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ABSTRACT

Memory encoding and retrieval involve distinct interactions between multiple brain areas,
yet the flexible structure of corresponding large-scale networks during such memory
processing remains unclear. Using functional magnetic resonance imaging, we employed
a spatiotemporal encoding and retrieval task, detecting functional community structure
across the multiple components of our task. Consistent with past work, we identified a set
of stable subnetworks, mostly belonging to primary motor and sensory cortices but also
identified a subset of flexible hubs, mostly belonging to higher association areas. These
“mover” hubs changed connectivity patterns across spatial and temporal memory encoding
and retrieval, engaging in an integrative role within the network. Global encoding network
and subnetwork dissimilarity predicted retrieval performance. Together, our findings
emphasize the importance of flexible network allegiance among some hubs and
the importance of network reconfiguration to human episodic memory.

AUTHOR SUMMARY

The degree to which task-related functional connectivity patterns remain stable or are
dynamic when people learn and remember information remains largely untested. We
investigated this issue by collecting fMRI while participants performed a memory encoding
and retrieval task. Our results suggested that subnetworks are dynamic and tend to fragment
relative to a resting-state network partition. From these changes in connectivity, we identified
a subset of “movers,” or in other words, nodes that changed their allegiance to subnetworks
across all aspects of the task. These findings emphasize that memory is a dynamic process
involving changes in task-related functional connectivity across the brain.

INTRODUCTION

An important goal of cognitive neuroscience is to understand how memory-related brain areas,
like the hippocampus and parietal and prefrontal cortices, interact during memory encod-
ing and retrieval (King et al., 2015; Rugg & Vilberg, 2013; Schedlbauer et al., 2014). Much
of the research dedicated to episodic memory has focused on the activity within these spe-
cific brain regions by using functional magnetic resonance imaging (fMRI) (Cansino et al.,
2002; Kim, 2010; Paller & Wagner, 2002; Spaniol et al., 2009), yet local activation patterns

a n o p e n a c c e s s j o u r n a l

Citation: Schedlbauer, A., & Ekstrom,
A. (2019). Flexible network community
organization during the encoding and
retrieval of spatiotemporal episodic
memories. Network Neuroscience, 3(4),
1070–1093. https://doi.org/10.1162/
netn_a_00102

DOI:
https://doi.org/10.1162/netn_a_00102

Supporting Information:
https://doi.org/10.1162/netn_a_00102

Received: 24 February 2019
Accepted: 24 June 2019

Competing Interests: The authors have
declared that no competing interests
exist.

Corresponding Author:
Arne Ekstrom
adekstrom@email.arizona.edu

Handling Editor:
Michael Cole

Copyright: © 2019
Massachusetts Institute of Technology
Published under a Creative Commons
Attribution 4.0 International
(CC BY 4.0) license

The MIT Press

http://crossmark.crossref.org/dialog/?doi=10.1162/netn_a_00102&domain=pdf&date_stamp=2019-09-11
https://doi.org/10.1162/netn_a_00102
https://doi.org/10.1162/netn_a_00102
mailto:adekstrom@email.arizona.edu


Flexible network organization of episodic memory processes

themselves cannot inform global interactions between different brain areas or correspondingEpisodic memory:
Memory for events that occur in a
unique context specified by a distinct
time (the “when”) and place (the
“where”).

functional networks. Other studies have employed resting-state fMRI to extract groups of inter-

Encoding and retrieval:
The processes of inputting
information to create a memory trace
that can be stored and of accessing
that previously encoded and stored
information, respectively.

acting regions based on their functional connectivity patterns in the absence of stimuli; these

Functional connectivity:
Coordinated activity between
two brain regions as assessed by
a statistical dependency between
the time series.

subnetworks, in turn, have been related to memory behaviors (Andrews-Hanna et al., 2014;

Subnetworks:
Smaller groups of functionally
connected regions within the
larger whole-brain network.

Tambini et al., 2010). One strength of resting-state fMRI and resting-state networks (RSNs)

Resting-state networks (RSNs):
Networks derived from brain
activity measured using fMRI when
participants are lying still with their
eyes open and not performing a
task.This contrasts with functional
networks derived from participants
actively engaged in a task.

is that such networks have been repeatedly and robustly identified over many participants
and studies (Beckmann et al., 2005; Damoiseaux et al., 2006; Fox et al., 2006; Power et al.,
2011; Smith et al., 2009; Yeo et al., 2011), and they show meaningful relationships to mem-
ory performance more generally (Vaidya & Gordon, 2013). While there is little question that
RSNs are remarkably robust both within and across participants and even for different forms
of resting (e.g., Golland et al., 2007), the lack of explicit tasks during this state limits inference
about the engagement of shorter time-frame changes directly relevant to memory encoding
and retrieval.

A common finding from studies of task-related functional networks is that they deviate
somewhat in structure compared with those derived from resting state (Bolt et al., 2017;
Cohen & D’Esposito, 2016; Keerativittayayut et al., 2018; Spadone et al., 2015). Furthermore,
some studies suggest that functional subnetworks, and even single regions within those subnet-
works, can exhibit a large range of connectivity patterns over time (Braun et al., 2015; Inman
et al., 2017) and over different tasks (Bassett et al., 2011; Cohen & D’Esposito, 2016; Spadone
et al., 2015). Hence, past findings indicate that flexibility in functional connectivity between
RSNs and task-related networks and between different task states may be pertinent to behavior.
In particular, a limited number of studies have employed task-related functional connectivity
analyses to better understand such memory-related changes (Geib et al., 2015; Inman et al.,
2017; Keerativittayayut et al., 2018; King et al., 2015; Westphal et al., 2017). However, few
studies have looked specifically at how task-related networks change as a function of epi-
sodic memory encoding and retrieval, and those studies that have did not investigate changes
in task-related network configurations and subnetwork structure during different aspects of
memory.

Previous work from our lab has provided evidence for anatomical (Copara et al., 2014;
Ekstrom et al., 2011; Schedlbauer et al., 2014) and spectral (Watrous et al., 2013) differences
between the retrieval of spatial and temporal contextual information related to episodic mem-
ories (i.e., the “when” and “where” of an event). Specifically, Schedlbauer and colleagues
(2014) showed substantial overlap between networks derived from the retrieval of these dif-
ferent contexts but also showed differential anterior and posterior subnetworks related to the
processing of temporal and spatial information, respectively. These findings would suggest that
a stable core network might underlie mnemonic cognition, but there is relevant variability in
regional participation and interactions during contextual processing, in which both these stable
and flexible connectivity patterns can be captured using large-scale network representations.
These results are echoed in another study in which the authors found additional variance in
connectivity, or flexibility, when describing a stable core and flexible periphery whose charac-
teristics predicted learning success (Bassett et al., 2013). However, it is not clear how that stable
core corresponded to RSNs delineated by previous studies and how they related specifically
to memory processing.

One way to identify a specific group of nodes within a network, such as a stable core, is to
examine the modular or community structure. Community detection algorithms are frequentlyCommunity detection:

An algorithm that identifies clusters
of nodes within a network that are
more connected to each other than
with other groups.

employed to partition the brain into nonoverlapping sets of regions, termed subnetworks, com-
munities, or modules (Sporns & Betzel, 2016) in order to make inferences about cognition (e.g.,
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Flexible network organization of episodic memory processes

Smith et al., 2009). Typically, such analyses focus on communities that are more distinct or
“modular” and are defined as either 1) having a larger number of intramodular connections
and fewer intermodular connections that link to other modules or 2) are independent com-
ponents. RSNs are usually defined in this manner. One possibility, which we explore here, is
that deviation from RSN architecture during different task states detected via altered commu-
nity structure may be informative in understanding the functional organization of large-scale
networks and the functional role of subsets of nodes during mnemonic processing.

The current study performed a detailed analysis of task-related fMRI connectivity patterns
during a source memory paradigm, in which we recorded both the learning (encoding) andSource memory paradigm:

An objective memory assessment
where participants are required to
identify a previously presented item
and the context in which it appeared.

remembering (retrieval) stages of item-context associations (Cansino et al., 2002; Mitchell &
Johnson, 2009). Using the techniques of graph theory, we probed network organization over

Graph theory:
The study of graphs or networks and
their attributes as assessed through
different metrics.

four different cognitive states: encoding, retrieval, and the different contexts under which en-
coding and retrieval occurred (in our case, spatial versus temporal). To determine variable
subnetwork identities (i.e., changes in composition and connectivity of groups of regions), we
first performed a data-driven partition and also used a resting-state derived partition based on
the Power Atlas (Power et al., 2011), a robust atlas widely applied in other neuroimaging stud-
ies (Cole et al., 2014; Power et al., 2013). We directly compare these two partitions during the
four different components of the memory task as well with the partitions derived from an “ac-
tive baseline” task (Stark & Squire, 2001). Finally, we modeled how much variance in retrieval
performance could be accounted for by the data-driven and resting-state partitions. Together,
our findings suggest that memory encoding and retrieval involve some degree of flexible brain-
wide reconfigurations that are relevant to retrieval performance and that those more flexible
(rather than stable) brain areas assume an integrative role within the networks.

MATERIALS AND METHODS

Participants

Twenty-four young, healthy adults were recruited from the University of California, Davis and
from the surrounding communities to participate in the experiment (mean age = 23.4 years,
range = 18− 33, 12 women). Eighteen participants were included in the final analyses as three
participants were excluded due to technical problems during scanning, one due to excess
head motion, one due to a possible incidental finding, and one due to performance accuracy
falling outside two standard deviations from the mean group accuracy (mean age = 23.8 years,
range = 18 − 33, 10 women). All participants were right-handed, had normal or corrected-to-
normal vision, and were screened for neurological disorders. The experiment was approved by
the Institutional Review Board at the University of California, Davis. All participants provided
written informed consent and were compensated $10 per hour.

Experimental Design and Procedure

Participants underwent a practice version of the task and then encoding and retrieval sessions.
During the preparatory practice session (approximately 15 minutes), participants generated
a primarily spatial (a picture of the layout of their current residence from an overhead per-
spective) and a primarily temporal (a timeline of 10–15 memories from throughout their lives)
context, which were then used during the encoding session. Participants were told to include
memories that they could clearly visualize in their mind’s eye and readily order, although
they were not specifically required to use highly significant or emotionally salient memories.
Once both contexts were complete, participants had 5 minutes to review the locations and
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events before starting the experiment (they did not have access to the context sheet during
the experiment).

Immediately following the preparatory session, participants entered the scanner for the
encoding and retrieval sessions. Using an event-related paradigm, participants were shown
80 objects in four runs of 20 objects each. Stimuli consisted of 100 color photographs of
unique objects against a white background, which were drawn from the CVCL stimulus set
(Brady et al., 2008). Each run alternated between spatial and temporal, and the order was
counterbalanced across participants. Each trial began with a two-second cue period in which
the instruction “Imagine” and an object image appeared on the screen. After 1 second, a con-
text cue (“in SPACE” or “in TIME”) appeared below the object image, indicating whether the
object should be mentally “placed” in their spatial or temporal contexts. The complete cue
remained on the screen for an additional second and was replaced by a central fixation cross
for 4 seconds. Participants were instructed to visualize the cued object in the cued context
during the fixation period.

For spatial trials, participants imagined the object somewhere within the spatial layout of
their residences, focusing on where the object was in relation to other elements. For temporal
trials, participants were instructed to imagine the object somewhere along their memory time-
lines in one of the selected events. For more details and validation of the behavioral paradigm,
please see Bouffard et al. (2018). Following the fixation period, participants had 6 seconds to
rate how vividly they had imagined the object in context on a 1 to 4 scale, with “1” indicating
that they were unable to imagine the item in context and “4” indicating that they were able
to clearly imagine the item in context with lots of detail. Each trial lasted for 12 seconds to-
tal. Between trials, presentation of stimuli was jittered using a central fixation cross with an
intertrial interval of 1, 2, or 3 seconds. At the end of each encoding run, once all 20 trials had
been presented, participants performed a distractor task lasting 1 minute; participants pressed
“1” when an X and “2” when an O appeared on the screen. Specifically, this “active” baseline
task is frequently employed in memory-related tasks because it involves the least amount of
activation in memory-related areas compared with tasks like fixation (Stark & Squire, 2001).

After completing the encoding session, participants began the retrieval session where the
80 previously encountered objects and 20 lure objects were presented across four runs of
25 trials each. For each trial, the object image was first presented on the screen for 6 seconds;
the participant was then required to make an item recognition judgment. After those 6 seconds,
the participants answered a source judgment question where they had 6 seconds to indicate
if the item had appeared in space, in time, or was new. Stimulus presentation was jittered in
the same manner as in the encoding session, and retrieval runs were counterbalanced across
participants. See Figure 1 for details. This task mirrors other tasks that have been used to study
episodic memory with patients and fMRI (Cansino et al., 2002; Davachi et al., 2003; Duarte
et al., 2010).

Imaging Acquisition

Imaging data were collected using a 32-channel head coil on a 3T Siemens Skyra MR machine
at the UC Davis Imaging Research Center in Davis, CA. Functional images were acquired
using a whole-brain (2 × 2 × 2.2 mm voxel) multiband echo-planar imaging (EPI) sequence
(slices= 52, TR= 1, 600 ms, TE= 25 ms, FA= 65◦, FOV= 208 mm, bandwidth= 1,550 Hz/pixel).
A high-resolution T1-weighted structural 3D magnetization prepared rapid acquisition
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Figure 1. Experimental paradigm. Participants completed a source memory experiment consisting of prescan, encoding, and retrieval ses-
sions. During the encoding session, participants “placed” a presented object (“Imagine…in TIME/SPACE”) in either their spatial (familiar spatial
layout) or temporal (timeline of personal events) contexts generated during the prescan session. During the retrieval session, a series of previ-
ously presented items interspersed with novel items was shown, and the participant was required to identify the item (“Did you see…before?”)
and the context in which it was placed during the encoding session (“Where did you see it?”).

gradient echo (MPRAGE) was also acquired (1 × 1 × 1 mm voxel). Experimental stimuli were
presented using PsychoPy software (Peirce, 2007), and responses were collected using an
MRI-compatible button box.

fMRI Data Processing

Functional image processing was performed using Statistical Parametric Mapping (SPM12) soft-
ware (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ ). Functional images were corrected
for differences in motion, coregistered to structural space (high-resolution MPRAGE), and seg-
mented into gray and white matter in preparation for spatial normalization. Images were nor-
malized to MNI space by using the DARTEL toolbox (Ashburner, 2007). Finally, functional
images were spatially smoothed using a 4-mm FWHM isotropic Gaussian kernel and high-
pass filtered at 128 seconds to remove scanner drift and cardiac/respiratory artifacts.

Mnemonic Task Functional Connectivity

As we have described previously (Schedlbauer et al., 2014), we assessed inter-regional in-
teractions throughout the brain by using a beta series approach (Rissman et al., 2004). Im-
portantly, the beta series method allowed us to derive a network representation for different
task conditions that have interleaved trials (rather than block-design) during a scanning ses-
sion. Briefly, each voxel’s BOLD response in the task was modeled in a general linear model
(GLM) (Friston, 1994) as an individual regressor specifying the onset of each trial convolved
with the canonical hemodynamic response function (HRF). Six head motion regressors were
also entered into the GLM. The parameter, or beta, estimates derived for each trial for each
voxel were then sorted by condition (space, time, encoding, retrieval) into a series. Only tri-
als where objects that were correctly identified as old were used, but all conditions consisted
of both correct and incorrect source memory judgments to determine networks involved in
general spatiotemporal mnemonic processes. The beta series of voxels belonging to a region
of interest (ROI) were subsequently averaged culminating in 223 average beta series per con-
dition. Each ROI consisted of a 3 × 3 × 3 voxel cube centered on the coordinates obtained
from the Power Atlas (Power et al., 2011). The Power Atlas contains 264 regions total; only
labeled cortical regions that were part of an established RSN were included in our analyses
(total = 219).
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Because of lack of coverage within the medial temporal lobe, we included four addi-
tional ROIs (left and right, parahippocampal gyrus and hippocampus) derived from the Shirer
Atlas (Shirer et al., 2012) for a total of 223 nodes. These nodes comprised the memory or
MEM subnetwork. Finally, we computed the Pearson product-moment correlation coefficient
between all ROI’s beta series, creating a correlation matrix of all pairwise combinations de-
scribing the strength of the functional relationship between two regions for each individual.
Because motion has been found to affect functional connectivity estimates (Power et al., 2012),
trials that included any volume that exceeded the average frame-wise displacement threshold
of 0.55 mm were excluded from the beta series. In addition, for each subject, random trials
from each beta series were removed to create equal-length beta series for spatial and temporal
encoding and for spatial and temporal retrieval. The mean and standard deviation of the num-
ber of trials comprising the beta series were calculated for each condition (spatial, temporal
encoding: 37.22 ± 2.80; spatial, temporal retrieval: 34.11 ± 6.45).

Baseline Task Functional Connectivity

To better compare the topology of memory task-based networks with a “null” network, we em-
ployed similar methods outlined by Fair and colleagues (2007), where residual time-courses
from interleaved nontask periods can be extracted and used to simulate “continuous” resting-
state data. During participant-specific first-level modeling, individual stimulus onsets from
each condition were convolved with the canonical HRF and entered into a GLM. For encod-
ing, trials were modeled for a total of 6 seconds beginning with the onset of the imagination
cue. Retrieval trials were modeled with varying durations consisting of the 6 seconds of item
recognition plus the response time of the source recognition question. Trials in which no re-
sponse was made during the second half were modeled with a duration of 12 seconds, the total
length of the trial. Intertrial intervals, consisting of a central fixation cross and the distractor
task at the end of each encoding session, were implicitly modeled. In addition to task-related
regressors, six head motion regressors for each session were also entered into the GLM. We
then constructed a baseline network derived from the residual time series (extracted from the
univariate models) during the four 1-minute distractor tasks after each encoding block. We
excised ∼160 seconds of data after each block and concatenated the segments; to ensure no
effects from the delay of the HRF, only time points beginning 18 seconds after the distractor
task started were included in the series. The Pearson product-moment correlation coefficient
between all ROI’s residual time series was computed to create the baseline task connectivity
matrices.

Network Analyses

Networks were first Fisher-transformed, and any negative edges or edges from nodes that were
within 20 mm of each other were set to zero in the connectivity matrices. These short dis-
tance correlations may be suspect because they could arise due to shared local neural activity,
blurring from data preprocessing methods, or head motion rather than representing genuine
regional interactions (Power et al., 2012, 2013). Analyses were performed both at the individual-
and group-level networks. Group connectivity matrices consisted of the average of all individ-
ual participant connectivity matrices. To understand data-driven community structure within
each network, we employed the modularity maximization algorithm (known as Louvain, im-
plemented as in Rubinov & Sporns (2010) with positive, weighted edges, in which the weights
were determined by the strength of the transformed Pearson’s correlation coefficient). By setting
the algorithm’s resolution parameter to 1.25, the subnetwork or community size and number
would better match those of the RSNs outlined by the Power Atlas (Cohen & D’Esposito, 2016).
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Because network thresholding is still a debated issue within the graph theory community,
we wanted to estimate the most stable network partition across a number of algorithm itera-
tions and across a range of thresholds by using consensus clustering methods (Lancichinetti &
Fortunato, 2012). For each graph threshold (cost range: 0.01–0.99 in 0.1 increments), we ran
the community detection algorithm for a total of 100 iterations to build a consensus matrix
where each cell in the matrix indicates the proportion of times two modules were assigned to
the same community. This matrix was then thresholded at 0.5 to reduce spurious node assign-
ment, and the detection algorithm was applied a final time to extract a stable partition at that
particular threshold. From each of these semifinalized partitions at the different thresholds, we
again compiled a matrix indicating the proportion of times two nodes were assigned to the
same module across all thresholds, thresholded at 0.5, and extracted a final partition. This par-
tition became the final partition used to identify the data-driven communities or subnetworks
for each network condition. (For a more in-depth discussion of different module detection tech-
niques, see Sporns & Betzel, 2016.) BrainNet Viewer (Xia et al., 2013) was used to visualize
the various networks and anatomical distribution of nodes.

Graph Theory Metrics

To examine global patterns in network topology, we vectorized connectivity matrices and cor-
related them between conditions (e.g., space encoding and temporal encoding), giving a sin-
gle value or similarity assessment. In addition to community structure, we employed several
other metrics by using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). Both within-
module degree centrality and participation coefficient (PC) were used to assess local node
flexibility. Importantly, the with-module degree centrality was calculated for the modules ob-
tained from that network’s data-driven partition, not the modules identified across all four con-
ditions, as in Figure 2. Within-module degree centrality is the standardized sum of weighted,
undirected connections of a particular node within its own community, or total intramodular
connectivity. It is defined as follows:

zi =
ki (mi)− k̄ (mi)

sk(mi)

where zi is the within-module z-score of node i, mi is the module containing node i, ki (mi) is
the within-module degree of i, and k̄ (mi) and σk(mi) are the mean and standard deviation of
the within-module mi degree distribution, respectively. The participation coefficient assesses
the connectivity of a node to other communities, or intermodule connectivity, and is defined
as follows:

PCi = 1 − ∑
m∈M

(
ki(m)

ki

)2

where M is the set of modules, and ki(m) is the number of connections between i and all
nodes in module m. Even though this metric has a range from 0–1, we z-scored the values
from each network because of a narrow distribution of calculated values. To assign an identity
to each node, which indicates its role in network communication, we used the within-module
degree centrality and participation coefficient distributions to label each node as connector,
provincial, satellite, and peripheral (Bertolero et al., 2015; Cohen & D’Esposito, 2016). Nodes
important for both intra- and intermodular connectivity are considered connector hubs and
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Figure 2. Data-driven community detection compared with RSNs. (A) The anatomical distribution of nodes used in the analyses is shown
on the transparent brains (left and right, lateral and medial views). The color of the node indicates to which data-driven module each node
belongs. (B) The anatomical distribution of nodes extracted in Power et al. (2011) with each resting-state network (RSN) indicated in the
different colors (Figure from Cole et al., 2013). FPN = fronto-parietal; CON = cingulo-operculo; SAN = salience; DAN = dorsal attention;
VAN = ventral attention; DMN = default mode; SMN = sensorimotor; AUD = auditory; VIS = visual. (C) The gray-scale matrix (4 conditions ×
223 nodes) indicates the module identity for each node for each group-level network. SE = spatial encoding; TE = temporal encoding; SR =
spatial retrieval; TR = temporal retrieval. Nodes belonging to the same module are the same color, resulting in four stable data-driven modules
outlined in red, yellow, green, and blue. M1 = Module 1; M2 = Module 2; M3 = Module 3; M4 = Module 4. Any node boxed in purple is
considered a flexible “mover” node, not belonging to a stable module. (D) Each pie chart shows the proportion of nodes from the RNSs that
now belong to each data-driven module.

have high zi (≥ 0) and high PC (≥ 0). Provincial hubs are important for only intramodular
connectivity and have high zi (≥ 0) but low PC (< 0). Satellite nodes have low zi (< 0) but
high PC (≥ 0) and are important for intermodular connectivity. Lastly, peripheral nodes are
sparsely connected nodes, and those few connections are not to other modules (i.e., low zi
(< 0) and low PC (< 0)). We adapted these zi and PC thresholds, so that all nodes would be
specified as one of the four identities. Normalized mutual information (NMI) is a quantitativeNormalized mutual

information (NMI):
A metric that quantifies the similarity
between two sets of clusters.

way to compare community detection partition schemes overall; we employ this metric to
assess the similarity between the data-driven and RSNs communities. Finally, we introduce
the fragmentation metric to assess changes in specific subnetwork membership. Fragmentation
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quantifies the proportion of the nodes of a defined RSN that realign with other (in this case,
data-driven) modules. Fragmentation, F, of RSNx is defined as:

Fx = 1 − Cx

Tx

where Cxis the largest within-module connected component of RSNx nodes across all modules,
and Tx is the total number of nodes in RSNx.

For statistical comparisons, χ2-test of independence and two-way analysis of variance
(ANOVA) were used to determine condition and subnetwork differences for group and individ-
ual levels, respectively. Bonferroni corrections were used to correct for multiple comparisons.

Regression Models

To assess brain-behavior relationships, we correlated overall network similarity with perfor-
mance for all condition pairs (e.g., spatial and temporal encoding, spatial and temporal re-
trieval). Results were corrected for the six comparisons by using Bonferroni corrections with
a significance threshold of corrected p = 0.05. As an alternative to stepwise regression for
more complex regressions, the least absolute shrinkage and selection operator (lasso) regres-Least absolute shrinkage and

selection operator (LASSO):
A variable reduction technique
for regression models that uses a
regularization parameter to
reduce over fitting.

sion method performs variable selection among a set of dependent variables in linear regres-
sion models by employing regularization (referred to here as the tuning parameter) (Tibshirani,
1996). To select a subset of predictors that best predicts the response variable, the algorithm can
shrink variable coefficients to zero, thus producing a more parsimonious model. To determine
if there were subsets of the network that could also capture the relationship between partici-
pant performance and overall network similarity, we constructed a multiple linear regression
where the similarity between two subnetworks constituted each independent variable.

RESULTS

Experimental Paradigm and Behavior

In a prescan session, participants (n = 18) each generated two contexts: TIME (a series of
organized personal events) and SPACE (a familiar spatial layout). Once identified and mem-
orized, participants next completed a scanned encoding session, where they “placed” a pre-
sented object in the cued context (SPACE or TIME). After each encoding trial, they answered
a vividness judgment question of how well they placed that item in that context. During a
subsequent scanned retrieval session, for each trial, participants made an item recognition
judgment regarding either a previously presented or newly presented object and also made
a source judgment regarding the context the item was previously associated (Figure 1). The
proportion of trials that participants correctly identified both the item and source context will
be referred to as retrieval performance. A paired samples t-test revealed no significant differ-
ences in performance between the spatial and temporal source context conditions, although
the difference was trending (t(17) = 2.08, p = 0.0532); there was no difference for reaction
time (t(17) = −1.01, p = 0.326). Table 1 contains both accuracy and reaction time summary
statistics.

To address how different aspects of our task might be modularized in the brain, we first par-
titioned the networks by using a data-driven approach that relied on consensus clustering over
a range of graph thresholds (see Materials and Methods section for details). We then compared
changing topology of these data-driven, task-based networks (Figure 2A) to an established RSN
partition extracted by Power and colleagues (2011) (Figure 2B). The Power RSNs consist of the
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Table 1. Behavior summary statistics: Task-related changes in community structure

Measure Space Mean Space SD Time Mean Time SD
Item correct 0.95 0.059 0.93 0.048
Item correct source correct 0.86 0.13 0.80 0.13
Item reaction time 1.50 0.31 1.58 0.35
Source reaction time 0.94 0.33 0.98 0.39

fronto-parietal (FPN), cingulo-operculo (CON), salience (SAN), dorsal attention (DAN), ventral
attention (VAN), default mode (DMN), sensorimotor (SMN), auditory (AUD), visual (VIS), and
subcortical subnetworks. The memory (MEM) subnetwork was created from regions from the
Shirer Atlas (see Materials and Methods). Figure 2C shows a matrix of community assignment.
The gray-scale color indicates the assignment of each individual node to a module within each
network as a function of task (spatial encoding, temporal encoding, spatial retrieval, tempo-
ral retrieval). There was considerable overlap in community partitions across the mnemonic
conditions as indicated by the colored boxes in Figure 2C. In other words, sets of nodes were
consistently assigned to the same community or module across all four conditions; each of
these stable groups formed a data-driven module for a total of four modules (blocks of same
colored nodes). One notable difference between the task-based partitions versus the Power-
defined RSNs is that the data-driven network has far fewer modules, yet these modules remain
relatively stable across the different subcomponents of the memory task.

The data-driven partition also revealed a subset of nodes, here termed “movers,” that were
flexible and altered their community alliance across conditions (these mover nodes are sur-
rounded by purple boxes). One of these movers included the hippocampus, an important
structure for memory (Eichenbaum et al., 2007; Scoville & Milner, 1957). A detailed analy-
sis of medial temporal lobe connectivity patterns can be found in the Supporting Information
(Figure SI 1). Each data-driven module is composed of nodes that have been previously as-
signed to specific RSNs (as outlined by Power et al., 2011, and shown in Figure 2B). Figure 2D
shows the percentage of RSN nodes that make up each data-driven module, including the
mover group (see far right pie chart labeled “Movers”). Noticeably, the movers consist of nodes
from multiple RSNs and do not belong primarily to one specific subnetwork. In this way, these
nodes that have been previously classified as belonging to a specific RSN alter their connectiv-
ity in such a way that their community allegiance shifts, ultimately changing the composition of
communities within the brain during a cognitive task. Thus, the data-driven partition revealed
not only a smaller set of subnetworks but also that some of these nodes appear more variable
in their allegiance as a function of memory encoding and retrieval.

One possibility is that the movers were driven by differences in univariate activation patterns
rather than change in connectivity. To address this issue, we correlated the average connectiv-
ity strength of the mover nodes with the corresponding univariate activation within each ROI
for each participant and each condition. Overall, we found only four significant correlations
across all condition and participants (total of 72 correlations), which nonetheless were not
clustered in any meaningful way (Supporting Information Figure SI 2). An additional possibil-
ity is that the mover nodes were in fact “moving” because of high degrees of variability in weak
connections. By correlating the connectivity vector of each node for each pairwise combina-
tion of tasks, we found that mover nodes showed a lower correlation than the nonmover nodes
(Supporting Information Figure SI 3), supporting the idea that movers are meaningfully chang-
ing their connectivity profile, rather than being an artifact of the Louvain method. Together,
these analyses support the idea that movers were changing the subnetworks with which they
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interacted, and that such movement was not due to univariate activation confounds or vari-
ability in weak connections.

To better quantify reorganization between subnetworks across the four conditions in our
experiment, we developed a simple metric, termed fragmentation, which allowed us to di-
rectly compare how the data-driven partition assigned nodes changed community assignment
relative to the RSN-delineated subnetworks. Figure 3A provides a schematic of the fragmen-
tation concept. We applied the fragmentation computation to each RSN (a total of 10 which
are shown in Figure 1B, the sensory and motor RSNs have been combined into a sensorimotor
subnetwork (SMN)) with the group-level (top left panel) and individual-level (top right panel)
networks for each condition of the task (Figure 3B, top row). Subnetworks associated with pri-
mary sensory functions (SMN, AUD, VIS) (Figure 3B) showed overall the least fragmentation.
In contrast, those associated with higher order processes (DMN, MEM, FPN) showed the high-
est degrees of fragmentation. A two-way ANOVA for the individual-level networks (top right
panel) showed a significant main effect of subnetwork (F9,690 = 31.7, p < 0.001) but no main
effect for task or interaction effects. Post hoc comparisons of the MEM RSN showed signifi-
cant differences between all other RSNs except DAN, VAN, and SAN (p < 0.05, Bonferroni
corrected).

Because of the significant levels of fragmentation of some RSNs (as high as 66%), we wanted
to ensure that this divergence from resting-state architecture was not just a product of our par-
ticular set of participants and scanning parameters. Thus, we compared the fragmentation of
the task-based networks to an active baseline task commonly used in the memory literature to
control for rumination. Figure 3B (bottom row) shows the fragmentation score for each RSN
(averaged across the four task conditions from the left panels) and the baseline network frag-
mentation score. Similar to network partitions from RSNs, we again found significant main
effects of both subnetwork (F9,340 = 3.5, p < 0.001) and task (F1,340 = 168.0, p < 0.001)
and an interaction effect between subnetwork and task (F9,340 = 2.7, p = 0.004; Figure 3B,
bottom right panel). Thus, the partition based on the null baseline task from our same record-
ing session was more similar to the RSN partition as shown through reduced fragmentation
compared with the fragmentation of memory-related partitions during encoding and retrieval.
Although we observed some differences in individual versus group fragmentation patterns, sug-
gesting that individual patterns may be more variable than what is common across individual
networks, the patterns for greater fragmentation among cognitive versus sensory subnetworks
held. These data suggest that episodic memory induces higher degrees of fragmentation than an
appropriately compared “null” baseline. From this perspective, community structure is flexible
compared to, and even between, tasks that vary only along a single dimension, like encoding
context.

To better understand how network partitions change as a function of network connectivity
cost, we applied NMI over a range of thresholds, which shows more generally how similar two
partitions (RSN versus task-data-driven and null-data-driven) are to each other (Figure 3C). NMI
values of one and zero indicate identical versus completely dissimilar partitions, respectively.
We applied polynomial functions fit to the group-level data for each task and baseline condi-
tions to compare thresholding patterns (Figure 3C and D). The NMI over a range of thresholds
was computed for each individual, and the area under the curve (AUC) was calculated to
derive a single metric. A one-way ANOVA showed a significant effect of condition on AUC
(F4,85 = 118.6, p < 0.001) with post hoc comparisons revealing significant differences be-
tween baseline and the other task conditions (p < 0.001, Bonferroni corrected) (Figure 3D).
Thus, compared with the task-based network partitions, the baseline network partitions were
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Figure 3. Comparison of data-driven and resting-state partitions. (A) A cartoon network consists of a subset of nodes that are considered
part of a resting-state network (RSN) (black nodes). When applying a community detection algorithm (i.e., data-driven partition) to the entire
network, two data-driven subnetworks are obtained. Both data-driven Subnetwork A and data-driven Subnetwork B contain nodes that were
formerly labeled as RSN nodes. Because 2 of the 10 RSN nodes belong to another module, it can be said that the RSN is 20% fragmented.
(B) When applying the fragmentation metric to the group-level (left panels) and individual-level (right panels) mnemonic networks (top row), a
high percentage of fragmentation occurs for those higher order subnetworks compared with those associated with primary sensory areas (SMN,
AUD, VIS). When averaging the fragmentation across mnemonic conditions and plotted against the baseline network (bottom row), a high
percentage of fragmentation occurs overall for task compared to baseline. (C) We calculated the normalized mutual information (NMI) between
the data-driven and RSN partitions for different wiring costs for the group-level, task-based networks (colored dots). For each condition, we
computed a best-fit to the data (colored curves). (D) We applied the analysis steps outlined for panel C to each individual participant network,
and the area under the curve was calculated. There were no group-level differences between task-based conditions, but all were significantly
lower than the baseline network condition. These findings indicate that the baseline network partitions were more similar to those RSN
partitions. SE = spatial encoding; TE = temporal encoding; SR = spatial retrieval; TR = temporal retrieval; FPN = fronto-parietal; CON =
cingulo-operculo; SAN = salience; DAN = dorsal attention; VAN = ventral attention; DMN = default mode; SMN = sensorimortor; AUD =
auditory; VIS = visual; MEM = memory.

Network Neuroscience 1081



Flexible network organization of episodic memory processes

more similar to the RSN partitions. However, qualitatively, the task-based partitions were more
(or less) like RSN partitions depending on the sparsity of the network (see “U-shaped” curve).
Together, these results highlight that differences in network community structure from RSNs
are contingent on external demands like task type and, to a lesser extent, analytic choices
like wiring cost. Despite some of these differences (like function of wiring cost), task-related
fragmentation remained significantly above that of the null baseline.

Node Flexibility and Identity Across Communities and Task

Our findings thus far suggest that data-driven partitions of task-based fMRI during memory
encoding and retrieval reveal both stable groups of nodes that reflect particular primary-order
RSNs and “mover” nodes that deviate from those communities. An additional important ques-
tion regards the role of these “mover” nodes and the extent to which different nodes might
serve as areas of important communication within and between networks (i.e., “hubs”). Nodes
with high degree and a large number of connections to other modules (i.e., a high participation
coefficient) are considered connector hubs, whereas those high degree but low participation
coefficient nodes are defined as local or provincial hubs (Rubinov & Sporns, 2010). Sparsely
connected nodes are labeled as peripheral and satellite nodes if they have low and high par-
ticipation coefficients, respectively. Please see Figure 4A for a detailed depiction of each node
type. These node labels provide important insight into how community structure might change
as a function of task and help better characterize regions that are important for global and local
network communication and function within and across these different communities.

Figure 4. Node identities across data-driven modules and mnemonic conditions. (A) A cartoon network shows three distinct groups of nodes
(i.e., modules or communities) that are connected to each other by the red and green colored nodes. Nodes that have an integrative role and
connect communities have a high participation coefficient (PC). Highly connected nodes (e.g., red and blue nodes) have a large number
of edges and are defined as having a high degree centrality. Nodes important for both intra- and intermodular connectivity are considered
connector hubs and have high degree and high PC (e.g., red node). Provincial hubs are important for only intramodular connectivity and have
high degree but low PC (e.g., blue node). Satellite nodes have low degree, but high PC, and are important for intermodular connectivity (e.g.,
green node). Lastly, peripheral nodes are sparsely connected nodes, and those few connections are not to other modules (i.e., low degree
and low PC) (e.g., purple node). The table below the cartoon network identifies these different node types. (B) Every node in the network was
assigned an identity based on the four definitions, and the number of node types for each data-driven module is plotted. Each of the bars for
each module corresponds to the four conditions (spatial encoding, temporal encoding, spatial retrieval, temporal retrieval). (C) This plot shows
the same data as Panel B, but rather than the number of nodes, it shows the percentage of nodes. M1 = Module 1; M2 = Module 2; M3 =
Module 3; M4 = Module 4.
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For each module in the data-driven community partition from fMRI taken during encoding
and retrieval, Figure 4B shows the nodal composition, or the identities of the nodes, based on
the four node types outlined in Figure 4A for each condition (each a separate bar). Rather than
the number of nodes in each module, Figure 4C, similar to Figure 4B, shows the percentage
of each type of node in each module across the four conditions. We conducted an omnibus
χ2-test of independence to examine the relation between node identity and module (we av-
eraged across the four conditions because the distribution of node types was similar across
them), finding a significant difference between the variables (χ2(15) = 117.4, p < 0.001).
The “mover” nodes (in addition to Modules 3 and 4) had higher numbers (and percentages)
of connector hubs compared to Module 1 (χ2 of number of connector nodes: (χ2(1) = 30.3,
p < 0.001) and Module 2 (χ2 of number of connector nodes: (χ2(1) = 29.4, p < 0.001),
suggesting a larger integrative role for mnemonic processes. The anatomical distribution of the
mover nodes indicates that the different node types are spread across the brain rather than clus-
tering in a specific location, with node identity changing across conditions (Figure 5). Please
see Supporting Information Table 1 for a list of nodes belonging to each data-driven module
and their identity for the four mnemonic conditions.

Memory-Evoked Functional Connectivity Patterns and the Relationship with Performance

Although our analyses have suggested a higher degree of fragmentation within higher order
RSNs and a disproportionate amount of connector hubs in the data-driven “mover” nodes dur-
ing memory encoding and retrieval, an important question remains regarding whether these
changes in functional connectivity patterns account for variance in memory retrieval perfor-
mance. We first computed the similarity between whole-brain networks, which assess global

Figure 5. Number of times a node changes identity. The anatomical distribution of mover nodes
plotted on the transparent brain (left and right, lateral and medial views) shows the number of times
a mover node changes node identity (defined in Figure 4) across the four mnemonic conditions
(spatial encoding, temporal encoding, spatial retrieval, temporal retrieval).
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connectivity (Figure 6A). Here, we examined the differences between spatial and temporal
encoding (overall group connectivity matrices shown in Figure 6B, see Supporting Informa-
tion Figure SI 4 for the overall group connectivity matrices for spatial and temporal retrieval).
We calculated the similarity between each individual’s unthresholded spatial and temporal
networks and plotted the result versus their overall retrieval performance (Figure 6C). Inter-
estingly, retrieval performance showed a significant negative relationship with functional con-
nectivity network similarity patterns during encoding (r = −0.63, p = 0.005). Thus, the more
dissimilar task-related connectivity was during encoding, the better an individual performed,
analogous to a form of pattern separation (Yassa & Stark, 2011). This effect survived over a sub-
stantial range of network thresholds (Figure 6D, uncorrected for multiple comparisons). How-
ever, when the networks become more sparsely connected at higher threshold costs (greater
than 0.8), this effect diminished, potentially indicating that some weaker and distributed con-
nections might be providing important information involved in encoding processes. This result
also held when we compared NMI between the patterns of connectivity for spatial versus tem-
poral encoding (r = −0.4779, p = 0.0449), and thus were unlikely to be driven by differences
in strengths of connections between encoding and retrieval. When investigating the other po-
tential network contrasts, the similarity values did not correlate with participant performance
when corrected for multiple comparisons (spatial retrieval vs. temporal retrieval: r = 0.21,
p = 0.40; spatial encoding vs. spatial retrieval: r = 0.20, p = 0.43; temporal encoding vs.
temporal retrieval: r = −0.23, p = 0.36).

Figure 6. Node identities across data-driven modules and their relationship to task performance. (A) Schematic shows a theoretical Subject
1’s connectivity matrices for two conditions A and B. The unique values in the matrix (outlined in red) are vectorized and correlated with
each other using Pearson’s r. This produces a single value metric, called similarity, to assess how close the global connectivity patterns are
across the network. (B) The group-level connectivity matrices for the spatial encoding (top panel) and temporal encoding (bottom panel) are
shown. (C) Each individual’s similarity value between the spatial encoding and temporal encoding networks (both unthresholded) were plotted
against their retrieval performance, resulting in a significant negative relationship (robust regression line shown in gray). (D) The computation
described in Panel C was performed across different network wiring costs, and the resulting uncorrected p value is plotted. At higher network
thresholds, the similarity-performance relationship disappears.
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We hypothesized that there might be specific subsets of the task-related functional con-
nectivity matrix influencing this relationship with retrieval performance. We constructed two
multiple linear regressions where the similarity between two subnetworks constituted each in-
dependent variable, and subnetworks were defined either by the task-related data-driven or
RSN partitions described earlier. Figure 7A provides a schematic of the subnetwork similarity
calculation. Figure 7B outlines the two multiple linear regression models using the two parti-
tions. The data-driven model was significant (R2

adjusted = 0.54, p = 0.01) and a better predictor
of performance compared with the model based on RSN partitions (R2

adjusted = 0.23, p = 0.31),
even when accounting for the difference in degrees of freedom between the two partitions
(ΔAIC = 9.33). Again, when investigating the other potential network contrasts (spatial retrieval
vs. temporal retrieval, spatial encoding vs. spatial retrieval, and temporal encoding vs. tempo-
ral retrieval), none of the multiple linear regression models were significant when corrected
for multiple comparisons and regardless of partition. Notably, the data-driven correlation with
performance was more parsimonious overall, likely because there were fewer independent
variables compared with the full RSN model (5 compared to 10 total subnetworks).

To understand the single module that is the best predictor of performance, we next per-
formed a variable selection technique on the two models from Figure 7B called the least abso-
lute shrinkage and selection operator (lasso). With increasing penalty from tuning parameter,

Figure 7. Comparison of data-driven versus resting-state models. (A) Schematic shows a theoretical Subject 1’s connectivity matrices for two
conditions A and B. The unique values in the subnetwork (outlined in red) are vectorized and correlated with each other using Pearson’s r.
This produces a single value for subnetwork similarity to assess how close the connectivity patterns are within subnetworks. (B) The multiple
linear regressions are outlined where subnetwork similarity values are the independent variables and overall retrieval performance is the
dependent variable (general model). For the data-driven model, the data-driven modules identified in Figure 2 constitute each variable, and
the RSN networks are each variable for the RSN model. (C) By applying a variable selection technique via lasso (least absolute shrinkage
and selection operator), variable coefficients in the data-driven (left panel) and RSN (right panel) regression models are reduced to zero as
the tuning parameter increases, leaving a final variable that accounts for the most variance in participant performance (M4 and DAN). SE =
spatial encoding; TE = temporal encoding; FPN = fronto-parietal; CON = cingulo-operculo; SAN = salience; DAN = dorsal attention;
VAN = ventral attention; DMN = default mode; SMN = sensorimotor; AUD = auditory; VIS = visual; MEM = memory.
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λ, each regression coefficient is reduced to zero until none are left in the model (Figure 7C).
Here, the task-derived data-driven module “M4” (comprised of FPN, MEM, and DAN nodes)
and the dorsal attention network “DAN” from the RSN model remained in terms of explaining
significant amounts of variance in performance (note: FPN, MEM, and DAN all derive from par-
titions from the Power-based atlas). M4 and DAN served as negative predictors of performance
(see Figure 7C, left and right panels, respectively), consistent with our finding of a negative
correlation between network similarity and overall network connectivity patterns during en-
coding. Both the reduced task-derived data-driven and the reduced RSN linear models (i.e.,
a simple linear regression with the single lasso-selected variable as the independent variable)
accounted for significant but comparable amounts of variance in performance (data-driven:
R2

adjusted = 0.40, p = 0.003; RSN: R2
adjusted = 0.48, p = 0.0009; ΔAIC = 2.34) by decreases

in similarity during encoding of spatial versus temporal source information. Thus, while the
task-based model, as a whole, provided a better predictor of individual retrieval performance
than the RSN partition (ΔAIC = 9.33), when reduced to a specific module consisting of a much
smaller number of nodes, both task-driven and RSN modules explained comparable amounts
of variance in retrieval performance. This, in turn, suggests that the data-driven partition, as a
whole, had a slight advantage at the macroscale, but that this dissipated at a finer, node-level
scale.

DISCUSSION

In the current study, we attempted to understand the nature of task-related, large-scale func-
tional connectivity patterns during memory encoding and retrieval. Specifically, we investi-
gated flexible network partitions evoked during an episodic memory task for different types
of context, spatial and temporal. We compared these partitions with a null baseline condition
in which we expected little memory-related activity and with a widely used partition derived
largely from resting-state functional connectivity patterns, the Power atlas. While RSNs are
predictive of numerous individual differences and behavioral outcomes (Vaidya & Gordon,
2013), we provide evidence that task-based network architecture is also important for un-
derstanding the contributions of particular regions and their interactions specific to episodic
memory processes. Specifically, we detected flexible community and individual node reor-
ganization across multiple task states (spatial encoding, temporal encoding, spatial retrieval,
temporal retrieval). We also identified distinct states during the encoding of spatial and tem-
poral information that were associated with better performance during retrieval and leveraged
community structure to explain this variance in behavior. By using a flexible, data-driven ap-
proach, we aimed to provide a more comprehensive view of the changes that can occur across
the brain for many functional network interactions during the specific periods of encoding and
retrieving of episodic memories.

Contributions from Data-Driven and Resting-State Approaches

Previously, Power et al. (2011) extracted 13 RSNs (11 of which were used here for comparison)
based primarily on resting-state functional connectivity and a smaller number of task-related
univariate ROIs derived from a meta-analysis. In contrast, we derived our community struc-
ture based on functional connectivity patterns present during memory encoding and retrieval,
which are assumed to be more closely representative of the underlying network architecture.
Our community structure analyses resulted in four stable modules consisting of those nodes
in the network that retained a similar connectivity pattern across conditions (spatial and tem-
poral encoding and retrieval) and a separate group of nodes that changed communities across
conditions (i.e., the “movers”). This finding persisted despite the fact that we used a resolution

Network Neuroscience 1086



Flexible network organization of episodic memory processes

parameter (an input to the community detection algorithm) that typically results in a set of
communities similar in number to that of RSNs (see Methods section of Cohen & D’Esposito,
2016). While the Power atlas clearly captured some of the variance related to memory en-
coding and retrieval in our dataset, the data-driven partition captured additional variance in
community structure that was not apparent based on this atlas alone. Additionally, the mover
hubs, identified based on our data-driven partitions, provide a potentially novel perspective
on the flexibility of certain hubs during memory processing.

Our novel description of “mover” nodes in particular provides new insight into the flexible
nature of certain nodes in memory processing. These mover nodes changed their allegiance
between subnetworks consistently across encoding and retrieval of different contextual infor-
mation and included both high and lower strength connections. What was the function of
these mover nodes in our task? We did not find any correlation between connectivity pro-
files of these “moving” nodes and memory performance. Nonetheless, the tendency of these
nodes to move could not be accounted for by univariate activation or by only variability among
weak connections. These movers were composed of mostly connector hubs and satellite nodes,
which have high participation coefficients and are important for inter-subnetwork connectivity.
Because these mover nodes included areas like the hippocampus and parahippocampal gyrus
that have been strongly associated with memory processing in past studies, we speculate that
that flexibility in connectivity may play an integrative role for different cognitive substrates
relevant in some form to memory processing. Thus, it may be that that other cognitive systems
have a strong role in modulating different memory outcomes, for example during encoding
versus retrieval, an idea that has been explored increasingly in the memory literature (Cabeza
et al., 2018; Keerativittayayut et al., 2018; Kim et al., 2017; King et al., 2015; Schedlbauer
et al., 2014). At present, the role of these mover nodes remains unclear and necessitates
greater study.

Macroscale Network Organization

Defining exact structure-function relationships in the context of memory has been difficult
because many regions are active at different times and to different degrees even within or be-
tween tasks (Inman et al., 2017; Poldrack et al., 2012; Schedlbauer, & Ekstrom, 2017). Existing
literature would suggest that by applying methods that capture the more flexible aspects of
networks, we might better be able to understand brain-behavior relationships that correspond
to particular cognitive processes (Bassett et al., 2013; Cohen & D’Esposito, 2016). In one such
study, Bassett et al. (2013) tracked community structure over time during the acquisition of a
new motor skill. They found a stable “core” composed of sensorimotor and visual areas that
exhibited little change to their module affiliations and a flexible “periphery” composed of mul-
timodal association areas (flexibility was defined as the frequency a brain region changed its
allegiance to different communities over time). The study presented here showed similar find-
ings, where subnetworks that were associated with primary sensory areas (SMN, AUD, VIS in
Figure 3) were more stable and showed the least amount of fragmentation overall across task
conditions.

In addition, Bassett and colleagues revealed that community organization indexed by the
separation between the core and periphery predicted learning success. Of note, those nodes
located in the periphery tended to have weaker connections. As indicated in Figure 6D, with in-
creasing wiring cost (or the removal of weaker connections), the spatial and temporal encoding
similarity-performance relationship diminished, suggesting that those weaker connections pro-
vide important information during learning. These subtle effects encourage the consideration
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of the efficacy of weak brain connections in support of or to the detriment of general cognitive
functioning (Betzel et al., 2016; Santarnecchi et al., 2014). Furthermore, this core-periphery
perspective has been similarly described in other investigations of the “rich club” phenomena,
where those nodes that are highly connected tend to be mutually interconnected (van den
Heuvel & Sporns, 2013). This core or rich club of nodes is thought to provide the structural
and functional foundation of the brain and constitutes the main avenue of communication
for the network; damage to this central structure and to the hubs belonging to it could result
in widespread cognitive repercussions (e.g., Warren et al., 2014). Functional activity neces-
sary for behavior is thought to proceed from this infrastructure where non–rich club nodes
contribute to diverse behaviors.

Although resting-state analyses provide an empirically organized representation of brain
connectivity, Cabeza and Moscovitch (2013) have offered an additional way to conceptually
describe the transiently changing connectivity patterns in large-scale networks and the altered
participation of regions during memory encoding and retrieval. Specifically, they have termed
process specific alliances (PSAs) as small coalitions of nodes coming online to perform spe-
cific computations for the task at hand. PSAs are “flexible, temporary, and opportunistic.” Im-
portantly, recruitment occurs in a task-dependent manner that may be biased but not wholly
determined by larger, more stables networks, like RSNs (Krienen et al., 2014). Thus, the detec-
tion of four stable communities and an additional set of flexible “mover” nodes for different
memory processes would also be in accordance with both these empirical and theoretical
organizational views of the brain that emphasize the importance of flexibility to cognition. Fu-
ture studies using methodologies like electroencephalography and magnetoencephalography
could better probe the temporal relationships between communities or PSAs (Watrous et al.,
2013).

Functional Role of Individual Nodes in the Network

Focusing on the role of individual nodes in the network in which hubs are the locus of interest,
recent work has begun to emphasize both the importance of the integrative and segregative
architecture of large-scale networks and nodes that connect different subsystems throughout
the brain (Bertolero et al., 2015; Cohen & D’Esposito, 2016; Cole et al., 2013; Power et al.,
2013). These nodes tend to have higher participation coefficients, meaning that they connect
disparate communities, and are thought to allow information flow through the network. To
better understand the integration of information across multiple cognitive areas, we assigned
every node an identity based on their within-module degree centrality and participation coef-
ficient. Work from Cole et al. (2013) identified nodes in the FPN cognitive control network as
having high global variability and participation coefficient, meaning that their connectivity was
flexible across 64 task states and were considered hubs that integrated the network. By iden-
tifying flexible nodes within the network via their altered community structure, we were able
to define a functional role for this subset of nodes during mnemonic processing, specifically
the role of integration.

Encoding of Distinct Contexts

The spatial and temporal elements of a recently experienced event are important to distinguish-
ing between different episodes. For example, successful memory function critically depends
on a person’s ability to differentiate between the different times he or she visits the same space
(like going to a meeting for work in the conference room every week). When exploring the
similarities and differences of global patterns of connectivity of the four networks derived from
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our study, we discovered a strong relationship between network similarity and participant per-
formance. In particular, the less similar an individual’s spatial and temporal encoding networks
were to each other, the better that participant performed during the retrieval session. Our data
would support the idea, from the network perspective, that there is a behavioral advantage of
separating distinct contextual information, represented here by different patterns of interaction.
This idea of “pattern separation” is traditionally referred to in the context of the hippocampus,
but it emphasizes orthogonalizing representations to ensure information does not overlap dur-
ing encoding (Rolls & Kesner, 2006; Yassa & Stark, 2011). Our findings extend this concept
to network organization, suggesting that dissimiliarity among connectivity patterns during en-
coding may relate to more distinct subsequent retrieval of different contextual information.
Similarly, a recent study found that task-related connectivity patterns show high degrees of re-
configuration during high-encoding states (those associated with better subsequently retrieved
information) compared with low-states (Keerativittayayut et al., 2018). These findings also re-
inforce the idea that dynamic reconfigurations of task-related functional connectivity patterns
are important to successful memory retrieval.

Technical Limitations

A number of technical analysis decisions were made regarding network and subnetwork con-
struction, each with their own caveats and some of which limit the interpretations made. First,
by using a data-driven approach, unique network partitions for each individual greatly increase
the analysis space and make it more difficult to aggregate across individuals. Thus, we used the
group-level, data-driven partition (as identified in Figure 2) to derive the subnetwork similarity
metrics for the regression analyses. Second, while there are numerous techniques to partition
networks, we applied a commonly used Louvain algorithm, which only partitions communi-
ties into nonoverlapping modules. However, there is the chance that communities could be
overlapping and shared nodes or hubs, potentially altering the identity of a node within the
network. Additional algorithms could and should be applied in the future to find the overlap of
resulting partitions and to further explore other potential modular configurations. Third, elim-
inating negative connections (a consequence of the selected community detection algorithm)
may disregard potentially relevant information (Parente et al., 2017), even though it is still com-
mon practice within the network community to only analyze positively weighted connections.
For our analyses here, when examining the distribution of values of the weighted-connectivity
matrices, it was shifted to more positive values, meaning that a larger portion of edges were
positively weighted. Thus, we are confident that we have captured enough of the connectivity
profile to accurately represent the networks, even though a small subset of negative connec-
tions were necessarily set to zero.

We note that task-related fMRI datasets are often more difficult to collect than large-sample
resting-state studies, and thus our sample size is necessarily limited. Correlations across small
sample sizes in the context of fMRI in particular should be taken with caution, and replication
with a larger dataset is necessary to demonstrate the robustness of our findings (Yarkoni, T.,
2009). In addition, recent research has shown that functional connectivity estimates can be
confounded by task activations, thereby inflating correlations (Cole et al., 2019). In this study,
we employed a beta series approach, which takes the correlations of fits between the behaviors
of interest and the HRF (Rissman et al., 2004). By comparing these correlations between fits
(beta values) in secondary t-tests, the method practically helps to remove variance that would
otherwise inflate correlations if the HRF were not modeled (Rissman et al., 2004). In this way,
the beta series technique, like the psychophysiological interactions (PPI), provides a variant of
functional connectivity by accounting for common variance due to the HRF (Friston, 2011).
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However, this technique has not been thoroughly tested and contrasted with other measures
of putative functional connectivity, and it would be helpful to know the extent to which other
methods might converge or diverge with the beta series technique.

Conclusion

Past research has placed a large emphasis on the contributions of intrinsic or RSNs to behavior,
traits, and pathology. However, a focus on static network organization neglects characteriza-
tion of networks representative of directed cognition, like the encoding and retrieval of episodic
information in memory. The present data contribute to a growing literature emphasizing the
flexible rearrangement of networks and highlight how we might conceptualize large-scale net-
work organization during goal-directed behavior in light of RSNs.
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