collected ~17 years later during EDIC from the same patient demonstrated a persistence of 

DNA methylation at key loci, including those associated with complications, supporting a 

close connection between epigenetics and metabolic memory [106]. In summary, changes in 
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the metabolic environment of a cell can drive changes in the epigenome possibly as an 

adaptive mechanism. However, such changes can epigenetically program the cells to sustain 

and continue to dictate the cellular response, even after the initial metabolic assault has 

ceased (Figure 2). A clearer understanding of epigenetic adaptive responses and the 

mechanisms that serve to maintain them will be essential to design therapeutic protocols that 

address the issue of metabolic memory.

Epigenetic biomarkers and therapies

Development of biomarkers for T2D is a challenging task, and demands practical, non-

invasive methods, such as those using peripheral blood samples, that have minimal adverse 

impact on the patient. An ideal blood-based biomarker candidate would be a stable 

molecular species that can be reliably detected, and accurately reflect disease initiation/

progression related molecular alterations in the affected tissue(s). Cell-free DNA is released 

into the bloodstream through cell death, necrosis, or active secretion in the body, and can 

mirror tissue changes during disease pathogenesis. Cell-free DNA is highly stable, and the 

epigenetic signatures of these DNA fragments faithfully mirror their tissue-of-origin [107, 

108]. The epigenetic profiles of cell-free DNA in the peripheral blood can therefore be 

potentially used as biomarkers to detect tissue specific epigenetic changes in disease 

conditions. Several studies have demonstrated that beta-cell death can be detected by 

assaying for beta-cell specific DNA methylation patterns of genes such as INS in circulating 

DNA [109, 110]. While these approaches have primarily focused on type 1 diabetes (T1D), 

they may be useful in T2D, as well as highlighted by recent data demonstrating that the 

DNA methylation changes associated with T2D in beta cells and peripheral insulin sensitive 

tissues are reliably captured in circulating DNA [111, 112].

miRNAs represent another molecular species that can be found stably circulating in the 

serum, and their profiles undergo changes in response to pathological conditions, including 

T2D [97]. For example, the serum levels of miR-192 and miR-193b are increased in pre-

diabetic human subjects [113], while levels of miR-155 are downregulated in T2D [114]. 

Circulating miRNAs are often present in exosomes, and shown to be involved in cell-cell 

communication in metabolic homeostasis, insulin sensitivity, and T2D pathogenesis [115]. 

Exosomes containing obesity-associated miRNAs can induce glucose intolerance in lean 

mice, highlighting their relevance to T2D [116]. Thus, disease-specific epigenetic 

mechanisms not only serve as a highly promising avenue for biomarker development, but 

also as potential therapeutic targets for T2D.

Approaches that target epigenetic marks such as DNA methylation and chromatin 

modifications systemically have been successfully used for cancer therapeutics, and are now 

beginning to be considered for diabetes. Among these, inhibitors of the bromodomain 

proteins (BRDs) have shown much promise for cancer and inflammatory disease 

therapeutics, and have been used in the context of autoimmune diabetes in mice [117]. Given 

the importance of BRD proteins in metabolic homeostasis [118], BRD inhibitors also hold 

promise for T2D therapy. Of relevance to beta-cell replacement strategies, BRD inhibitors 

have been shown to promote pancreatic endocrine differentiation from stem cells [119]. 

However, drugs such as BRD inhibitors which target a whole class of epigenetic regulators, 
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may not be the most optimal avenue for therapeutic use, given the potential for side effects. 

The development of more selective BRD inhibitors is warranted to address these concerns, 

but will have to await clearer understanding of how individual BRD proteins regulate 

different aspects of metabolic homeostasis.

Recent advances in gene-editing using CRISPR/Cas9 and TALEN systems have now made it 

possible to tailor the epigenetic patterns at specific genomic regions, and thus potentially 

correct disease-specific epigenetic changes. Such locus-specific epigenetic tailoring can be 

used to target DNA methylation or demethylation, as well as alter chromatin structure [120]. 

A recent study used this approach to drive human beta-cell proliferation by tailoring the 

DNA methylation pattern of an imprinted cell-cycle inhibitor gene CDKN1C [121]. As 

discussed earlier, hypo-methylation at the CDKN1C locus in patients with BWS leads to 

reduced levels of p57Kip2, resulting in beta-cell hyperproliferation. By targeting the DNA 

demethylase TET1 to CDKN1C to tailor a locus-specific epigenetic milieu reminiscent of 

the BWS beta-cells, this study successfully induced replication of adult human beta-cells. 

Similarly, CRISPR/Cas9 based targeting of DNA methyltransferase Dnmt3a to drive the 

DNA methylation and repression of alpha-cell fate determinant gene Arx in the developing 

pancreatic progenitors has recently been used to promote beta-cell lineage [122]. In a 

slightly different approach, a CRISPR/Cas9 trans epigenetic remodeling system was 

employed to transcriptionally activate target genes in vivo by recruiting specific 

transcriptional machinery and modulating histone marks, rather than editing DNA 

sequences. This strategy was used to alter cell fates by inducing trans-differentiation factors, 

e.g. alter liver cells to an insulin expressing, “beta-cell like” phenotype by ectopically 

expressing Pdx1 [123].

Non-coding RNAs such as miRNAs and lncRNAs have also been widely studied as potential 

epigenetic therapeutic targets in T2D and its complications [86, 96]. For example, locked 

nucleic acid (LNA) modified oligonucleotide mediated inhibition of miR-192 or lnc-MGC 
attenuates features of early diabetic nephropathy in mice [96, 99]. Similarly, CRISPR/Cas9 

based targeting of key enhancers regulated by AngII has been shown to ameliorate 

angiotensin-dependent gene expression (including lncRNAs) in VSMCs related to 

hypertensive phenotypes [101]. These studies collectively illustrate the potential therapeutic 

benefits of targeting the epigenetic landscape of specific loci involved in metabolic tissues 

homeostasis or T2D pathogenesis.

Conclusions

Together these reports illustrate the contribution of epigenetic factors to the pathogenesis 

and complications of T2D, as well as the inheritance of T2D risk across generations. 

Comprehensive epigenetic profiling and EWAS show that T2D pathogenesis is marked by 

highly specific epigenetic changes in distinct gene categories involved in cell identity, 

function, inflammation etc. across target organs. Combining EWAS with GWAS candidates 

for T2D can significantly enhance the identification of putative causal variants for further 

experimental validation. It is likely that variations in the macro and micro-environmental 

factors such as light/dark cycle, temperature, diet, activity, metabolism, cellular-stress etc. 

initially induce epigenetic changes as a means of adaptation. How sustained exposure to 
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“adverse” environmental milieu leads to a failure of epigenetic regulation (Figure 1) and 

whether lifestyle changes such as exercise and improved diet can reverse pathological 

changes remains to be determined. Are there some regions of the genome that are more 

vulnerable to environmental changes? If so, what determines the epigenetic plasticity of any 

genomic region, and are such regions amenable to therapeutic interventions? Elucidation of 

the molecular basis of epigenetic dysregulation in T2D will not only inform our 

understanding of adaptive mechanisms in metabolic tissues, disease pathogenesis, and 

inheritance of disease risk, but will also guide the development of innovative epigenetic 

biomarkers and therapies. Modulation of the enzymatic regulators of epigenetic marks using 

small molecule drugs is being pursued with great interest for addressing different aspects of 

T2D pathology. Such approaches, however, often suffer from off-target effects, and require 

the development of more specific small molecule agents and tissue specific delivery methods 

to become therapeutically successful. Targeted epigenetic engineering of key genes that are 

dysregulated in T2D has emerged as a promising alternative avenue, and is likely to improve 

the efficacy of approaches such as beta-cell replacement. However, detailed studies are 

required to identify specific epigenetic regulators and changes that are cell/tissue-type 

specific in T2D, to develop novel and targeted therapeutic strategies that address diabetes 

pathogenesis and complications.
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Figure 1. 
Variations in environmental factors such as nutritional status (diet), activity (sedentary 

lifestyle), circadian rhythms (sleep disruption), seasonal changes in temperature, and even 

aging can alter the cellular epigenome. These changes may occur in the histone 

modifications, DNA methylation patterns, chromatin accessibility, as well as the expression 

of non-coding RNA species such as lncRNAs and miRNAs. The epigenetic dysregulation in 

response to adverse environmental exposure in turn drives transcriptional changes across 

several tissues such as the insulin producing beta-cells and insulin sensitive organs including 

liver, muscle, and adipose. This can eventually induce a deficit of functional beta-cell mass 

and impaired insulin secretion, as well as drive insulin resistance, thus disrupting glucose 

homeostasis towards the pathogenesis of T2D. In addition, epigenetic alterations in vascular 

cells, kidney, retina, neurons, and immune cells can lead to multiple micro- and macro-

vascular complications of diabetes. Finally, epigenetic changes in response to adverse 

environment can also occur in the germline and be potentially transmitted to the offspring, 

contributing to the inheritance of T2D risk.
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Figure 2. 
Hyperglycemia in T2D can activate multiple pathways such as signaling via AGEs, AngII 

and TGF-beta, as well as induce a milieu of cellular-stress. This can lead to dysregulation of 

different epigenetic mechanisms such as histone modifications, DNA methylation, and 

ncRNAs, and consequently alter chromatin accessibility and gene expression profiles in 

multiple tissues, resulting in the development of diabetes complications. Such aberrant 

epigenetic patterns can persist and lead to metabolic memory, such that there is increased 

risk of developing diabetes complications even after achieving glycemic control.
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Table 1.

Tissue specific epigenetic regulation, EWAS, and T2D risk in humans

Tissue Context Epigenetic 
mechanism Key Finding Reference

Islets T2D DNA methylation Disrupted regulation of loci critical for islet function, 
adaptation, and survival. [51, 59, 60]

Lymphocytes Obesity DNA methylation Association of BMI with large scale DNA methylation 
changes. [63]

Blood T2D DNA methylation Identification of key DNA methylation sites associated with 
T2D, fasting blood glucose, and HbA1c levels. [64]

Adipose Obesity DNA methylation Obesity related changes in DNA methylation patterns may 
predict future development of T2D. [65–67]

Adipose
Bariatric 
surgery, 
obesity

DNA methylation Identification of key obesity related differentially methylated 
regions that overlap with specific genetic T2D risk loci. [68]

Skeletal Muscle
T2D diagnosis 
and family 
history

DNA methylation Epigenetic changes at loci related to insulin signaling, and 
association of some of these regions with T2D risk SNPs. [71, 72]

Liver Obesity, T2D DNA methylation DNA methylation changes at regions associated with T2D risk 
in the context of Obesity and T2D. [74]

Adipose, skeletal 
muscle Diet DNA methylation Epigenetic dysregulation of regions associated with metabolic 

pathways upon exposure to short-term high fat diet. [75, 76]

Adipose, skeletal 
muscle Exercise DNA methylation

Both short- and long-term exercise reprograms the epigenetic 
landscape of genes involved in adipogenesis, and muscle 
contraction.

[71, 79, 80]
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Table 2.

EWAS and diabetes complications in humans

Tissue Context Epigenetic 
mechanism Key Finding Reference

Human Renal Tubuli Nephropathy DNA methylation
Altered DNA methylation at loci involved in fibrosis in 
tubuli from humans with diabetic nephropathy and renal 
dysfunction.

[87]

Peripheral blood 
samples Nephropathy DNA methylation

Specific DNA methylation changes associated with eGFR 
identified, and a distinct subset of these also associated 
with kidney fibrosis and showed concordant DNA 
methylation changes in the kidney cortex biopsies from 
patients with chronic kidney disease.

[88]

Peripheral blood 
leukocytes Nephropathy DNA methylation

Key DNA methylation changes associated with decline of 
renal function (estimated glomerular filtration rate (eGFR)) 
identified in the context of diabetic nephropathy, in a cohort 
of Pima Indians with T2D.

[89]

Primary vascular 
endothelial cells

Vascular 
complications

Histone 
acetylation 
(activating), DNA 
methylation

Hyperglycemia mediated induction of genes associated 
with endothelial dysfunction occurs via histone acetylation, 
and is inversely correlated with DNA methylation.

[90]

Human monocytes 
(Primary and THP-1 
cells)

Effect of 
hyperglycemia

Activating And 
repressive histone 
modifications

Chronic hyperglycemia can alter the chromatin states to 
drive changes in expression of key genes associated with 
inflammation.

[93]

Vascular smooth 
muscle cells from 
diabetic mice

Vascular 
complications, 
metabolic 
memory

Histone 
methylation 
(repressive)

Dysregulation of epigenetic states is a key mechanism 
underlying metabolic memory, as well as inflammation in 
vascular cells.

[94]

Human blood 
monocytes and 
lymphocytes

Metabolic 
memory

Histone 
modifications

Monocyte histone acetylation was associated with HbA1c 
level during the DCCT phase and the long-term (EDIC) 
follow-up, pointing to an epigenetic basis for metabolic 
memory.

[103]

Human whole blood 
and blood 
monocytes

Metabolic 
memory DNA methylation

Several key genes associated with complications display 
sustained differential DNA methylation patterns in the 
same diabetic subjects over 16 years in association with 
HbA1c and an adverse diabetes complications outcome.

[104]
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