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Abstract

Objectives: To demonstrate the utility of a natural language processing (NLP) algorithm for 

mining kidney stone composition in a large-scale electronic health records (EHR) repository.

Methods: We developed StoneX, a pattern matching method for extracting kidney stone 

composition information from clinical notes. We trained the extraction algorithm on manually 

annotated text mentions of calcium oxalate monohydrate (CaOxM), calcium oxalate dihydrate 

(CaOxD), hydroxyapatite, brushite, uric acid, and struvite stones. We employed StoneX to identify 

patients with kidney stone composition data and mine >125 million notes from the our 

institutional EHR. Analyses performed on the extracted patients included stone type conversions 

overtime, survival analysis from a second stone surgery, and disease associations by stone 

composition to validate the phenotyping method against known associations.

Results: The NLP algorithm identified 45,235 text mentions corresponding to 11,585 patients. 

Overall, the system achieved PPVs >90% for CaOxM, CaOxD, hydroxyapatite, brushite, and 

struvite; except for uric acid (PPV=87.5%). Survival analysis from a second stone surgery showed 

statistically significant differences among stone types (P=0.03). Several phenotype associations 

were found: uric acid–type 2 diabetes (odds ratio, OR=2.69, 95% confidence intervals, CI=1.91–

3.79), struvite–neurogenic bladder (OR=12.27, 95% CI=4.33–34.79), struvite–urinary tract 

infection (OR=7.36, 95% CI=3.01–17.99), hydroxyapatite–pulmonary collapse (OR=3.67, 

95%CI=2.10–6.42), hydroxyapatite–neurogenic bladder (OR=5.23, 95% CI=2.05–13.36), 
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brushite–calcium metabolism disorder (OR=4.59, 95% CI=2.14–9.81), and brushite–

hypercalcemia (OR=4.09, 95% CI=1.90–8.80).

Conclusions: NLP extraction of kidney stone composition from large-scale EHRs is feasible 

with high precision, enabling high-throughput epidemiological studies of kidney stone disease. 

These tools will enable high fidelity kidney stone research from the EHR.
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INTRODUCTION

Kidney stones affect 9% individuals within the United States.1 Over the last few decades, 

disease prevalence has dramatically risen in all demographic groups.1, 2 Along with the 

widespread adoption of electronic health records (EHRs) in healthcare, there has been an 

increasing recognition that EHRs enable the study of variability in disease dynamics and 

heterogeneity. Phenotypes describe clinical conditions within the EHR, and they are created 

using a defined set of data elements generated from a computerized query. Specifically for 

kidney stone disease, methods to phenotype stone formers within large EHR datasets are 

nonexistent. As in studies utilizing administrative datasets, the identification of kidney stone 

patients within the EHR is currently limited to using nonspecific administrative coding (e.g., 

International Classification of Diseases, ICD). While these codes have high validity (PPV 

>95%),3 no tools are available for more rigorous phenotyping. As a result, detailed data 

relevant to stone disease are buried within multiple documents and across multiple data 

points. Large datasets utilized for kidney stone research have to date been unable to advance 

precision medicine applications for stone disease, in part, because they lack additional 

phenotyping information, such as stone composition data.

Over the last 2 decades, natural language processing (NLP) methods have been applied in 

various clinical applications due to the fact that a vast amount of relevant clinical 

information is stored as free-text form into the EHRs. NLP and machine learning 

methodologies have been also applied to specific urologic conditions. They include 

information extraction methods from radical prostatectomy pathology reports,4 identification 

of patients with prostate biopsies based on information encoded in pathology reports,5 

assessment of bladder cancer pathology reports,6 and machine learning algorithms to 

diagnose kidney stones based on laboratory, vital signs, and demographic information.7

We have developed an NLP method that uses a pattern-matching algorithm for stone 

composition eXtraction (StoneX) across our institutional EHR. The rationale for a stone 

composition phenotyping method was as follows. First, as in most institutions, our, stone 

analyses are typically performed via infrared spectroscopy and are performed at dedicated 

commercial stone analysis laboratories.8 The test results are not discrete laboratory data 

within the EHR, but rather contained within a written report that is transcribed by clinicians 

into unstructured clinical notes. Second, stone composition and urine biochemistries 

comprise important clinical data that guide preventative and therapeutic treatment based on 

underlying pathogenesis mechanisms and disease severity.9–11 Finally, our goal is to lay the 
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groundwork for a generalizable NLP algorithm using a clinically accepted delineator of 

stone disease that can be investigated within other institutional EHRs.

MATERIAL AND METHODS

Study Population

Large-scale data mining is enabled by the Vanderbilt Synthetic Derivative (SD), which is a 

research-oriented data repository that stores the de-identified version of the Vanderbilt EHR.
12 Currently, the SD contains clinical records of 2.9 million patients with >1 billion distinct 

observations dating back to the 1980s and >125 million clinical notes since 1990s enabling 

researchers to perform longitudinal studies based on quantitative research methods. The 

database includes diagnostic and procedure (ICD and CPT) codes, basic demographics (age, 

gender, race), text from clinical care including discharge summaries, progress notes, 

problem lists, laboratory values, radiology reports, and medication orders. Out of the total 

number of patients in the SD, 29,739 have upper urinary tract stone disease diagnoses based 

on ICD codes. To maintain the de-identified nature of the SD, the SD does not contain 

outside laboratory scanned records, such as reports of stone composition. Local IRB 

approval was obtained for this study.

StoneX Design

The StoneX architecture (see Supplementary Figure 1) was designed on top of a supervised 

machine learning framework, which is described in greater detail below.

Manual Chart Review of Clinical Notes—Manual chart review was performed on 400 

randomly sampled notes with mentions of “stone analysis” and “kidney stone”. These notes 

correspond to 356 distinct patients, with each note having on average 820.3 words. Two 

clinicians reviewed the notes and manually annotated a total number of 921 text expressions 

denoting a kidney stone composition (i.e., 2.3 stone composition mentions per note). The 

chart review was performed using BRAT, a web-based tool for visualization and text 

annotation.13 Mentions with both % and non-% values of stone compositions were identified 

for calcium oxalate monohydrate (CaOxM), calcium oxalate dihydrate (CaOxD), 

hydroxyapatite, brushite, uric acid, and struvite. Supplementary Figure 2 depicts a 

screenshot of BRAT with two annotations for % hydroxyapatite and % CaOxM. A total of 

100 notes were double-reviewed with a high inter-rater agreement (Cohen’s kappa=0.85).

Extraction of Kidney Stone Composition from Clinical Text—We designed our 

approach using a standard machine learning framework. We randomly selected 70% of the 

400 manually reviewed notes for training (training set) and the remaining 30% for evaluation 

(test set). To automatically check the annotated text mentions of kidney stone composition 

for the presence of predefined templates, we implemented a text processing method called 

pattern matching. We represented these patterns with regular expressions, or rules, by 

analyzing the textual context of kidney stone mentions in the notes.

During the training phase, we performed an optimization process to learn the set of rules that 

best match the annotated text expressions from the training set (Rule Optimization in 
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Supplementary Figure 1). First, we automatically constructed an exhaustive set of rules such 

that each annotated mention from the training set is matched by at least one rule from the 

rule set. Next, we iteratively refined the rules for each stone composition with the goal of 

maximizing the algorithm performance. The most challenging problem we needed to solve 

during this step resembles the word-sense disambiguation problem from computational 

linguistics,14,15 where, instead of disambiguating polysemous words, our goal was to 

disambiguate rules that match other medical concepts in addition to kidney stone 

composition concepts. Our solution to this problem was to impose additional constraints on 

the ambiguous regular expressions after a manual analysis of their matched text expressions. 

Finally, we used backward elimination to extract the final set of rules that best matched the 

annotated expressions from the training set. The rules learned during the training phase are 

listed in Supplementary Table 1.

On the test set, we compared the manually annotated mentions with the ones extracted by 

the final set of rules and reported the algorithm performance in terms of positive predictive 

value (PPV), sensitivity, and F1-score, where the F1-score is defined as the harmonic mean 

between PPV and sensitivity.

Large-Scale Extraction of Kidney Stone Composition

We applied StoneX over all 125 million notes in the EHR to identify all patients with kidney 

stone composition information. For each stone composition mention identified in a patient 

note, we recorded the patient identifier, note timestamp, stone composition, and % 

composition value. Using this phenotyping method, we created a data structure with 

timestamped kidney stone composition information for each kidney stone patient, in addition 

to demographic data, ICD, and CPT codes.

Data and Statistical Analyses

We performed several analyses to validate the phenotyping method against known disease 

patterns and associations. First, we calculated the distribution of kidney stone prevalence by 

age, race, and sex as well as patient distributions by the number of kidney stone procedures 

as indicated by the presence of specific CPT codes (Supplementary Table 2). We performed 

the one-way analysis of variance (ANOVA) to determine whether there were statistically 

significant differences in the age at first stone composition among the 6 kidney stone types, 

as well as a post-hoc analysis of multiple comparisons between pairs of stone types based on 

the pairwise t-test with Bonferroni correction for multiple testing. We employed the 

Cochran’s Q test to determine whether the patient proportions among the 6 stone types were 

significantly different followed by a pairwise comparison using the Wilcoxon signed-rank 

test with Bonferroni correction.

Next, we conducted a survival analysis for an additional kidney stone surgery after a first 

identified surgery. The outcome of interest was the time from the date of the first kidney 

stone intervention to the date of the second stone intervention. Patients without a second 

kidney stone intervention were censored at the date of their last record in the EHR. Patients 

with multiple CPT codes spanned in <1 month since the date of the first intervention were 

excluded to account for staged procedures. We employed the Kaplan-Meier method16 to 
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evaluate the survival rate from the first to the second kidney stone surgery and the log-rank 

test to assess differences between survival curves.

Finally, we performed multiple case-control studies to investigate associations between 

clinical phenotypes and each of the 6 stone compositions. Patients selected for this analysis 

had pure or mixed stones >50% composition value that did not change over time; thus, each 

patient from the analysis mainly presented the clinical characteristics of only one of the 6 

stone compositions. The exposed cohort of patients selected for a specific case-control study 

associated with a stone composition were the patients with the specific stone composition. 

All the other patients selected for the above-mentioned study constituted the unexposed 

cohort. We extracted cases and controls associated with the top 50 most prevalent ICD9 

codes for each stone composition. The codes pertaining to kidney-stone related symptoms or 

procedures were excluded by manual review. A final set of 14 ICD9 codes was selected as 

phenotype variables (Supplementary Table 3). For each phenotype-stone composition pair, 

we performed multivariate logistic regression adjusting for age at first stone composition 

mention, race, sex, and thiazide status (Supplementary Table 4), and reported odds ratio 

(OR) estimates with corresponding 95% confidence intervals (CIs). We included thiazide 

status into the model was to avoid possible spurious associations with hypertension 

phenotypes. To account for multiple testing, we Bonferroni-adjusted the significance 

threshold by dividing α=0.05 to the total number of independent tests (i.e., 5.95 × 10−4 = 

0.05 / (14 × 6)). All analyses were performed with R version 3.4.2.

RESULTS

StoneX Evaluation

Table 1 lists the results achieved by StoneX after applying the optimized rules for each stone 

composition on the test set. The system achieved PPVs >90% for all stone compositions 

except for % uric acid (PPV=87.5%). Our error analysis revealed that most of the false 

positives for this stone composition were mainly due to mislabeling of urinary uric acid 

mentions as uric acid kidney stone events. The majority of false negatives correspond to 

misspellings and mentions expressed in text in an unusual format (e.g., “55%--{calcium 
oxalate monohydrate}”) only in the notes from the test set. Additional misclassifications 

were noticed in enumerations of stone composition mentions where the percent values were 

placed at the end.

Demographics and Stone Types

StoneX identified 45,235 text mentions of both % and non-% stone types corresponding to 

11,585 patients across >125 million notes. To extract non-% mentions we used the 

optimized rules without the percent value information. From the extracted 11,585 patients, 

we performed statistical analysis on 2,417 patients with at least one stone type mention with 

a percent value. The circos plot from Figure 1 shows baseline statistics for this cohort. Here, 

patients with mixed stone compositions were included in multiple categories. Most of the 

patients are male (52.1%) and had CaOxM stones (N=1,965). The histograms on the 

outermost ring of the circos plot indicate that all stone types except CaOxD have the patient 

distribution’s peak in the 90–100% composition value range. The chord diagram depicted 
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inside the innermost ring of the circus plot shows that 56% of CaOxM patients have only 

this stone type while 30% of them have also the CaOxD stone component.

Age at first stone composition was youngest in the brushite and hydroxyapatite groups (see 

Supplementary Tables 5 and 6). The ANOVA test showed a statistically significant 

difference in the age at first stone composition among the 6 stone types (P<0.001), while the 

pairwise t-test revealed a statistically significant difference between CaOxM and each of the 

other stone types (each P<0.001). Similarly, the Cochran’s Q test indicated significant 

differences among the stone type proportions (P<0.001) and the Wilcoxon signed-rank test 

showed significant differences between all pairwise comparisons (each P<0.001). There was 

a female predominance in the hydroxyapatite and struvite groups (54.5% and 59.2%, 

respectively). Brushite and struvite stone formers had the highest prevalence of having had 

multiple surgeries (69.0% and 61.8%, respectively). Supplementary Figure 3 shows the 

distribution of patients with combinations pure and mixed stone types.

The alluvial diagram in Supplementary Figure 4 visualizes the stone type conversions 

overtime. This analysis was restricted to pure and mixed stone formers with >50% of a 

dominant stone type (N=116). The most prominent interconversions in the alluvial diagram 

are CaOxM↔CaOxD and CaOxM↔uric acid.

Survival Analysis from the Second Stone Surgery

We identified 1,269 patients having only one major stone composition (>50%) and having 

had at least one stone-related procedure. Figure 2 shows the Kaplan-Meier survival curves 

by stone type using an observation period of six years since the first kidney stone procedure. 

We obtained significant survival differences among the stone types (P=0.03). Median 

survival time for patients with struvite stones was 69 months, and it was not reached for any 

of the other groups.

Phenome Association Studies

Phenotype associations were performed on 1,583 patients with pure or mixed stones >50% 

that did not change over time. Out of the 84 studies performed (14 phenotypes × 6 stone 

types), 7 associations were found significant after Bonferroni correction (Table 2). The most 

significant association was between uric acid and type 2 diabetes (OR=2.69, 95% CI=1.91–

3.79, P=1.62×10−8), where 40.7% of patients with uric acid stones had type 2 diabetes. 

Additional significant studies include associations between struvite and neurogenic bladder 

(OR=12.27, 95% CI=4.33–34.79, P=2.40×10−6) and between struvite and personal history 

of urinary tract infections (OR=7.36, 95% CI=3.01–17.99, P=1.19×10−5).

COMMENT

The NLP-based method proposed in this study accurately extracted kidney stone 

composition expressions from the notes in our institutional EHR. Specifically, our evaluation 

showed that stone composition expressions could be identified in clinical text with high 

precision for the main stone compositions. Furthermore, the large-scale extraction of stone 

composition from 125 million clinical notes demonstrated that this algorithm has the ability 

to identify kidney stone patients in big EHR repositories.
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Our analyses replicated previous results and explored several applications revealing novel 

findings. The distribution of stone types identified is similar to other published series with 

predominance of calcium-based stone types.17,18 Similar to previous studies, we found that 

calcium oxalate and uric acid stones are predominant in males, struvite and hydroxyapatite 

stones are more common in females, and uric acid stones occur later in age in both genders.
19,20 An interesting finding enabled by the longitudinal health records is the visual analysis 

for capturing major trends of stone type conversions over time. While stone type conversions 

have been previously studied in isolation,21,22 the alluvial diagram provides a holistic 

approach for this type of study. The availability of large longitudinal health records also 

enabled a specific type of survival analysis, survival from the second stone surgery, which 

has been previously shown difficult to perform for rare stone types.23 Our data would 

indicate that struvite stone formers, followed by hydroxyapatite and brushite stone formers 

are at higher risk for recurrence defined by surgical intervention, compared to calcium 

oxalate and uric acid stone formers. These data may be helpful towards informing 

surveillance protocols after surgical intervention. For example, struvite stone formers may 

benefit from more frequent diagnostic imaging after surgery to determine early stone 

recurrences, compared to calcium oxalate stone formers.

Furthermore, the clinical utility of our phenotyping method was demonstrated though 

multiple phenotype associations for each stone composition. For example, the association 

between uric acid and type 2 diabetes has been well studied, linking uric acid stone disease 

as an indicator of metabolic syndrome 24,25. The hydroxyapatite–pulmonary collapse 

association we detected in our experiments has been previously unreported. A possible 

explanation is that hydroxyapatite stone formers often have more comorbidities including 

urinary tract infections leading to inpatient hospitalization and therefore more pulmonary 

related diagnoses. Pulmonary atelectasis is often coded with the same ICD code, and is a 

common diagnosis after inpatient surgery. Furthermore, previous studies have reported the 

higher prevalence of struvite and hydroxyapatite stones in patients with neurogenic bladder,
26 a recognized contribution of urinary tract infection to struvite formers,27 and a high rate 

of calcium metabolic abnormality in patients with brushite stones.28 These findings warrant 

additional investigation into how disease associations inform modifiable risk factors and 

predict disease based on stone subtype.

Future directions of this work include improving stone composition extraction using a 

context-based machine learning approach and externally validating our method on EHR 

systems in other institutions. We also plan to build on our previous work to improve kidney 

stone composition extraction using assertion classification29 and distributional word 

embedding models.30 Finally, we plan to expand our algorithm to identify stone events from 

specific sources of information including surgery, emergency room visits, passed stones, 

radiographic stone disease, and 24-hour urine data.

Our approach has a number of limitations. First, the extraction of stone composition from 

notes is sensitive to transcription errors that may occur when stone analysis reports are 

interpreted. Second, rule-based methods are limited in capturing the surrounding contextual 

information of specific text expressions. This limitation partially explains the lower 

performance values achieved for stone composition mentions that occur in multiple contexts. 
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The findings from this work will need external validation. Moreover, despite being 

commonly used in high-throughput observational studies, we acknowledge the limitation of 

the phenotyping algorithm using only ICD codes to extract the case/control disease 

outcomes.

CONCLUSIONS

We demonstrate high performance and clinical utility of an NLP algorithm for large-scale 

extraction of kidney stone composition from millions of clinical notes. We proposed a visual 

analysis approach to capture stone type conversions over time and showed a difference in 

survival from a second stone surgery by stone composition. We conducted a landscape of 

phenotype associations on kidney stone patients showing the potential of our approach for 

efficient and cost-effective discovery of novel associations and replication of previous 

findings by stone composition. Additional applications that could be facilitated by our 

phenotype algorithm include prognosis and prediction models for kidney stone disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circos plot with the analysis of 2,417 kidney stone patients from the entire Vanderbilt HER 

using StoneX. Patients with missing stone composition subtype percentages were excluded. 

In the plot, each ring represents a specific analysis and each sector corresponds to one stone 

type. From innermost to outermost: The center of the plot shows a visual representation of 

stone type link. Each link width is proportional to the percent of patients with the 

corresponding stone types. The width of the sector area with no links represents the 

proportion of patients with only the corresponding stone composition. For example, a large 

proportion of calcium oxalate monohydrate stones also had calcium oxalate dihydrate, and 

vice versa. A large proportion of calcium oxalate monohydrate stones were 100% pure. 

Moving outward, the next 4 colored rings from outer to inner show distributions by stone 

composition, surgical procedures (none, one, multiple), sex, and race. Further outward 

shows histograms with proportions of stones with respective percent compositions.

Bejan et al. Page 10

Urology. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Kaplan-Meier survival estimates from a second kidney stone surgery. Median survival time 

for patients with struvite stones was 69 months, while this was not reached for other stone 

types. Log-rank test showed a difference in survival among the groups (P=0.03).
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Table 1

Performance of StoneX on kidney stone composition identification in clinical notes.

Stone composition PPV Sensitivity F1-score

% CaOxM 94.9 90.2 92.5

% CaOxD 93.8 83.3 88.2

% Hydroxyapatite 90.9 90.9 90.9

% Brushite 100.0 80.0 88.9

% Uric acid 87.5 100.0 93.3

% Struvite 100.0 100.0 100.0

CaOxM, calcium oxalate monohydrate; CaOxD, calcium oxalate dihydrate
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Table 2

Phenotype associations grouped by stone composition.

Stone composition ICD9 code ICD9 code description Cases Controls Odds ratio (95% CI) P-value

Uric Acid 250.00
Diabetes mellitus without mention of 
complication, type II or unspecified type, not 
stated as uncontrolled

319 1264 2.69 (1.91, 3.79) 1.62×10−8

Struvite 596.54 Neurogenic bladder NOS 43 1540 12.27 (4.33, 34.79) 2.40×10−6

V13.02 Personal history, urinary (tract) infection 146 1437 7.36 (3.01, 17.99) 1.19×10−5

Hydroxya patite 518.0 Pulmonary collapse 266 1317 3.67 (2.10, 6.42) 5.06×10−6

596.54 Neurogenic bladder NOS 43 1540 5.23 (2.05, 13.36) 5.43×10−4

Brushite 275.40 Unspecified disorder of calcium metabolism 81 1502 4.59 (2.14, 9.81) 8.64×10−5

275.42 Hypercalcemia 102 1481 4.09 (1.90, 8.80) 3.08×10−4
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