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Abstract

Predicting the times of milestone events, ie, interim and final analyses in clinical trials, helps 

resource planning. This manuscript presents and compares several easily implemented methods for 

predicting when a milestone event is achieved. We show that it is beneficial to combine the 

predictions from different models to craft a better predictor through prediction synthesis. 

Furthermore, a Bayesian approach provides a better measure of the uncertainty involved in 

prediction of milestone events. We compare the methods through two simulations where the model 

has been correctly specified and where the models are a mixture of three incorrectly specified 

model classes. We then apply the methods on two real clinical trial data, North Central Cancer 

Treatment Group (NCCTG) N0147 and N9841. In summary, the Bayesian prediction synthesis 

methods automatically perform well even when the data collection is far from homogeneous. An R 

shiny app is under development to carry out the prediction in a user-friendly fashion.
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1 | INTRODUCTION

Randomized clinical trials involving failure-time endpoints are typically powered by the 

number of events. For safety and efficiency reasons, one or more planned interim analyses 

would be performed prior to the final data analysis. Since the statistical information of 

failure-time endpoints is in proportion to the number of events, the planned interim analyses 

are typically carried out after a pre-specified number of events have occurred, such as 50% 

of the total number of events. In this manuscript, we refer to pre-specified analysis times as 

“milestones.” From a management perspective, it is important to predict when the milestone 

events will be attained so that one can allocate statistical resources in a practical manner. On 
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the other hand, these predictions may be carried out repeatedly in the lifetime of a trial so 

the prediction should be suitably accurate and easy to perform to enhance efficiency in trial 

monitoring.

Some methods have been developed previously for predicting the milestone time. Rubinstein 

et al1 used the Poisson process and exponential survival model to predict milestone event 

times, and Bagiella and Heitjan2 constructed predictive intervals for the milestone using the 

predictive distribution from simulation. These proposed methods require parametric 

assumptions and have the limitation that the predictions may be inaccurate if the 

assumptions were not met. To overcome this limitation, Ying et al3 developed a 

nonparametric prediction method utilizing Bayesian bootstrap resampling with a Kaplan-

Meier curve. This method provides a better prediction when the parametric assumptions are 

invalid but is inefficient when the parametric assumptions are satisfied. More recent 

developments include Anisimov4 that took into account the variation in recruitment rate 

across different centers, and the cure rate model was used for prediction in Chen.5 Each of 

the aforementioned methods requires careful consideration and comparisons between 

various models, thus requiring statistical input for each prediction and can be difficult to be 

bundled into a more automated process. A nice adaptive method was developed in Lan and 

Heitjan,6 which uses Bayesian model selection to identify the best-fitting model and use the 

single best-fitting model to create prediction densities. However, the prediction interval 

coverage of Lan and Heitjan6 tends to be very poor.

In this manuscript, we propose to combine the predictions from several models to come up 

with a better prediction. As such, there is little concern whether the individual models 

actually fit the data particularly well. These methods are intended to be simple, easy to 

implement, and largely automated without need for extensive modeling. The intention is that 

the method could be created once and then used to provide reasonable estimates on a wide 

variety of survival experiments with very limited modeling and coding. This approach is 

intended solely for trial monitoring and not intended to make corrections for the actual 

number of events needed to attain a proper size and power for the study.

In clinical trial design, prior trial results are often used as the historic information for the 

control arm in sample size/power calculation. This prior knowledge suggests that a Bayesian 

approach could be used for the estimation of the time until a milestone is achieved. Hence, 

this manuscript will investigate milestone prediction from both frequentist and Bayesian 

perspectives. Specifically, we focus on prediction synthesis methods7 for combining 

individual model predictions for estimating the time until milestone events are reached for 

an ongoing clinical trial with time-to-event endpoint. Prediction synthesis is a novel method 

in that it finds the best combination of individual models that provide the best prediction 

accuracy rather than the combination that fits the observed data the best.

The general data structure and model building will be described in Section 2. Prediction 

synthesis under frequentist and Bayesian perspectives will be presented in Section 3. Section 

4 contains two numerical simulations and is followed by an analysis of the data from two 

real clinical trials, N0147 and N9841, in Section 5. We conclude with a discussion 
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describing alternative formulations, limitations, and extensions, which could prove helpful 

for future improvements.

2 | DATA AND MODELS

Let the observed data at a given time point be (ai, ti, δi), where i indexes each patient. ai is 

the time in which a subject enters the study, and we assume that ai are in increasing order. δi 

is an indicator of whether the failure time has been observed, si is the failure time, and ti is 

the minimum of the failure time and the time where the event prediction takes place 

(denoted by) T. At time T, the data will be summarized as XT = {0 ≤ ai ≤ T, ti = min(si, T), 

δi = I(si ≤ T)}.

2.1 | Models

The system of interest behaves very much like a queue, with subjects entering the system 

over time t, with a rate λa(t).8 Once in the system, the subject immediately begins waiting 

until a terminal event occurs. The terminal event may be the event of interest or a competing 

event, such as a loss of follow-up. Figure 1 displays a graphical depiction of the general 

model dynamics over time.

Modeling of the observed data will be broken into two independent parts. First is the 

modeling of the interarrival time bi = ai − ai − 1 for subjects entering the study, and the 

second is modeling the time from arrival until a stopping time, either the event or interest or 

the competing events, has been reached. The arrival and failure-time processes are assumed 

to be independent for our estimation purposes, which is a reasonable assumption in clinical 

trials.

2.1.1 | Interarrival time—It is assumed that subjects come individually, and the number 

of subjects in each nonoverlapping interval is independent; hence, the arrival follows a 

Poisson process9 with rate function λa(t). In other words, the number of subjects joining the 

study between time t1 and t2(t1 < t2) would be a Poisson random variable with parameter

Λ t1, t2 = ∫t1

t2
λa(t)dt .

For simplicity, we suppose that the intensity function is homogeneous over time, ie, λa(t) = 

λa. Hence, interarrival times are distributed with an exponential distribution with rate λa. 

The likelihood function for the observed data would be

L λa b, t = e
−λa t − bN(t) ∏

i
λae

−λabi = λa
N(t)e

−λat
, (1)

where N(t) is the number of subjects that entered the study by time t.
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2.1.2 | Failure time—Once entering a study, a subject will transition to the event of 

interest or another terminal event. The transition to a terminal state differs from the arrival 

process in that the “countdown” begins once a subject enters the study, whereas the rate 

function for the arrival process does not restart after an arrival is observed. Supposing that 

Fθ is the distribution and fθ is the density of the failure time, then the likelihood function for 

the observed failure-time data would be

L(θ x) = ∏
i

f ti − ai
δiF ti − ai

1 − δi . (2)

It should be noted that F(t) is not necessarily a proper distribution function because not all 

subjects will terminate in the event of interest, meaning that F(t) may converge to a value 

less than 1 as t →∞. However, in this prediction synthesis scenario, proper distribution 

functions will be used. This may be remedied by assuming that subjects who reach other 

terminal states are right censored at the time the other terminal state was reached.

The model for the failure time does not take into account explanatory variables X (such as 

the treatment arms). In essence, the distribution function for the stopping time will be the 

marginal distribution after integrating over the explanatory variables. This supposes that the 

distribution of X does not change appreciably as a function of time. For other modeling 

purposes, it would be better to account for explanatory variables; however, it would lead to 

an increased number of parameters making sampling from the posterior distribution more 

computationally expensive. This also forgoes the need to adjust models when different 

randomization ratios are used. Furthermore, allowing for explanatory variables would lead to 

a larger class of models making the selection of appropriate models more labor intensive for 

the statistical analyst and more difficult to build into a reusable program.

Parametric models will be used for the stopping time as presented in Table 1. These four 

distributions were selected because they are commonly used and each has explicitly defined 

density and distribution functions. This is not meant to be an exhaustive list of useful 

distributions, and many more could be added. However, for the purposes of this manuscript, 

these four distributions are sufficient to demonstrate the benefits of prediction synthesis. In 

the remainder, the individual models will be referred to solely by the distribution used in the 

survival process, namely, the Weibull, lognormal, Gompertz and loglogistic.

3 | METHODS

Given the aforementioned individual models, the predictors will be constructed using the 

following approaches:

A. Fit the individual parametric models with the maximum likelihood estimate of 

the available survival data, and then use the fit models to make predictions.

B. Use Bayesian posteriors of individual parametric model parameters to make 

predictions from the posterior.
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C. Use prediction synthesis methods over the predicted distributions from individual 

frequentist model fits.

D. Use prediction synthesis methods over the individual posterior prediction 

densities (Bayesian).

For method A, once the parameter estimates are computed, the duration will be predicted as 

the average of simulated predictions. Method B will use a Metropolis-Hastings algorithm to 

create a Markov chain of parameter values from the posterior distribution of each individual 

model. Each parameter value in the chain will be used to simulate a single predicted future 

milestone time. The estimated time until completion will be based on the mean of Markov 

chain predictions over a stationary portion of the chain, ie, chain values after an acceptable 

burn-in has been observed. The mechanisms used for the prediction synthesis methods 

mentioned in C and D will be described in Section 3.2.

3.1 | Prior distributions

To ease implementation and to automate the modeling, we have chosen the prior distribution 

for parameters in the following fashion. The prior distribution for the exponential 

distribution parameter of the interarrival times will be a constant noninformative prior. This 

means that the posterior for the rate parameter λa will be distributed as a gamma distribution 

with shape parameter N + 1 (N is the number of interarrivals observed) and scale parameter t 
(current time) as suggested by Equation 1. This is a variant of the Poisson-gamma 

model10,11 applied to a single center.12 The flat prior does have the drawback that accruals 

must be observed prior to being able to predict future accrual milestones. If one has a good 

idea about the mean and/or variance of the fixed rate parameters for an individual center, 

these could be adapted to a more informative prior gamma distribution.

The prior distributions for parameters taking values on the entire real line, such as η in the 

Gompertz distribution and μ in the lognormal distribution, will be normally distributed, and 

gamma prior distributions will be used for positive valued parameters. In a typical clinical 

trial design with time-to-event endpoints, very often, one assumes that the underlying failure 

time is exponentially distributed with rate parameter λe. Since the exponential distribution is 

a special case of the Weibull distribution when k is set to 1, the prior mean for k will be set 

to 1 and the prior rate parameter λw for the Weibull distribution will be set to λe. The 

remaining means for other parameters will be constructed by equating features of the 

exponential distribution with features of the respective distribution. The resulting 

relationships are presented in Table 2. The variance for each parameter should reflect the 

certainty one has in the parameter values. Without strong certainty, one should make the 

variance large so that the prior has limited influence on the predictors.

3.2 | Prediction synthesis

In the preceding section, we described how we would construct prediction models from the 

observed data, ie, the data collected thus far within the current trial. Using these models, one 

could simulate future observations and find the times when the desired milestone is reached. 

After many simulations from a model, one could get an approximate predicted distribution 

for that model. As our goal is to find a good predictor, it is important to assess the 
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performance of prediction densities rather than how well the likelihood fits the observed 

data. A good choice for a predictor would be to select the model that gives the best 

predictions; however, it has also been shown that combining individual model prediction 

densities can lead to a better predictor.13 Readers who are interested in more technical 

discussions of prediction synthesis should consider the following literature.7,14–16

Prediction synthesis is a field that attempts to select and/or combine predictors from 

different models to create a better predictor based on the observed prediction performance. 

Consider J individual prediction models (either frequentist or Bayesian) that will be viewed 

as agents that use their best respective judgments to make a density for prediction, hj(y). The 

predictions will be synthesized by a decision maker that combines the results from each 

agent to create a better decision. We will adopt the linear decision maker of Breiman17 that 

would generate predictive densities of the form

h(y) = ∑
j = 1

J
α jh j(y), (3)

with the constraints αj ≥ 0 and ∑1
J α j = 1 added to guarantee that the composite prediction 

distribution will remain a valid probability distribution. The form of Equation 3 is a linear 

version of the best form presented in West.14 Prediction synthesis can be carried out in the 

same fashion regardless of whether hj(y) is the density of predictions based on the maximum 

likelihood estimate (MLE) fit model or the predictions based on parameter values of the 

posterior densities. A more detailed presentation of (Bayesian) prediction synthesis is 

described in McAlinn and West7 and West.14

This method is similar to model averaging, except that the focus is on averaging over the 

prediction distributions rather than the likelihood functions of the observed data. Since our 

analysis methods will be based on simulations and αj must be estimated, Equation 3 will be 

approximated by

h(y) = ∑
j

α j
1
n j

∑
i = 1

n j
δz j, i

(y), (4)

where δZ is a point mass at Z and Zj,i is the ith simulated prediction from model j.

A graphical illustration of predictive synthesis is shown in Figure 2. Suppose that we have 

two prediction densities, h1(·) and h2(·) generated from two different models, denoted by the 

areas shaded with dark blue and dark orange, respectively. Suppose the prediction synthesis 

weights are 0.6 and 0.4 for α1 and α2, respectively. The weighted predictive densities, 

α1h1(·) and α2h2(·), are the areas shaded with light blue and light orange, respectively. The 

synthesized predictive density, h(·), is the area outlined by the solid line in the right hand-

side panel.
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The point estimate for the prediction will be the mean ẏ of the distribution h(y) (or h(y)). The 

prediction point estimate is easily recovered from the individual model means ẏ j through 

ẏ = ∑ jα jẏ j. The constraint placed on α = {α1, …, αJ : αj ≥ 0, ∑ αj = 1} assures that 

min jẏ j ≤ ẏ ≤ max jẏ j, where ẏ j is the mean prediction from agent j. The combined prediction ẏ

can be no more extreme than the most extreme individual model value ẏ j. In other words, 

there is a built-in mechanism to hedge against drastic prediction choices.

It should be noted that this is different than if the prediction distribution was constructed 

from the weighted average of individual predictors, y = ∑jαjZj for draws Zj drawn from the 

predictions of model j. The prediction synthesis method leads to a density of predictors with 

more spread than the density of weighted averages reflecting our greater uncertainty in 

model selection. The mixture of prediction densities is also more in line with a Bayesian 

treatment of the posterior prediction density where one would first select the model, then the 

parameter, followed by simulation of the predicted value. This is an ad hoc approach to a 

fully Bayesian treatment where a posterior density would be constructed over all of the 

individual densities and would likely require a reversible jump Monte Carlo Markov chain to 

approximate. Since the full Bayesian treatment would be assessing the fit of the likelihood 

functions rather than the prediction densities, the prediction synthesis technique should be 

advantageous.

3.2.1 | Average weights—The simplest version of this prediction synthesis model is to 

set α j = α j = 1/J. This drastically eliminates computational issues by adopting a democratic 

approach to the decision-making procedure. A marked disadvantage of this approach is that 

the decision maker does not converge to the best possible predictor among the class of linear 

decision makers. Nonetheless, this method will be evaluated, because it is very easily 

implemented and should provide a pretty good solution. In the subsequent presentation, this 

method will be referred to as the “average” (prediction synthesis) model.

3.2.2 | Estimating weights for prediction synthesis—Herein, we shall present two 

methods for estimating the weights of Equation 3 using the observed data, ie, the data 

collected thus far within the current trial. Specifically, we will estimate the values αj by 

observing how well the respective models were able to predict previous milestones within 

the current trial. The overarching idea is the following:

• Use all observed data to determine the model parameters (either the parameter 

estimates from the frequentist approach, θ j, or a random draw from a posterior 

distribution from the Bayesian approach, πj(θj|XT)).

• From the observed data, randomly select K pairs of data (ti, ri) where ti is an 

observed event time and ri is an earlier event time, with i = 1, … ,K. Find the 

total number of events occurring up to and including time ti. Label this Ñi.

• For each i, truncate the data at ri, ie, events occurring after ri would be censored 

at ri and patients entering the study after ri would be removed from the dataset.
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• Using the data truncated at ri, make M predictions for the Ñth event time. In 

other words, simulate additional patients after ri following the homogeneous 

Poisson process as described in Section 2.1.1 and event times for the newly 

generated patients and event times that were censored at ri. From this simulation, 

select the Ñth event time. Let t j, i, k′  denote the M values from the prediction 

density for model j, where k = 1, …, M is the index for prediction of ti.

Unlike the average weighting method, estimating the weights through previous predictions 

requires observation of multiple accrual and failure events. In the subsequent data analysis, 

the weight estimation is seen to be of benefit even with only 25 observed events.

There are different ways to choose the “optimal” weights, and we considered the following 

two methods that favor computational efficiency with suitable accuracy. The first method to 

estimate the weights αj will be through minimum squared prediction error (MSPE), which 

minimizes

α = argmin
α j ≥ 0; ∑ jα j = 1

∑
j

α j∑
i

ti − t j, i′ 2, (5)

where t j, i′ = 1/M∑k t j, i, k′ . This is in the form of a constrained quadratic optimization and can 

be implemented using standard software.

The second method is based on giving each prediction model a proportion based on how 

well they were able to predict previous milestones. The weights would be calculated as

α j = 1
N ∑

i
I j = min

q = 1, …, J
ti − t q, i′ , (6)

where I(A) is a binary variable indicating whether A is true or not. If it is possible to have 

ties in the deviances (typically of probability 0), the tied values should split the “vote” in 

equal amounts. The voting method differs from the MSPE method in that it does not require 

quadratic optimization making it easier (and more stable) to implement in R. Subsequent 

reference to this weighting method will be with the term “vote.”

3.3 | Prediction intervals

In addition to the point predictions based on the mean of the respective prediction densities, 

prediction intervals will be created. They will use the quantiles of simulated predictions 

from the prediction density and take the form (tα/2,t1−α/2), where ts is the sth quantile of the 

associated simulated predictions. It is possible to create many other prediction intervals, 

particularly by assuming that the prediction interval is roughly normally distributed, but the 

selected quantile method seems to be a much better choice.

Ou et al. Page 8

Pharm Stat. Author manuscript; available in PMC 2019 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 | NUMERICAL SIMULATIONS

Herein, we present two simulations. The first will use one of the individual models included 

in Table 1, and the second will use a range of models outside of Table 1. The interarrival 

times bi will follow an exponential distribution with rate parameter λe = 0.5. For the 

Bayesian analysis, all priors will have a mean of 1 and a variance of 50 using either the 

normal or gamma distribution as explained in the preceding discussion. The simulations will 

be tested for prediction of the milestone target of 100 or 500 events after observation of 

25%, 50%, or 75% of the milestone value. Each combination of target and partial 

observation window will be run 1000 times. The results concerning individual models will 

be referred to solely by the survival process model, namely, Weibull, lognormal, Gompertz, 

or loglogistic. The predictive synthesis model will combine the four individual models, and 

the results will be marked with PredSynth and either average, MSPE, or vote to denote 

weight estimation method. To evaluate predicted milestones, we calculated the percentage of 

prediction error as (predicted day — actual milestone day)/(actual milestone day). The 

median of the absolute value of percentage error (median absolute percentage error 

[MAPE]) was used to summarize the prediction performance. MAPE was used because the 

actual milestone day in each simulated dataset would be different; therefore, MAPE provides 

a good gauge of the error while taking into account the different actual milestone day.

4.1 | Simulation 1: lognormal failure times

For the first simulation, the failure time will be distributed with a lognormal distribution 

with μ = 5 and σ = 0.25. This model was selected because it is one of the individual models 

used. The results of the ensuing analysis are presented in Table 3. The reported figures are 

MAPE. For reference, the mean time until 500 events were observed is 1152 days, so a 

MAPE of 3.37% would account for approximately 39 days at 25% of events observed. The 

mean time until 100 events were observed is 352 days, so a MAPE of 2.10% would account 

for approximately 7 days at 25% of events observed.

These results suggest that anyone of the applications would perform with nearly identical 

prediction results. It is surprising that the lognormal model does not have the best 

performance for either the Bayesian or frequentist prediction method for any of the partial 

milestone percentages. The prediction synthesis methods perform very well compared with 

the other predictions, even though they are not uniformly better than the others.

Table 4 gives the results of the 95% prediction interval study for simulation 1. The display 

gives the percentage of the prediction interval as a function of the target milestone value, ie, 

100% × interval length/milestone. The frequentist intervals are considerably smaller than the 

Bayesian prediction intervals. For instance, at 25% of the target number of events (out of 

500), the frequentist prediction interval lengths are approximately 11.5%, meaning that they 

have a length of about 132 days, compared with the Bayesian prediction intervals of 212 

days (18.4%). However, the frequentist prediction interval coverages are far lower than the 

expected coverage values. With a target of 500 and observation of 25%, the maximum 

coverage of the frequentist prediction intervals is 76.1, whereas the worst Bayesian 

prediction interval coverage is 94.2%. While prediction intervals of 212 days may seem 

large, it is for an event that will occur about 2 years in the future; therefore, a wider 
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confidence interval is expected while providing coverage probability close to 95%. In all 

scenarios, the Bayesian versions have coverage closer to the expected target of 95%. For the 

100-event milestone predictions, even the Bayesian methods have poor coverage, 

particularly for the Gompertz model. However, all of the Bayesian prediction synthesis 

methods are within 2% of the 95% coverage target.

4.2 | Simulation 2: mixture of models for failure time

The second simulation will use identical priors for each model type as were used in the 

preceding simulation; ie, each prior parameter has a mean of 1 and a standard deviation of 

50. The failure time Si will be a random mixture of three different distribution functions. 

Model 1 will be a gamma distribution with shape 4 and scale 20. Model 2 will be a 

loglogistic distribution with shape 3 and scale 15. Model 3 will be a Fréchet distribution 

with location 12, scale 2, and shape 3. For each simulated dataset, two uniform (0,1) random 

variables will be selected then ordered, ie, 0 < u1 < u2 < 1. The model for the survival time 

of observation i will be from model 1 with probability u1, model 2 with probability u2 — u1, 

and from model 3 with probability 1 − u2. The random mixtures were used so that at 

different mixing values, different individual models would perform better. The models used 

for generating the data are very different from the models considered for the prediction 

synthesis because we wish to demonstrate the flexibility of the prediction synthesis methods; 

ie, the prediction synthesis methods will perform well even though the true underlying 

models were not used for prediction synthesis. The interarrival time will be distributed with 

an exponential distribution with rate of 0.5. The simulation will be run 1000 times with the 

intent of predicting the 100- and 500-event milestones after observing 25%, 50%, and 75% 

of the milestone value.

The MAPE results of simulation 2 are presented in Table 5. The mean time for the 500-event 

milestone of the simulations was 1055 days, so the maximum percentage error of 4.73% 

accounts for 50 days at the time when 25% of events were observed. The mean time for the 

100-event milestone of the simulations was 240 days, so the maximum percentage error of 

9.87% accounts for about 24 days at 25% of events observed. The Bayesian method has 

performance on par with the frequentist methods. As in the preceding simulation, the 

prediction synthesis methods provide predictions that are middle of the pack.

Table 6 gives the results of the prediction interval study for simulation 2. The results are 

similar to those shown in simulation 1. The frequentist intervals are smaller than the 

Bayesian prediction intervals, but the Bayesian versions provide coverage that is closer to 

the 95% value. While the frequentist prediction synthesis methods tend to generate larger 

prediction intervals than the individual frequentist model methods, the coverage is closer to 

the desired 95% coverage level. All of the Bayesian prediction synthesis methods are within 

4% of the 95% coverage target. The worst Bayesian coverage is 90.9% for this scenario with 

a target of 100 events and observation of only 25 using the loglogistic model and the raw 

quantile method.
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4.3 | Simulation conclusion

The results of these simulations demonstrate that nearly any of the individual or prediction 

synthesis models give very similar point estimates for the desired milestone. The real 

difference between the methods can be seen in the generated confidence intervals. There is a 

systematic undercoverage with the frequentist methods since they do not factor in the 

uncertainty of the model parameters. The coverage of the individual Bayesian models varies. 

However, the Bayesian prediction synthesis methods provide coverages very close to the 

desired 95% over all of the simulations.

5 | CASE STUDIES

The event forecasting methods were tested on the North Central Cancer Treatment Group 

(NCCTG) N0147 (Alliance)18 and NCCTG N9841 (Alliance)19 studies, which are two 

completed colorectal cancer treatment studies conducted by the NCCTG now part of the 

Alliance for Clinical Trials in Oncology (Alliance). The predictions were performed after 

every 10% increase in the number of observed events as a percentage of the intended 

milestone number of events.

The N0147 study was designed to assess the potential benefit of cetuximab added to the 

modified sixth version of the FOLFOX regimen in patients with resected stage III wild-type 

KRAS colon cancer.18 A total of 515 disease-free survival (DFS) events would properly 

power the study, but N0147 was terminated for futility at the second interim analysis (50% 

event). At the time of termination, 1863 (of 2070 planned) patients were accrued. For 

demonstration purposes, the target milestone for N0147 is 258 events, which constitutes 

approximately 50% of the targeted number of events and occurred after 1681 days. N0147 

was chosen to represent a study where the events occurred relatively slowly; ie, the median 

DFS is around 5.8 years.

The N9841 study was designed to determine whether overall survival (OS) of fluorouracil 

(FU)-refractory patients was noninferior when treated with second-line infusional 

FOLFOX4 versus irinotecan. The study accrued a total of 491 patients, and 405 OS events 

were needed to properly power the study. The target milestone for N9841 is 405 OS events, 

which occurred at 1689 days. N9841 was chosen to represent a study where the events 

occurred relatively quickly; ie, the median OS is around 10 months.

With each of the targeted milestones, the observed dataset was censored for events occurring 

after a proportion of the milestone was observed. For example, if we want to predict the 

500th event after 250 events (50% of events) were observed, all events occurring after the 

250th event will be censored. The predictions were made with each of the seven prediction 

models, ie, Weibull, lognormal, Gompertz, loglogistic, PredSynth(Avg), PredSynth(MSPE), 

and PredSynth(Vote), using the frequentist and Bayesian methods.

The results of this analysis are presented in Figures 3 and 4. The frequentist method 

predictions are shown using solid diamonds with solid lines for the prediction intervals, and 

the Bayesian method predictions are shown using empty diamonds with dotted lines for the 

prediction intervals.
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The two sets of simulations show fairly similar performance for the Bayesian and frequentist 

methods with a preference for the prediction synthesis methods. The behavior of the 

lognormal distributions for estimation of the N0147 milestone behaves very sporadically 

when less than 10% of the milestone is observed, and these values have been truncated from 

the figures to better observe the behavior of the remaining predictions. In view of the poor 

performance of the lognormal distribution, a key difference for the prediction synthesis 

methods can be seen. The Average method gives equal weight to the poor predictor making 

it perform poorly. On the other hand, the MSPE and Vote methods are able to determine that 

the lognormal model does not provide ideal predictions and places very little or no weight 

on the predictor, even after only observing around 25 events. For N0147, every single model 

with the exception of the lognormal model has a mean prediction within 20 days of the 

actual milestone completion, after 20% of the total number of events were observed (ie, 40% 

of the milestone events). The lognormal model predictions remain within 20 days after 30% 

of the milestone data number is observed for the frequentist version and 35% for the 

Bayesian method. All of the prediction intervals cover the milestone value after 15% except 

for the lognormal model, which covers after 20% of events are observed.

The results from the N9841 analysis show that the individual models have highly differing 

biases. The lognormal and loglogistic show large biases exceeding the actual value of 1689 

days, while the Weibull and Gompertz models have much smaller biases for earlier 

predictions but have a tendency to under predict. Interestingly, the Bayesian version of the 

lognormal model is far better than the frequentist version with very little bias after 20% of 

the events are observed. All of the Bayesian PredSynth methods are within 40 days of the 

target by 60% of the target events. The frequentist PredSynth methods also attained the 40-

day bias limit after 60% of the target number of events was reached, with the exception of 

the MSPE method. From 50% of events, the loglogistic model becomes the most accurate of 

the individual models in terms of mean squared prediction error. The Bayesian MSPE 

method picks up on this and is essentially identical to the loglogistic predictor when more 

than 60% of the target is reached. After 70% of the milestone events, both the loglogistic 

and Bayesian MSPE methods remained within 8 days of the target value.

In both of the case studies, when a sufficient number of events are observed (ie, around 60%

−70% of milestone events), the bias of the prediction is in the range of 8 to 20 days.

6 | CONCLUSION

It should be apparent that the prediction synthesis methods hedge losses over individual 

models and estimating weights for synthesis has the flexibility for improving estimates by 

using all information provided in a partial sample. The prediction interval coverage for the 

Bayesian prediction synthesis methods appears to be close to the desired coverage level even 

when some of the individual models do not have the proper coverage as seen in Table 4. 

Therefore, we recommend using prediction synthesis under the Bayesian paradigm. The 

three different weighting schemes all have comparable coverage, but the MSPE method is 

appealing since it has nice asymptotic convergence properties. Therefore, prediction 

synthesis under the Bayesian paradigm with the weights generated from minimizing MSPE 

is our recommendation. The amount of information available will affect the accuracy of the 
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prediction; therefore, it is advised to predict the milestone when more than 50% of milestone 

is observed; for example, if the interim analysis is planned at 50% of events, then prediction 

can be carried out after 25% of events have been observed to facilitate resource planning. A 

practitioner should also keep in mind that the accuracy of prediction depends on the 

information available and the variability inherent in the process being predicted; therefore, 

care should be given to take into account the confidence interval in addition to the point 

prediction in resource planning.

The accrual model used herein assumes that a clinical trial enrolls patients from a fixed 

number of clinical centers and that the accrual phase will continue until a fixed 

predetermined number of patients are attained. A more realistic model would carefully 

account for the number and size of clinical centers accruing patients as a function of time.
10,11 One could further refine this model by incorporating nonhomogeneous arrival rates 

catering to each specific clinical center.20 There are many more improvements for the 

interarrival rate model, and a thorough review is available in Heitjan et al21 and Anisimov.22 

While the selected models have room for improvement, our goal is to demonstrate the utility 

of prediction synthesis in improving prediction results. If one started with more realistic 

model for the interarrival time, prediction synthesis is still expected to improve results.

In practice, one will not be able to compare the predicted milestone values against an actual 

milestone time and must make a decision a priori based solely on analysis applied to a 

partially observed dataset. One could fit the models to the observed data and then use the 

best fit model for predictions, but this may not yield the best results as can be seen from 

simulation 1 where the actual model class performed worse than some other individual 

model predictions. It is indeed very curious that the correct model does not have the best 

performance. This is because the model is fit to observable data rather than based on 

prediction accuracy.

There are foundational differences between the method proposed by Lan and Heitjan6 and 

our work. Specifically, the previous study6 selects one model that best “fits” the observed 

data from the individual models and then uses that single model to create predictions. The 

“cure model” was considered as one of the individual models to provide predictions, and the 

method allows different treatment arms. In contrast, prediction synthesis compares the 

prediction accuracy of individual models and then uses the results to combine all individual 

model predictions into a new prediction density. The “cure model” and different treatment 

arms can be incorporated into the prediction synthesis model, which may improve the 

prediction accuracy.

The most difficult problem expected in practice is prediction of the arrivals for future 

subjects. This feature cannot be predicted from a statistical analysis of the arrival history and 

is largely controlled by management of a trial. If one envisions a change in the incoming 

subjects due to a management decision, for example, protocol amendment, changing the set 

of clinical centers accruing patients, or halting accrual for interim analysis, one could encode 

these changes into the predictions. Also, if it is known that accrual practices have changed 

within the observed data chain, it would be wise to base future accrual on the most relevant 

portion of the accrual chain, typically the most recent. To do so, one could give heavier 
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weight to the most recent accrual data to create a nonhomogeneous Poisson process that is 

better able to adapt to changing behavior. If one were to include more realistic models for 

the interarrival times, the predictions are very likely to improve. It is still expected that a 

prediction synthesis method could be used in conjunction with these improved models to 

create even better predictions.

There is a natural delay in the data entry for a real clinical trial. The prediction method 

proposed in this manuscript does not account for this delay. Statisticians who wish to use the 

proposed method should have a good idea about the natural delays for their specific trial and 

adjust the predictions accordingly.

We are in the process of creating an R shiny app to implement the aforementioned method. 

The R shiny app will be available at the following website, https://rtools.mayo.edu/home/.
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FIGURE 1. 
Schematic model for the event data collection
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FIGURE 2. 
A graphical illustration of the concept behind predictive synthesis
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FIGURE 3. 
Predicted milestone vs percentage of observed events for the N0147 and N9841 studies. 

Bayesian results use an open diamond and dotted lines, and the frequentist results are solid. 

The target is indicated by the horizontal gray line. The targets are 1681 and 1689 days for 

N0147 and N9841, respectively
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FIGURE 4. 
Predicted milestone vs percentage of observed events for the N0147 and N9841 studies. 

Bayesian results use an open diamond and dotted lines, and the frequentist results are solid. 

The target is indicated by the horizontal gray line. The targets are 1681 and 1689 days for 

N0147 and N9841, respectively. MSPE, minimum squared prediction error
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TABLE 1

Distributions

Model Density Distribution Parameters

Weibull k
λ

x
λ

k − 1
e
− x

λ
k

1 − e
x
λ

k
λ > 0; k > 0

Gompertz bηebx + η − ηebx
1 − eη − ηebx η ∈ ℛ; b > 0

Loglogistic
(β/α)(x/α)β − 1

1 + (x/α)β 2
1

1 + (α/x)β α > 0; β > 0

Lognormal 1
xσ 2π e

− (ln(x) − μ)2

2σ2 1
2 + 1

2Φ ln(x) − μ
2σ μ ∈ ℛ; σ > 0
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TABLE 2

Mean for the prior parameters

Distribution Prior Means

Weibull μλw
= λe μk = 1

Gompertz μη = 1 μb = λe1og(log(2) + l)/log(2)

Loglogistic μα = 1/λe μβ = 1

Lognormal μμ = −log(λe)−log(2)/2 μσ = log(2)
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TABLE 3

Median absolute percentage error for simulation 1

Model

% Event Observed 25% 50% 75% 25% 50% 75%

Method Nevent = 100 Nevent = 500

Weibull Freq 1.98 1.59 1.37 3.34 1.92 0.91

Bayes 2.00 1.56 1.37 3.34 1.93 0.90

Lognormal Freq 2.06 1.55 1.38 3.36 1.91 0.90

Bayes 2.14 1.62 1.40 3.29 1.94 0.90

Gompertz Freq 2.01 1.56 1.43 3.34 1.91 0.90

Bayes 2.02 1.74 1.54 3.32 1.90 0.91

Loglogistic Freq 2.05 1.54 1.38 3.37 1.93 0.91

Bayes 2.10 1.58 1.37 3.36 1.94 0.91

PredSynth Freq 1.99 1.54 1.40 3.36 1.92 0.90

(Average) Bayes 1.92 1.50 1.39 3.29 1.92 0.91

PredSynth Freq 1.98 1.54 1.37 3.37 1.93 0.92

(MSPE) Bayes 1.99 1.61 1.40 3.31 1.93 0.90

PredSynth Freq 2.00 1.55 1.41 3.37 1.92 0.90

(Vote) Bayes 1.97 1.54 1.43 3.29 1.92 0.91

Abbreviation: MSPE, minimum squared prediction error.

Pharm Stat. Author manuscript; available in PMC 2019 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ou et al. Page 23

TABLE 4

Prediction intervals for simulation 1 based on raw quantiles
a

Model

% Event Observed 25% 50% 75% 25% 50% 75%

Method Nevent = 100 Nevent = 500

Weibull Freq 7.4 6.9 6.7 11.5 8.7 4.6

77.1 85.8 89.5 74.9 86.8 90.6

Bayes 10.5 8.7 7.7 18.4 11.0 5.0

90.1 93.2 94.2 94.2 92.8 93.8

Lognormal Freq 8.1 7.1 6.8 11.5 8.7 4.7

80.3 86.5 90.3 75.4 86.9 90.6

Bayes 11.1 8.7 7.5 18.4 11.0 5.0

89.8 91.9 93.7 94.4 93.7 93.4

Gompertz Freq 7.3 7.0 7.0 11.5 8.7 4.7

76.1 86.0 89.7 75.9 85.8 91.1

Bayes 7.9 8.4 7.9 18.4 11.0 5.0

78.2 90.6 91.8 94.9 93.6 93.9

Loglogistic Freq 8.2 7.1 6.8 11.5 8.7 4.7

81.7 86.6 90.4 75.2 86.2 90.3

Bayes 12.2 9.2 7.8 18.4 11.0 5.1

94.6 94.7 94.8 95.0 93.7 93.4

PredSynth Freq 8.2 7.2 7.1 11.7 8.9 4.8

82.6 87.8 91.7 76.1 87.2 91.9

(Average) Bayes 11.4 9.3 8.2 18.5 11.1 5.1

94.0 95.7 95.9 95.1 93.5 94.4

PredSynth Freq 7.9 7.1 6.9 11.5 8.7 4.7

81.3 86.4 90.6 74.9 86.4 91.1

(MSPE) Bayes 11.2 9.1 8.0 18.4 11.0 5.1

93.0 94.8 95.0 95.1 93.7 93.7

PredSynth Freq 8.1 7.1 7.0 11.5 8.7 4.7

81.9 87.6 91.2 75.0 86.5 91.3

(Vote) Bayes 11.4 9.2 8.1 18.4 11.0 5.1

93.8 95.4 95.7 95.1 93.5 93.6

Abbreviation: MSPE, minimum squared prediction error.

a
The top numbers are the mean interval length as a percentage of the target values. The bottom number is the coverage percentage.
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TABLE 5

Median absolute percentage error for simulation 2

Model

% Event Observed 25% 50% 75% 25% 50% 75%

Method Nevent = 100 Nevent = 500

Weibull Freq 7.65 4.69 2.71 4.39 2.52 1.46

Bayes 7.78 4.64 2.77 4.51 2.57 1.41

Lognormal Freq 9.87 5.68 3.33 4.69 2.87 1.62

Bayes 8.30 4.94 3.04 4.61 2.82 1.58

Gompertz Freq 8.32 5.64 3.56 4.47 2.53 1.53

Bayes 7.50 4.73 2.78 4.48 2.58 1.49

Loglogistic Freq 9.18 5.67 3.23 4.73 2.96 1.70

Bayes 9.06 5.63 3.19 4.71 2.91 1.71

PredSynth Freq 7.92 4.93 2.93 4.48 2.66 1.48

(Average) Bayes 7.95 4.94 2.90 4.52 2.69 1.51

PredSynth Freq 7.94 4.95 2.88 4.38 2.49 1.53

(MSPE) Bayes 7.58 4.77 2.84 4.54 2.73 1.62

PredSynth Freq 7.69 4.85 2.90 4.50 2.61 1.44

(Vote) Bayes 7.78 4.87 2.85 4.49 2.74 1.50

Abbreviation: MSPE, minimum squared prediction error.
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TABLE 6

Prediction intervals for simulation 2 based on raw quantiles
a

Model

% Event Observed 25% 50% 75% 25% 50% 75%

Method Nevent = 100 Nevent = 500

Weibull Freq 25.2 19.4 12.9 13.9 11.1 7.5

72.1 83.2 88.6 70.4 83.4 91.2

Bayes 43.0 25.6 14.6 26.2 15.5 8.6

92.6 93.5 91.8 95.8 94.2 94.1

Lognormal Freq 27.6 21.6 14.7 14.0 11.3 7.8

64.9 77.5 87.3 68.5 81.6 88.7

Bayes 48.2 28.4 16.3 26.7 15.7 9.0

93.9 94.2 93.3 95.6 93.9 93.8

Gompertz Freq 24.5 18.4 11.5 13.9 11.2 7.5

69.3 75.1 71.3 70.7 82.0 88.9

Bayes 42.1 24.8 14.2 26.2 15.4 8.6

93.2 93.1 91.5 96.0 94.0 93.3

Loglogistic Freq 27.2 21.3 14.4 14.0 11.3 7.8

67.7 78.8 87.0 68.4 79.7 87.4

Bayes 47.6 28.5 16.4 26.8 15.8 9.0

90.9 92.1 91.4 95.2 92.5 92.3

PredSynth Freq 32.3 24.0 15.8 15.0 12.0 8.3

82.2 89.0 93.5 73.3 84.8 93.4

(Average) Bayes 47.1 27.9 16.0 27.0 16.0 9.1

94.6 94.8 93.8 96.6 94.8 95.0

PredSynth Freq 29.2 21.6 14.1 14.2 11.4 7.8

76.8 86.3 89.0 71.7 83.8 90.1

(MSPE) Bayes 42.4 24.9 14.2 26.3 15.5 8.8

93.3 93.0 91.5 96.0 93.4 92.1

PredSynth Freq 31.8 23.6 15.5 14.7 11.8 8.1

81.0 89.3 92.8 72.9 84.4 92.7

(Vote) Bayes 45.4 26.7 15.3 26.7 15.8 9.0

93.9 94.3 93.1 96.3 94.4 93.5

Abbreviation: MSPE, minimum squared prediction error.

a
The top numbers are the mean interval length as a percentage of the target values. The bottom number is the coverage percentage.
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