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High-efficiency single-photon generation via
large-scale active time multiplexing
F. Kaneda*† and P. G. Kwiat†

Deterministic generation of single- and multiphoton states is a key requirement for large-scale optical quantum
information and communication applications. While heralded single-photon sources (HSPSs) using nonlinear
optical processes have enabled proof-of-principle demonstrations in this area of research, they are not scalable
as their probabilistic nature severely limits their generation efficiency. We overcome this limitation by demon-
strating a substantial improvement in HSPS efficiency via large-scale time multiplexing. Using an ultra-low loss,
adjustable optical delay to multiplex 40 conventional HSPS photon generation processes into each operation
cycle, we have observed a factor of 9.7(5) enhancement in efficiency, yielding a 66.7(24)% probability of collecting
a single photon with high indistinguishability (90%) into a single-mode fiber per cycle. We also experimentally
investigate the trade-off between a high single-photon probability and unwantedmultiphoton emission. Upgrad-
ing our time-multiplexed source with state-of-the-art HSPS and single-photon detector technologies will enable
the generation of >30 coincident photons with unprecedented efficiency.
INTRODUCTION
In the past two decades, photon pair sources based on spontaneous
parametric downconversion (SPDC) and spontaneous four-wave mix-
ing have been used for many groundbreaking quantum information
experiments (1).However, it is very difficult to further scale up quantum
information and communication applications by simply using multiple
photon pair sources, since photon pairs cannot be generated determi-
nistically; for a mean number of photon pairs per pump pulse m, the
generation probability of k photon pairs is given by mk/(m + 1)k+1.
Therefore, the single pair generation probability peaks at only 25%
due to the non-negligible likelihood (∼mk) of unwanted zero andmul-
tiple pair generations. For example, a recent 12-photon experiment (2)
using six SPDC sources needed to keep m < 0.05 to suppress the multi-
pair emissions, resulting in a 12-photon coincidence generation rate of
only <0.01/s and a final detection rate of only a small event per hour.

In 2002, Pitmann and co-workers (3) and Migdall and co-workers
(4) independently proposed “multiplexing” as a technique to over-
come the probabilistic nature of SPDC sources. In general multiplex-
ingmethods (see Fig. 1A), a twin photon (signal photon) generated by
multimode, probabilistic SPDC processes is rerouted to a single mode
by adaptive optical switches controlled in accordance with a mode
analysis of the other twin photon (idler photon), whose mode is cor-
related (or entangled) to that of the “heralded” signal photon. In this
case, the single-photon generation probability for such a multiplexed
heralded single-photon source (HSPS) is no longer constrained by the
25% limit and can reach as high as amultiplexed heralding probability

PH ¼ 1� ð1� pÞN ð1Þ

where N is the number of multiplexed modes and p is the probability
of a trigger detector signal per mode, i.e., approximately the product
of m and the trigger system detection efficiency ht for one SPDCmode.
Thus, for a sufficiently large number of multiplexed modes, one can
achieve pseudo-deterministic generation of heralding signals and there-
by heralded single photons. Since the proposals in 2002, this promising
method has been theoretically analyzed and extended (5–12).

For practical implementations of multiplexed HSPSs, there are
two challenges in addition to large-scale multiplexing: First, losses
in both HSPS and optical switches should be very low because lost
single-photon states, unlike classical states of light, cannot be restored.
The other challenge is to generate indistinguishable photons nec-
essary to achieve high-visibility multiphoton interference central to
most photonic quantum-gate operations (13, 14). Therefore, HSPSs
and optical switches also need to generate and maintain pure single-
photon states in each multiplexed mode and then convert those to
an identical pure state. Some experimental attempts have demon-
strated large-scalemultiplexing (15, 16), low-loss photon generation/
rerouting (15, 17), or indistinguishable single-photon generation
(17–19), but none of previous experiments simultaneously achieves
all three key requirements.
RESULTS
Experimental method
Here, we demonstrate the first large-scale and low-loss multiplexing
to produce heralded single photons with very high probability and in-
distinguishability. To achieve such a high-quality single-photon source,
we implemented a time-multiplexing system, extending the method
proposed by Pittman and co-workers (3) as shown in Fig. 1 (B and
C). With our method, one can implement a large-scale multiplexing
with only one HSPS and adjustable delay line [which in general works
as a quantum memory (20)], while other demonstrated methods, such
as spatial-multiplexing (4) and frequency-multiplexing (21, 22)
methods, require a number of HSPSs, and/or optical switches, and/or
conversion lasers. In our time-multiplexing scheme, a HSPS pumped
by N sequential pump pulses with a period t (= 10 ns) probabilisti-
cally generates photon pairs. An adjustable delay line triggered by a
heralding signal stores a heralded photon for an arbitrary integer
multiple of t. A stored photon is released at a certain predetermined
output time bin regardless of its birth time bin, and therebyN time bin
modes of heralded single photons are multiplexed into the single
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output time bin.We implemented this schemewith high-quality com-
ponents: Our heralded photons at 1590 nm have 88% coupling ef-
ficiency into a first collection single-mode fiber and 91% spectral
indistinguishability (23). An adjustable delay line consisting of a very
low-loss optical switch [a Pockels cell (PC)] and polarizing beam splitter
(PBS) and built with careful spatial-mode management has only 1.2%
loss per cycle. Moreover, to maintain the temporal indistinguishability
of multiplexed single photons, the cycle length is matched to t within
0.01 ps, much less than the 6.1-ps pulse duration of heralded single
photons. The delay line’s group velocity dispersion, which can also
make single photons distinguishable in terms of storage cycles, is neg-
ligible for the 0.8-nm bandwidth of our single photons.

Time-multiplexed single-photon generation
We characterized our time-multiplexed photons using a setup with a
nonpolarizing beam splitter (NPBS) and two single-photon detectors
(SPDs) to measure single-photon counts and unwanted multiphoton
contributions simultaneously. The multiplexed heralding probability
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shown in Fig. 2A is estimated as PH = H/R, where H is the heralding
signal rate and R = 500 kHz is the repetition rate of the multiplexing
process (currently limited by our PC electric driver). Figure 2B shows
the multiplexed single-photon probability estimated by

P1 ¼ 1
Rh

S1 þ S2 � C
4
h
� 1

� �� �
ð2Þ

where Si is a single count rate of detector i, C is a coincidence count
rate between detectors 1 and 2, and h = 0.426 is the net transmission of
the optics from the second collection fiber (after the delay line) to
SPDs. In Eq. 2, C is included to correct for multiphoton contributions
in S1 and S2 (see Materials and Methods for details). Our source was
tested for three different mean photon numbers per pulse: For m = 0.18,
we observed nearly saturated PH (= 0.977) with N = 40 time bins.
With this condition, we observed P1 = 0.667(24), corresponding to
E=9.7(5) times enhancement over the nonmultiplexed case (forN=1).
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Fig. 1. Multiplexed HSPSs and our implementation. (A) Simplified diagram of a general multiplexed HSPS. Multimode SPDC source(s) probabilistically generate
photon pairs in which a signal-photon state is correlated to its twin idler-photon state. According to a mode analysis of an idler photon, an adaptive N × 1 optical switch
converts a signal-photon state to a predetermined output mode, e.g., time bin. (B) Timing diagram of our time-multiplexed scheme. Our HSPS pumped with a period t
(probabilistically) generates photons in N different time bins. An adjustable delay line can delay signal photons for an arbitrary integer multiple of t so that any initial
time bin state of a heralded photon is converted to a fixed output time bin. (C) Schematic diagram of our experimental setup. See Materials and Methods for exper-
imental details. SHG, second harmonic generation; PPKTP, periodically poled potassium titanyl phosphate; DM, dichroic mirror; FC, fiber coupler; SMF, single-mode fiber;
FPGA, field-programmable gate array.
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To our knowledge, this is the highest single-photon probability after
single-mode fiber coupling [some semiconductor single-photon sources
(24–26) have demonstrated higher single-photon extraction probabil-
ities after a first collection lens but poor coupling into a single-mode
fiber, and therefore substantially poorer potential performance in any
applications that requires photons in a single spatial mode; see Table 1].
With m = 0.05 and 0.004 and N = 40, we observed (PH, P1) = [0.639,
0.412(13)] and [0.082, 0.051(2)], respectively. Although the heralding
probabilities did not reach saturation for these lower mean photon
numbers, the enhancement factors are much higher than for
m = 0.18: E = 18.7(9) and 27.9(20) for m = 0.05 and 0.004, respectively.

Unwanted multiphoton contributions can be quantified by the
second-order autocorrelation function g(2)(t = 0), which can be esti-
mated by

gð2Þðt ¼ 0Þ ¼ CR
S1S2

ð3Þ

For m = 0.18, 0.05, and 0.004, we observed g(2)(t = 0) ~0.27,
~0.09, and ~0.007, respectively, all of which were approximately
constant versus N (see Fig. 2C and Table 1). This indicates that the
time-multiplexing technique successfully enhances the single-photon
generation probability without increasing the multiphoton noise rela-
tive to the single-photon fraction. The g(2)(t = 0) increases with m due
to higher multiphoton noise, and therefore, there is a trade-off be-
tween g(2)(t = 0) and P1. However, as we discuss below, our observed
g(2)(t= 0) can be further suppressed without reducing P1 by introducing
high-efficiency photon number–resolving (PNR) heralding detectors.

Wedirectlymeasured the indistinguishability of the time-multiplexed
photons by Hong-Ou-Mandel interference (HOMI) (27). For this mea-
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surement, we prepared an additional nonmultiplexed HSPS, whose
heralded single photons were coupled to the second input port of the
NPBS so they could be interfered with the time-multiplexed photons
(see Fig. 1C). Our observed HOMI dips with N = 40 are shown in
Fig. 2 (D to F) . The respective estimated visibilities with the best-fit
theoretical curves (23) for m = 0.18, 0.05, and 0.004 were V = 77(3)%,
85(3)%, and 91(4)%, respectively, with raw coincidence count rates,
i.e., without accidental subtraction. Our observed visibility is lower
for higher m because of highermultiphoton noise as shown in Fig. 2B.
However, for all mean photon numbers, those visibilities after sub-
tracting background counts are ~90%, similar to that for two non-
multiplexed photons from our HSPS (23). Thus, we conclude that the
spectral and temporal indistinguishability of our heralded photons is
wellmaintained even after themultiplexing system.Moreover, the un-
corrected visibility should be similarly improved by incorporating
PNR detector.
DISCUSSION
Possible improvements
We expect that our demonstrated source can be made even more ef-
ficient by following feasible improvements with currently available
technologies: First, for precisely and efficiently heralding only single-
photon states and excludingmultiphoton contributions, high-efficiency
PNR detectors can be introduced. Higher efficiency detectors lower
the mean photon number of the HSPS needed to achieve saturated
heralding signal rates; therefore, multiphoton contributions and g(2)

can be significantly reduced while maintaining or even increasing P1.
High-efficiency superconducting nanowire detectors (28), either with
a cascade configuration or with intrinsic PNR capability (29), are
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Fig. 2. Experimental results. (A) heralding signal probability PH, (B) single-photon probability P1, and (C) second-order autocorrelation function g(2)(t = 0) versus the
number of multiplexed time bins N. PH and P1 are significantly enhanced as N, while g(2)(0) is approximately unchanged for all different mean photon numbers m. (D to
F) Observed Hong-Ou-Mandel interference for synchronized photons with N = 40. Empty circles, squares, and diamonds in (D) to (F) show data points after subtracting
accidental coincidences. Solid and dashed lines are the best-fit theoretical curves (23) for raw coincidences and those after subtracting accidental coincidences, re-
spectively. V denotes the interference visibility without (with) subtracting accidental coincidences. Error bars are estimated by Poissonian photon counting statistics.
3 of 6



SC I ENCE ADVANCES | R E S EARCH ART I C L E
preferable for this improvement. Our setup for these measurements
had four cascaded silicon detectors, but their∼62% detector efficiencies
enable only partial PNR capability and did not well suppress the g(2)

of our source. The spectral indistinguishability of our HSPS can also
be improved by using an optimized pump laser wavelength (23). In-
corporating group velocitymatching conditionswith custompoling of
nonlinear optical crystals (30, 31) can eliminate peripheral lobes of the
ordinary phase-matching function and can achieve >99% spectral in-
distinguishability. The system repetition rate of our demonstrated
source is presently limited by the 1-MHz switching rate of available
bulk PCs. However, we expect that faster devices will be available in
the near future. With the feasible improvements (>95% trigger de-
tection efficiency, multiplexing N = 100 time bins, >99% spectral in-
distinguishability, and R = 5 MHz, see details in the Supplementary
Materials) P1, g

(2), and indistinguishability can be enhanced to ~ 75%,
~0.05, and ~99%, respectively.

Comparison with other single-photon sources
A comparison of our source with other representative single-photon
sources including nonmultiplexed SPDC sources (2, 32), multiplexed
HSPSs (15, 17, 18), and semiconductor quantum dot (QD) sources
(24–26) is shown in Table 1. Our source for m = 0.18 significantly out-
performs all other state-of-the-art sources in P1 and has a single-photon
indistinguishability I comparable to the best indistinguishable photon
sources. The g(2)(t = 0) form=0.18 isworse than semiconductor sources
and is not directly applicable for multiphoton applications requiring
high-visibility HOMI (as shown in Fig. 2D); however, the aforemen-
tioned improvement of trigger detectors can make it comparable, ren-
dering our source useful for these applications. In addition, our source
for m = 0.05 still has a higher P1 than all of the previously demonstrated
single-photon sources, while its g(2)(t = 0) is lower than nonmultiplexed
SPDC sources that are successfully used for 10- and 12-photon genera-
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tions (2, 32). This indicates that our demonstrated source is readily ap-
plicable for demonstrations of >10-photon applications with orders of
magnitude higher coincidence rates than in previous demonstrations.

We can also consider howwell ourmethods would perform at pro-
ducing multiple individual photons. Figure 3 shows predicted multi-
photon generation rates CM for our time-multiplexed HSPS, together
with those of the most efficient nonmultiplexed SPDC source (2) and
QD single-photon source (26). CM = P1MR denotes anM-photon co-
incidence generation rate with the assumption thatM identical sources
are prepared and operated synchronously. For lower photon numbers,
P1 has less influence on CM, and R is the relatively important factor.
Our source with its lower repetition rate (R = 500 kHz) is less effi-
cient compared to other sources. However, P1 is very critical for higher
photon numbers, and our source with very high P1 is orders of mag-
nitude brighter than the other sources forM > 15, while the best non-
multiplexed SPDC and QD sources are limited to create up to 10 and
Table 1. Comparison of performances of single-photon sources. MUX, multiplexed HSPS; E, single-photon enhancement factor in MUX; I, indistinguishability;
CM = P1

MR, predicted M-fold coincidence generation rate, assuming that M-independent sources can be prepared and synchronously operated. Note that P1 is
the probability of preparing a single photon that is coupled into a single-mode fiber. For sources reported for different experimental parameters, results with
conditions demonstrating the highest P1 are shown.
References
 Type of source
 R (MHz)
 PH
 P1
 E
 g(2)(t = 0)
 I
(32)
 SPDC
 ~170
 —
 ~0.02
 —
 ~0.1
 0.91
(2)
 SPDC
 ~80
 —
 ~0.03
 —
 ~0.1
 0.962(11)
(17)
 MUX
 80
 ~0.01
 ~0.001
 ~4
 ~0.5
 0.887(38)
(15)
 MUX
 0.05
 0.99
 0.386(4)
 5.6
 0.48(3)
 ~0.05
(18)
 MUX
 10
 ~0.01
 ~0.002
 2
 ~0.2
 0.91(16)
(24)
 QD
 82
 —
 ~0.001
 —
 0.0028(12)
 0.996
(25)
 QD
 80
 —
 0.14
 —
 0.013
 0.603(6)
(26)
 QD
 76
 —
 0.337
 —
 0.027
 0.93
This work (MUX)
m = 0.18
 0.5
 0.98
 0.667(24)
 9.7(5)
 0.269(7)
 0.92(3)
m = 0.05
 0.5
 0.64
 0.412(13)
 18.7(9)
 0.088(7)
 0.90(3)
m = 0.004
 0.5
 0.08
 0.051(2)
 27.9(20)
 0.007(7)
 0.91(4)
Possible improvement
 m = 0.1
 5
 0.99
 0.75
 12.5
 0.05
 0.99
Fig. 3. Predicted M-photon coincidence production rate CM for different
single-photon sources. While our time-multiplexed source is less efficient for
lower M due to its lower repetition rate, orders of magnitudes better success rates
are expected for M > 15.
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17 photons with reasonably high event rates (CM > 1/s), our source is
capable of >30-photon event generation. Moreover, with the feasible
improvements outlined above, even >50-photon event generation is
possible; such a highly scalable resource would be critical for future
photonic quantum information processing.

Scalability is also important for multiphoton generation. Our time-
multiplexing approach can be compatible with integrated optics, which
are obviously quite scalable in terms of fabrication and robustness,
but mitigating loss in such a scheme remains a major challenge. In-
stead, scalable implementation (with a tabletop size at largest) is pos-
sible with bulk optics by efficiently extracting multiple individual
photons from one source. For example, as demonstrated in (33), se-
quentially produced photons from one source can be efficiently stored
into a large optical storage ring that can hold photons inmultiple time
bins. In the same experiment, photons in a storage ring have been suc-
cessfully used for time bin–encoded quantum computing. One can also
use a photon router (26, 34) that can distribute sequential photons from
one source to different input ports of an optical circuit. Note that both
schemes can be further improved by applying our time-multiplexing
and low-loss optical switching techniques. Conversely, combining these
photon storing and/or routing techniques with our time-multiplexed
source would enable a tabletop implementation for large-scale multi-
photon generation.

In summary, we have demonstrated large-scale time multiplexing
for efficient and indistinguishable single-photon generation. Our HSPS
and adjustable delay line developments allowmultiplexing up to 40 time
bin modes of heralded single photons, with very low loss and high in-
distinguishability. Consequently, our time-multiplexed HSPS has a
significantly better single-photon emission probability than those in
previous demonstrations and has expected orders ofmagnitude higher
multiphoton event rates. Incorporating currently available technol-
ogies with our source can further improve multiphoton noise and
indistinguishability, enabling the first resource for quantum applica-
tions using >50 individual photons. We anticipate that this time-
multiplexed source with these unprecedented efficiencies will be an
optimal resource for large-scale photonic quantum computation sys-
tems, particularly for quantum walk (35) and boson sampling (36) in-
vestigations, to demonstrate “quantum computational supremacy” over
classical computation systems.
MATERIALS AND METHODS
Heralded single-photon source
A 20-mm-long periodically poled potassium titanyl phosphate crystal
pumped by a frequency-doubled Yb laser (l = 521 nm, t = 10.0 ns)
generated collinear photon pairs via SPDC. Idler photons at 777 nm
were detected by a cascade of four Si avalanche photodiode detectors,
each of which has a ∼62% detection efficiency. The detector cascade
allowed us to reduce the effect of each SPD’s saturation and to re-
solve the approximate photon number in a time bin. Signal photons
at 1590 nmwere sent to an adjustable delay line via a (fixed) fiber delay
line. With a group velocity matching condition in the SPDC process,
91% spectral indistinguishability of heralded single photons were
achieved without spectral filtering (23). Transmission probabilities
for idler and signal photons after a first collection fiber were 84 and
88%, respectively. Similar performance was observed in another non-
multiplexed HSPS used for HOMImeasurements. For this latter non-
multiplexed HSPS, we used m = 0.008 so that unwanted multiphoton
states degrade the HOMI visibilities only ~1%.
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Fixed predelay line
The heralded photons were first directed into a 100-m fiber delay line,
which holds the photons for ~500 ns. This compensates for the elec-
tronic latencies (~100 ns from a trigger photon to firing the PC); the
rest of the delay (~400 ns) allowed us to select the latest heralded time
bin for up to N = 40. Storing only the “latest-born” heralded photon
minimizes the number of storage cycles and the associated loss (15).
Lengthening a delay fiber makes it possible to extend the number of
multiplexed time binsN, enabling a saturatedPHwith lowerm. However,
this may require more careful group velocity dispersion management
and fiber length stabilization. Our current 100-m-long dispersion-
shifted fiber in our temperature-stabilized laboratory is sufficiently
stable without these additional efforts. After the fixed fiber delay, the
photons were directed into the adjustable delay.

Adjustable delay line
Our adjustable delay line consisted of a 10-ns delay loop, custom
Brewster-angled PBS, and a PC comprising a pair of rubidium titanyl
phosphate crystals. The spatial modes of the loop were stabilized by
two concave mirrors, each of which has radius of curvature of 1.00 m.
A field-programmable gate arraymodule processes input signals from
four trigger SPDs, triggering the PC. When a heralded photon enters
into the delay line through the PBS, the PCwas activated, rotating that
photon’s polarization by 90° to store and delay it in the loop. After
delaying for the necessary integer multiples of t = 10 ns, the stored
photon was released by a second switching of the PC. The single-pass
cavity loss is 1.2%, corresponding to a photon 1/e lifetime of ~830 ns
(= 83 cycles). The slight loss is due to the loss in the PC (0.8%) and
two concave mirrors (0.2% for each). The group velocity dispersion
of the adjustable delay line is ~1.2 × 10−3 ps2 per cycle, negligibly
small compared to the photon coherence time (6.1 ps). Thus, the
cycle-dependent chromatic dispersion, which could degrade spectral
indistinguishability of the synchronized photons, is negligible for up
to N = 40. Our delay line was built with high mechanical stability
optics mounts in a temperature-stabilized laboratory and has a small
long-term cycle length drift (∼0.01 ps/hour),much less than the 6.1-ps
single-photon pulse duration. A PC and PBS after the delay line com-
prise an optical shutter that only transmits photons heralded in an
allowed output time bin.

Estimation of P1
We estimated a single-photon probability P1, assuming that the prob-
ability of more than two photons is negligibly small; a multiplexed
k-photon probability Pk for k ≥ 3 is expected <1.5% of P1 for m = 0.18
in our experiment. We modeled our SPDs as bucket detectors that
discriminate between zero and one or more photons. The NPBS’s
transmission/reflection ratio is also assumed to be 1. With those as-
sumptions, single and coincidence count rates are given by

Si ¼ P1Rh
2

þ P2R
h
2
þ hð2� hÞ

4

� �
ð4Þ

C ¼ P2Rh2

2
ð5Þ

where P2 is the probability of a two-photon state after multiplexing.
The second and third terms in Eq. 4 are the respective detector click
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probabilities that one and two of two photons arrive at detector i.
Equation 2 is obtained by substituting Eq. 5 into Eq. 4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaaw8586/DC1
Table S1. Experimental parameters.
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