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Digitizable therapeutics for 
decentralized mitigation of global 
pandemics
Adar Hacohen1,2, Reuven Cohen   3, Sol Efroni   2, Baruch Barzel   3 & Ido Bachelet   1

When confronted with a globally spreading epidemic, we seek efficient strategies for drug 
dissemination, creating a competition between supply and demand at a global scale. Propagating along 
similar networks, e.g., air-transportation, the spreading dynamics of the supply vs. the demand are, 
however, fundamentally different, with the pathogens driven by contagion dynamics, and the drugs 
by commodity flow. We show that these different dynamics lead to intrinsically distinct spreading 
patterns: while viruses spread homogeneously across all destinations, creating a concurrent global 
demand, commodity flow unavoidably leads to a highly uneven spread, in which selected nodes are 
rapidly supplied, while the majority remains deprived. Consequently, even under ideal conditions of 
extreme production and shipping capacities, due to the inherent heterogeneity of network-based 
commodity flow, efficient mitigation becomes practically unattainable, as homogeneous demand is 
met by highly heterogeneous supply. Therefore, we propose here a decentralized mitigation strategy, 
based on local production and dissemination of therapeutics, that, in effect, bypasses the existing 
distribution networks. Such decentralization is enabled thanks to the recent development of digitizable 
therapeutics, based on, e.g., short DNA sequences or printable chemical compounds, that can be 
distributed as digital sequence files and synthesized on location via DNA/3D printing technology. 
We test our decentralized mitigation under extremely challenging conditions, such as suppressed 
local production rates or low therapeutic efficacy, and find that thanks to its homogeneous nature, it 
consistently outperforms the centralized alternative, saving many more lives with significantly less 
resources.

In recent pandemics, from SARS to the West-African Ebola, we have fortunately averted a major global spread. 
However, when such scenraio will transpire, we will be challenged by a competition between the infectious path-
ogen and the therapeutic technology, each racing to reach the majority of the population first. This competition 
confronts us with several challenges: (i) the inevitable response time tR required for us to instigate a mitigation 
plan places the pathogen at a potentially significant spreading advantage; (ii) while the pathogen reproduces as 
it spreads1–3, a therapy must be manufactured and shipped from one or few sources, whose production capacity 
may be limited4–12; (iii) under global demand we must ship the therapeutics worldwide, stretching the bounds of 
our limited transportation resources.

To assess our ability to address such a challenge we analyze the simultaneous dynamics of the two spreading 
processes: that of the pathogens versus that of the therapeutics. It would naïvely seem that winning this competi-
tion relies on rapid production and shipping capacity. However, here we show that due to the different spreading 
dynamics - drug dissemination becomes intrinsically inefficient when faced with global demand. The source of 
this inefficiency is rooted, not in production/shipping rates, but rather in the fact that network-based commodity 
flow leads to an uneven, and hence highly ineffective, supply of the therapeutic. As a consequence, we show that 
for a sufficiently large network, even unrealistically optimistic production/shipping capacities remain insufficient.

It seems, therefore, that the only viable strategy is to severely intervene in international mobility. On the one 
hand quarantining airports and restricting travel to halt the viral spread13–15, and on the other hand reshaping the 
dissemination network to allow a more even distribution of the therapeutic agent. Such major interventions, how-
ever, are not just impractical, but may also lead to significant economic loss and major political stress – indeed, a 
lesser of two evils, but still a potentially hurtful toll on global stability.
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To break this gridlock, we consider an alternative mitigation strategy, based on decentralized production, in 
which the therapeutics are locally synthesized at each destination. This bypasses the distribution networks, and 
allows a more leveled spread of the therapeutic. We consider the fact that such decentralization might, under 
some conditions, exhibit lower production capacity, if, for instance, the local synthesis is inefficient, or the ther-
apeutic efficacy is sub-optimal. However, as we show that equality precedes capacity, we find that this strategy 
consistently prevails thanks to its egalitarian nature, even if inferior in many other relevant parameters, e.g., 
production rate, response time or therapeutic efficacy. Hence, the merits of decentralization overcome its potential 
practical shortcomings, calling on us to urgently develop decentralized mitigation capabilities.

Given the complexity of drug production, decentralization seems, at first glance, unfeasible – how can each 
local population manufacture their own therapeutics? However, recent breakthroughs suggest that decentral-
ized mitigation is limited by perception, rather than by technology. Indeed, certain types of therapeutics can be 
converted into digital information, handled and distributed as data, and then locally printed, i.e. synthesized, at 
their designated destination (Box 1, Section A). Such digital shipping of, e.g., DNA sequences, vaccines or ther-
apeutic agents, is, already in use16–18, hence the relevant technology is, in fact, currently available. However, at 
present, this technology remains unscalable under global demand. We, therefore, continue to lack decentralized 
mitigation capabilities, a lacuna that is primarily driven by the current absence of motivation to scale-up our 
printing capacity, as indeed, the crucial advantages of decentralization are yet unrecognized. Following our anal-
ysis below, exposing the unequivocal merits of decentralized mitigation, we wish to prompt its development as a 
future response to global epidemics. This entails advancing the already existing technological pathways towards 
practical implementation at a global scale – a goal that, given the appropriate motivation, we believe is within our 
reach. In Section A we present specific guidelines for economically viable decentralized mitigation, showing that, 
under achievable reduction in costs, an annual investment of 50–500 USD per individual is sufficient to set up the 
required infrastructure within approximately one decade.

Results
To demonstrate the potential utility of our proposed decentralized response we consider different epidemiological 
scenarios, from mildly contagious to extremely virulent, in which a lethal (or otherwise irreversible) epidemic 
spreads globally via air-travel, under the susceptible-infected-removed (SIR) epidemic model19–21 (Box 2). We 
used empirical data on human aviation to evaluate the flux of passengers between =N 1, 292 local populations 
(nodes), each with Mn individuals ( = …n N1, , ), and quantified the impact of the epidemic through its global 
coverage
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where r t( )n
U  is the fraction of removed untreated individuals in n. For an extremely contagious disease, absent any 

treatment, we have ≡ → ∞ →R R t( ) 1, representing the infection of the entire population (Fig. 1a, grey). Such 
extreme scenario, while unlikely, helps us challenge our examined mitigation strategies, putting them to the test 
under most adversarial conditions. Other, less virulent, scenarios, including epidemiological parameters 
extracted from common diseases, such as the flu, are analyzed in Supplementary Section 4.2, leading to similar 
findings.

Following the initial outbreak at t = 0, we define the response time tR as the time required to begin the distri-
bution of a therapy. We simulated two different therapeutic scenarios, both beginning at =t tR:

Centralized mitigation.  We take the classic approach, in which the developed drug is manufactured at a 
specific source node s, then distributed globally via air-transportation (Fig. 1c–f). In each location, some of the 
drug is consumed, based on the local infection levels, and the rest continues to travel to farther destinations, 
through pre-planned travel paths from s to all other nodes (Supplementary Section 2.2). In this approach, the 
dissemination is limited by the source’s distribution capacity Cs (day−1), capturing the number of doses that can 
be shipped from s per day, as dictated both by s’s manufacturing capabilities and by the carrying capacity of the 
global transportation network. Setting =C 1s  represents a scenario where s is capable of distributing sufficient 
supply to satisfy the global demand in a single day, i.e. produce and ship doses at a volume comparable to the 
entire global population. Most commonly we expect to have <C 1s .

In Fig. 1c–f we present the evolution of the epidemic at four selected time-points. At t = 0 we simulate an out-
break (red) at Burundi (BJM), emulating the 2013 Ebola, which originated in Africa22,23, then track its spread 
through air-travel. The node infection levels and the epidemic fluxes, i.e. the daily volume of infected passengers 
on each route, are represented by red color depth. Drug dissemination (blue) begins at =t 12R  days in Osaka 
(ITM), again using blue color depth to signify the availability/flux of drugs in each node/route. The snapshots 
illustrate the competition between the two spreading processes – the diffusing pathogen vs. the disseminated 
therapeutic – showing, through the long-term prevalence of infections (red) the inefficiency of centralized miti-
gation in the face of the globally spreading epidemic.

Decentralized mitigation.  In the decentralized scenario, the digital therapeutic is sent out as data, reaching 
all destinations practically instantaneously at =t tR (Fig. 1g–j). Here, the main bottleneck for mitigation is driven 
by the local rates cn ( = …n N1, , ), capturing each node’s capacity to synthesize and locally disseminate the digi-
tal sequence in its material form. The capacity cn is impacted by the abundance of printing devices in n and by the 
logistic efficiency of n’s local health-care system in delivering the printed drugs to the infected population. Hence 
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=c 1n  translates to a daily production and dissemination of Mn doses per day, i.e. covering the entire local 
demand.

For comparison purposes, note that a mean capacity of =c Cn  captures a state in which the decentralized 
production covers, overall, a C-fraction of the global demand per day, equivalent, under centralized mitigation to 
setting =C Cs . Therefore, = =c C Cn s  represents a scenario where both strategies, centralized vs. decentral-
ized, exhibit similar global production rates, isolating only the effect of the decentralization.

The results of the decentralized strategy are shown in Fig. 1g–j. As before, the spread of the disease is captured 
by the red nodes and links, however, in this case, the drug no longer progresses along the network, but rather 
manufactured locally at rates cn, therefore, the blue links are absent. Instead, drug availability in each location is 
signified by the blue color depth of each node’s circumference, while infection levels are, as above, captured by the 
red fill of all nodes. Using similar lag tR and capacities = = .c C 0 2n s , i.e. a daily coverage of 20%, we find that 
decentralization is by far more efficient. In this example, the total infected population is reduced from ≈R 10  
under no treatment, to = .R 0 15 under decentralized mitigation. This is compared to = .R 0 60, four times higher, 
under the traditional centralized strategy (Fig. 1a,k–n).

Quantifying mitigation efficiency.  To systematically asses the performance of both strategies, we track 
the mitigation efficiency via

 = −
R
R

1 ,
(2)0

where R, taken from (1), is the observed long term coverage under centralized/decentralized treatment and R0 is 
the projected coverage in the absence of treatment, i.e. = =⟨ ⟩C c 0s n . A perfect response is captured by → 1 , i.e. 
R R0, representing a dramatic reduction in the disease coverage. Conversely, → 0  indicates that infection 

levels remained almost unchanged by our intervention.
A crucial factor impacting our mitigation outcome, is the response time tR, required to identify the threat and 

initiate a response. To observe this, in Fig. 2a we present   vs. tR for both centralized (yellow) and decentralized 
(green) mitigation. As expected, we find that   declines with tR, however, for the entire range of response times 
decentralization consistently achieves higher efficiency. In fact, even in the ideal case, where =t 0R , an immediate 
response, centralized distribution achieves an efficiency of only 80%, while decentralization spares practically all 
potential infections.

In the limit of large tR both methods exhibit low efficiency, a natural consequence of the fact that the majority 
of the impacted population has already perished, and can no longer be treated. Therefore, we consider the residual 
coverage ∆ = −R R R t( )R , capturing only the fatalities that occurred posterior to our response. This allows us to 
evaluate the residual efficiency via

= −
∆
∆

R
R
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0
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where ∆ = −R R R t( )0 0 0 R . We now see that even if tR is large, our ability to save the remaining population is 
enhanced if we prioritize decentralized over centralized mitigation (Fig. 2b).

Next, we examine the impact of capacity on the efficiency of the disease mitigation. We consider a spectrum of 
capacities = =⟨ ⟩C c Cs n , with C ranging from 10−4 to −10 day4 1, spanning a broad range, from extreme depriva-
tion to extreme overproduction. We find, again, that decentralization is significantly more efficient (Fig. 2c, 
green), achieving an efficiency of > .0 9Res  already at = .C 0 25, a scenario in which the average node can only 
produce 25% of its demand per day (dashed-lines). Similar efficiency under centralized distribution (yellow) is 
only achieved at ~C 30, which is not only 102 times higher than the decentralized alternative, but, most impor-
tantly, an extremely unrealistic value, describing a state in which a single source node s produces and ships 
enough doses per day to cover 30 times the global demand. Optimal efficiency  → 1Res , achieved around ∼C 1 
with decentralization, is only reached under the completely unattainable ∼C 103 in the case of centralized distri-
bution. Another crucial factor we examine is the therapeutic efficacy γ, quantifying the probability of recovery 
after receiving the physical/digital treatment. Once again, we find that decentralization is superior, achieving a 
higher Res, even with significantly lower efficacy γ (Fig. 2d).

Together, we find that decentralized mitigation, based on digitizable therapeutics and local synthesis, achieves 
a dramatically higher reduction in infection/mortality under significantly lower, and therefore realistic, produc-
tion (C) or efficacy (γ) levels. Counter-intuitively, these results are unrelated to the faster dissemination of digital 
compared to physical media. Indeed, this distinction between the speed of data versus that of physical commodi-
ties was not even introduced into our modeling of the dissemination in Eqs. (15) and (16), and hence, it plays no 
role in the decentralized advantage. We, therefore, conclude that decentralization provides intrinsic merits that 
go beyond the classic measures of production rates or shipping capacity. Below, we explore these merits, showing 
that they are deeply rooted in the egalitarian nature of localized production, as opposed to the intrinsically une-
qual distribution of network-based commodity flow.

Inequality and mitigation efficiency.  To examine the impact of our response at each individual node, we 
measured the local residual efficiency
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Figure 1.  Outrunning a contageuous epidemic using Centralized vs. Decentralized therapeutic distribution. (a) 
The global coverage R(t) vs. t following an outbreak at Burundi (BJM). Lacking treatment we observe 

→ ∞ ∼R t( ) 1 (grey). Centralized mitigation, initiated at =t 12R  days (dashed line), reduces mortality to ∼0.6 
(yellow). Under identical conditions, decentralized mitigation achieves a four-fold increase in efficiency, with 

→ ∞ ∼ .R t( ) 0 15 (green). (b) The state of the epidemic at =t 11, directly before drug dissemination begins. The 
local mortality levels r t( )n

U  in each node and the flux of infected individuals along each link (air-route) are 
represented by their red color depth. (c–f) Centralized drug dissemination begins at =t 12R  in Osaka (ITM), with 
therapeutic fluxes (links) and drug availability levels (nodes circumference) represented by blue color depth. We 
observe a race between the therapeutic and the disease, both spreading along similar routes, ending in a significant 
fraction of infected individuals, as indicated by the many red nodes at t = 32. (g–j) In decentralized mitigation each 
node synthesizes its own pool of therapeutics (blue circumference), resulting in a dramatic reduction in mortality, 
with the only deep red nodes, being the ones in the vicinity of BJM, that were impacted prior to our response at 

=t 12R . Here we observe no therapeutic flux along the links, as the therapeutic is disseminated digitally, bypassing 
the physical transportation network. (k–n) R(t) at the four selected time points under no treatment (U, grey), with 
centralized mitigation (CM, yellow) and under decentralized mitigation (DM, green). Here and throughout we set 
the parameters in Eq. (12) to α = 2 day−1, β = .0 2 day−1, γ = .1 0, ζ = .1 0 day−1, =h 8 and ε = −10 6. The mean 
capacities under both centralized (15) and decentralized (16) mitigation were set to = = .⟨ ⟩c C 0 2n s  day−1 and the 
response time to =t 12R  days. The individual capacities cn are extracted from a normal distribution  µ σ( , )2  with 
mean µ = .0 2 and standard deviation σ µ= .0 1 .
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R  and ∆ = → ∞ −r r t r t( ) ( )n n n,0 ,0 ,0 R  represent the residual mortality in n with 
and without the therapeutic, respectively. In analogy with Eq. (3), this local efficiency quantifies the benefit pro-
vided by the disseminated therapeutic to each specific location n on a scale ranging from zero (no benefit) to unity 
(optimal). This allows us to evaluate the benefit inequality across all nodes through the Gini coefficient24,25
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which ranges from zero, for a fully uniform nRes, , to unity, in the limit of extreme inequality. We find in Fig. 3a 
that under decentralized mitigation the inequality is small, with Gini being close to zero independently of C 
(green). In contrast, centralized mitigation (yellow) creates an inherent unevenness, exhibiting a high Gini 

Figure 2.  Efficiency of Centralized vs. Decentralized mitigation. The efficiency   vs. the response time tR under 
centralized (yellow) and decentralized (green) drug dissemination, showing that centralization is consistently 
superior. For large tR both methods show little efficiency as the majority of the population has already been 
impacted. (b) The residual efficiency Res (3) vs. tR, capturing the reduction in mortality posterior to our 
response, namely eliminating individuals that have already perished prior to tR. We find that even under late 
response (large tR), decentralized (green) still saves a larger fraction of the remaining population compared to 
centralized (yellow). (c) Res  vs. the capacity = =⟨ ⟩c C Cn s , which captures the fraction of the global demand 
that can be manufactured and disseminated daily. We find that a successful centralized mitigation requires 
unrealistic production and shipping capacities (yellow). For instance, to achieve  = .0 9Res , a 90% reduction in 
post-response mortality, we must have a capacity of >C 30, i.e. distribute doses in excess of 30 times the global 
demand per day (dashed lines). Strikingly, a similar efficiency can be achieved under decentralized mitigation 
(green) with capacity as low as = .C 0 25, representing a two orders of magnitude reduction in capacity, while 
achieving a comparable outcome. Therefore, decentralization is not only faster, using digital data transmission 
instead of physical shipping routes, but also inherently more efficient, saving more people with significantly less, 
and hence realistic, resources. (d) Res vs. drug efficacy γ. The locally synthesized drugs (green) achieve higher 
performance compared to the centrally distributed ones (yellow) even if their therapeutic efficacy is low. In fact, 
as long as the digital therapeutic has γ > .0 2, namely that only one out of five individuals is cured by the drug, it 
is guaranteed to exceed the performance of the centralized treatment, even if the latter has a 100% success rate 
(γ = 1). Here in each panel we varied a specific parameter (t C,R  or γ) while controlling for all others, as 
appears in the panels themselves and detailed in the caption of Fig. 1.
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coefficient even when ∼C 1. To get deeper insight we calculated the probability density P( ) for a randomly 
selected node to have    ∈ +( , d )nRes, . In centralized mitigation (Fig. 3b) we observe for = .C 0 01 (yellow) a 
high density around → 0 , and a slight increase in P( )  close to unity (see inset). This depicts a coexistence of a 
majority of low efficiency nodes with a selected minority of saved nodes, for which nRes,  is high, illustrating the 
severe benefit inequality. Only when C is set to 1 (orange) do we observe the highest density at ≈ 1nRes, . Yet even 
under these conditions, the saved nodes continue to coexist alongside a long tail of underserved destinations 
whose local efficiency reaches as low as 0.2. In contrast, under decentralized mitigation, P( ) exhibits a uniform 
shift towards  = 1 as C is increased, representing an egalitarian decrease in mortality, evenly spread across all 
populations (Fig. 3c).

Analytical results: the spreading advantage of viruses versus therapeutics.  Centralized miti-
gation is, in its essence, a spreading competition between the therapeutics and the pathogens, both progressing 
along the same underlying network, i.e. air-transportation. It seems, naïvely, that winning this competition is 
a matter of propagation efficiency: we must manufacture and ship therapeutics at sufficient rates to outrun the 
spread of the disease. However, the phenomenological analysis above indicates, that there is an intrinsic defi-
ciency in the spread of therapeutics, that cannot be easily compensated by simply increasing production/shipping 
rates Cs. Indeed, as we next show, the two competing processes – viruses vs. therapeutics – lead to fundamentally 
different spreading patterns, in which the viruses benefit from an intrinsic advantage.

Viral spread.  Viruses spread via diffusion coupled with local SIR dynamics as captured by Eq. (12), Fig. 4a. In 
this process, upon penetration, the viruses reproduce locally at each node n through SIR, until reaching peak 
infection at =t T nPeak, . In a random network, since the majority of nodes are at the mean distance from the initial 
outbreak, we find that they all reach peak infection approximately simultaneously. Therefore, after a limited prop-
agation time, the infection levels become almost homogeneous across all nodes, creating a uniformly distributed 
demand of the therapeutic. Indeed, we find that during the global peak infection, Tpeak, the infection distribution 
P(j) is bounded, capturing a state in which the majority of nodes simultaneously require treatment (Fig. 4c,e). 
Therefore, when an epidemic spreads globally, at its peak, the therapeutic demand is homogeneous.

Commodity spread.  In contrast, the therapeutic follows Eq. (15), produced at a single source node s, then diluted 
as it spreads across the exponentially growing number of pathways, Fig. 4b. The result is a profoundly different 
spreading pattern in which the availability qn(t) follows a fat-tailed distribution, well-approximated by ∼ −P q q( ) 2 
(Fig. 4d). Hence, in contrast to the homogeneous demand, supply is extremely heterogeneous, with a vast majority 
of undersupplied nodes, and a selected privileged minority of well-treated destinations (as demonstrated in 
Fig. 4f).

Together, this combination of homogeneous demand and heterogeneous supply, a consequence of the intrinsic 
spreading patterns of pathogens versus therapeutics, creates a crucial gap in our ability to achieve mitigation, as 
all nodes require treatment, and yet only a small minority receives sufficient supply. This discrepancy, we next 
show, is a practically unavoidable consequence of the network-based commodity flow underlying centralized 
mitigation.

Figure 3.  Equality and allocation of resources in drug dissemination. To understand the roots of the 
dramatically improved performance of decentralized vs. centralized we examined the level of inequality in the 
local efficiencies  nRes,  via the Gini coefficient (5). (a) Gini vs. C for centralized (yellow) and decentralized 
(green) mitigation. While the latter is egalitarian by nature, having a low Gini coefficient, the former is 
extremely uneven, with few nodes that benefit from high nRes,  and a majority of nodes that remain deprived. 
This indicates that uneven allocation of resources (Gini), and not the slower production/shipping rates (C), is 
the main obstacle for efficient mitigation. (b) The probability density P( )Res  under centralized mitigation, as 
obtained for different capacity levels C. We observe a coexistence of a minority of well treated nodes (peak 
around  ≈ 1Res , see inset) and a majority of nodes with varying efficiency levels. (c) In contrast, under 
decentralized mitigation we observe a bounded P( )Res , whose mean efficiency (peak) approaches  = 1Res  
uniformly as C is increased. This represents an even allocation of benefits, in which most nodes witness a similar 
rise in efficiency as capacity is increased.
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Analytical bounds for centralized mitigation.  To understand the origins of the inhomogeneity 
observed under centralized mitigation consider the routing of the therapeutic through the network Bnm in Eq. 
(15). For every qm(t) doses present in m, a fraction Bnm will be shipped throughout the day to n, then yet a smaller 
fraction will propagate onwards to n’s neighbors and so on. Hence, the therapeutic availability is diluted as it flows 
downstream from the source s to the target n (Fig. 4b). Accounting for all pathways from s, the rate of incoming 
doses at n becomes (Supplementary Section 3.1)

∑ξ =










=

B ,
(6)

sn
l

L
l

sn1

Max

namely the s, n term of a geometric series with base B. Roughly speaking, Eq. (6) approximates the number of 
doses reaching n per each dose exiting s, hence indicating which nodes benefit from superfluous drug availability 
(large ξ) and which will be underserved (small ξ).

In Supplementary section 3.2.2 we show that the probability density P(ξ) to observe ξ ξ ξ ξ∈ +( , d )sn  scales as

ξ ξ∼ ν−P( ) , (7)

a power-law distribution of rates that explains the extreme levels of heterogeneity that we observed in drug supply. 
For a random network with an arbitrary degree-distribution we predict that ν = 2. This prediction, confirmed in 
Fig. 4g, exposes the roots of the highly unequal drug availability P(q), which, indeed, exhibits the exact same 
scaling in Fig. 4d.

This ξ-heterogenity directly impacts the probability of nodes to be saved by our response. A node n is consid-
ered saved, i.e. =S 1n , if it witnesses a significant reduction in its mortality, namely that <R R/ Thn n,0 , where Rn 
and Rn,0 are the long term mortality rates in n with and without treatment, respectively. Setting the threshold to 

= .Th 0 5, we measured ∩ ξP S( ), the probability that a randomly selected node in the group ξ ξ ξ ξ∈ +( , d )sn  
has =S 1n . As expected, we find that the greater is ξsn, the larger is the probability for n to be saved (Fig. 4g, shades 
of orange). Hence, the uneven P(ξ) in (7) is, indeed, the root cause of the inefficiency observed in centralized 
mitigation. As Cs is increased, the fraction of saved nodes, namely the area under ∩ ξP S( ), also increases, but the 
preference towards large ξsn continues to underlie the uneven mitigation pattern, with the saved nodes consist-
ently concentrated around the tail of P(ξ).

The most important implications of Eq. (7) are observed through two quantities that directly impact the effi-
ciency of centralized mitigation:

Critical capacity Cη.  Consider the critical capacity Cη required for a successful mitigation, defined as one where a 
significant fraction η of all nodes was saved ( =S 1n ). Captured by the area under the ∩ ξP S( ) curve, this maps 
to ∫ ∩ ξ ξ η=

ξ

∞ P S( )d
min

, which taking P(ξ) from Eq. (7) leads to (Supplementary Section 3.2.3)

∼η
φC N , (8)

where φ ν= −1/( 1). For a random network (ν = 2) this predicts ∼ηC N  (Fig. 4h). Consequently, for sufficiently 
large networks the critical capacity diverges polynomially with N, rendering efficient mitigation practically unat-
tainable. Recall that =C 1s  represents a daily capacity to produce and ship sufficient supply to meet the global 
demand. In this sense, Eq. (8) indicates that effective mitigation requires resources that are orders of magnitude 
greater than the actual demand – a consequence not of the volume of drugs produced, but of their skewed and 
highly uneven distribution observed in Fig. 4d,f.

Mean spreading time 〈T〉.  Last, we consider the time scales of the two competing spreads – the epidemic vs. the 
therapeutics. With the viruses reproducing locally at each node via SIR, their propagation times to all nodes, 
T nPeak, , are determined by the length of all network paths. For a random network, in which pathways are of order26 
∼logN this predicts that, on average

〈 〉 = 〈 〉 ∼T T Nlog , (9)nPeak,

a rapid propagation, logarithmically dependent on system size. To evaluate the spread of the therapeutic, we seek 
the supply time T nSupp, , as the time when = =q t T( ) 1n nSupp, , i.e. the time when n’s local demand has been met. 
Once again, the power-law distribution of (7) predicts that the mean supply time follows (Supplementary 
Section 3.2.4)

= 〈 〉 ∼ φT T N , (10)nSupp,

a much slower propagation that diverges with the system size. In Fig. 4i,j we show 〈T〉 vs. N for the epidemic (red) 
and the therapeutics (blue). As predicted, the two spreading processes are characterized by different spreading 
times – logarithmic vs. polynomial – ensuring that for sufficiently large N, we have 〈 〉 〈 〉T Tn nSupp, Peak, , namely 
that supply is guaranteed to lag significantly behind demand.

Equations (7–10) expose an intrinsic lacuna of centralized mitigation, that, by virtue of relying on a 
network-based distribution scheme, it leads to an extremely unequal distribution, and hence to a highly discrim-
inative spread of the therapeutic. This inequality directly translates to the observed mitigation inefficiency. Our 
analysis is independent of disease/commodity flow parameters. These may affect the specific rates and pre-factors, 
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but have little bearing on the scaling exponents, which are, indeed, intrinsic to the spreading dynamics. Therefore, 
as long as the epidemic spreads globally – a scenario often considered imminent - centralized mitigation requires 
prohibitive manufacturing and shipping capacities (Fig. 4h); in their absence – the epidemic will inevitably out-
run the therapeutics (Fig. 4i,j). We, therefore, find that the only remedy is to design a non-network-based dissem-
ination scheme, i.e. decentralized mitigation.

Application to empirical networks.  To examine P(ξ) in real distribution networks, we constructed Bnm 
from empirical fluxes of human mobility (Supplementary Section 2.2) and used (6) to obtain the incoming ship-
ping rates ξsn of all nodes n. We find, in Fig. 4k that P(ξ) indeed follows the power-law of (7), here with ν = .1 4, 
an extremely uneven distribution, where most nodes receive just a tiny fraction of the therapeutic exiting s. We 

Figure 4.  Spreading competition between pathogens and therapeutics. (a) As it spreads, the pathogen 
endogenously reproduces identically at each node through SIR. (b) In contrast, the therapeutic flows in different 
rates into each node. We analyze the resulting spreading patterns on a weighted random network of =N 104 
nodes ( =k 10, weights extracted from . .(1 0, 0 2 )2 ). (c) The probability density P(j) for a randomly selected 
node to have infection level j, as obtained at =t TPeak. The bounded nature of P(j) indicates that the global 
demand is homogeneous. (d) At the same time the supply of the therapeutic is extremely heterogeneous with 

∼ −P q q( ) 2, depicting a coexistence of deprived and oversupplied nodes. (e,f) These distinct spreading patterns 
are clearly visible in a featured small network of N = 100 nodes: The pathogens (red) impact all nodes roughly 
simultaneously and homogeneously, while the drug supply (blue) is highly heterogeneous, reaching few nodes 
early, and leaving most nodes to lag behind. This disparity between homogeneous demand and heterogeneous 
supply – an intrinsic characteristic of the competing spreading processes – severely limits the effectiveness of 
centralized mitigation. (g) We measured the rates ξsn in (6) and obtained the probability density P(ξ) for 
ξ ξ ξ ξ∈ +( , d )sn  (grey). As predicted we find that ξ ξ∼ −P( ) 2 (black), exposing the topological roots of the 
observed supply heterogeneity. Dividing the nodes into saved ( =S 1) and unsaved ( =S 0) we also measured 

∩ ξP S( ) under varying capacity levels C (yellow to orange, = . . . . .C 0 001, 0 005, 0 02, 0 04, 0 1 days−1). As 
expected, the saved nodes tend towards the large ξ tail of the distribution, showing that, indeed, the broad 
distribution of ξsn determines the mitigation efficiency. (h) The critical capacity ηC  required to save ( =S 1) an η 
fraction of all nodes vs. the number of nodes N. As predicted in Eq. (8) we observe ∼η

φC N , a scaling 
relationship that renders mitigation unattainable for large networks ( → ∞N ). For a random network we 
predict φ = 1 (solid black line). (i,j) The mean spreading time 〈T〉 of the pathogen (red) and the therapeutic 
(blue) vs. system size N. The therapeutic spreads in polynomial time (log-log plot, left), while the pathogen in 
logarithmic time (log-linear plot, right). (k) P(ξ) vs. ξ as obtained from the empirical air-traffic network. We 
observe similar patterns to those of the random network analyzed above. Indeed, also here the ξ-heterogeneity 
(ν = .1 4, black solid line) drives the local efficiency levels as observed from ∩ ξP S( ) (yellow to orange, C = 
0.01, 0.1, 0.3,1.0, 3.0, 10 days−1). (l) In decentralized mitigation, absent a distribution network, we find that the 
saved nodes are evenly spread, independently of ξ, an egalitarian increase in saved nodes, in which the rate 
heterogeneity plays no role (light to dark green, = . . . . . .C 0 025, 0 03, 0 035, 0 04, 0 05, 0 1 days−1).
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also measured ∩ ξP S( ), finding again that the saved nodes are concentrated around the large ξ tail of P(ξ), con-
firming that network dilution via (6) is, indeed, the source of the unsuccessful mitigation. Repeating this experi-
ment for decentralized mitigation (Fig. 4l) shows the intrinsic difference between the two strategies, as here, since 
Bnm plays no role in delivering the therapeutic, ∩ ξP S( ) rises uniformly across all nodes, independently of their 
highly uneven pathways to the source s.

While our analytical predictions focus on random networks, we have shown that they also apply to the empiri-
cal Bnm, which builds on the natural fluxes, as extracted from global aviation data27,28. More broadly, such dilution 
in the downstream flow of the therapeutic in the form of Eq. (6), is an intrinsic consequence of any reasonable 
network construction29, and hence we believe that it is practically unavoidable under the centralized mitigation 
framework. In Supplementary Section 2.2 we artificially construct an egalitarian network, which indeed rectifies, 
to some extent, the observed distribution inequality. However, the realization of such a network requires us to 
seize full control over air transportation, which is not only an unrealistic scenario, but also, as mentioned above, 
one that imposes an extremely heavy burden on the global economy and political stability.

Optimizing centralized mitigation.  Our modeling of centralized mitigation up to this point was based on 
diffusive spread, a la Eq. (15), a framework that can be naturally coupled to the SIR dynamics of Eq. (12). In this 
framework, our control over the dissemination is enacted through the design of the networks Bnm and Znm 
(Supplementary Section 2.2). Once these networks are set, the spread of the therapeutic is governed by diffusion, 
which is often sub-optimal, allowing, e.g., for superfluous quantities to accumulate at selected locations. We can 
improve dissemination efficiency by modeling it as a commodity flow problem30,31, seeking to optimally utilize 
the routes of the existing air-traffic network, until meeting the demands of all destinations32,33. In this framework, 
each air-route is assigned a carrying capacity Cnm, capturing the number of doses it can transport per day, and 
each destination n is assigned an initial demand dn(0), depending on the size of its local population Mn. At each 
step (day), as the therapeutic is shipped and accumulates at n, the local demands are updated, d t( )n , subtracting 
the supplied doses from dn(0), until n’s quota is filled at time T nSupp,  (Fig. 5a). Using linear optimization, we derive 
the optimal dissemination strategy to achieve maximum daily flow to all destinations = …n N1, ,  from the 
source s, avoiding any wasted dosage via oversupply, and satisfying the constrained carrying capacities Cnm 
(Supplementary Section 5).

Our previous analysis in Figs 3 and 4 indicated that the main problem in centralized dissemination is its 
extreme levels of inequality, as expressed through the efficiency nRes,  in Eq. (4). In the context of the current 
modeling this is most naturally expressed through

= −f t d t
d

( ) 1 ( )
(0)

,
(11)n

n

n

capturing the fraction of n’s demand that is supplied by the time t. Interestingly, we find in Fig. 5 that the optimal 
commodity flow, in spite of being profoundly different from the diffusive propagation of Eq. (15), leads to strik-
ingly similar patterns of inhomogeneity. For instance, the Gini coefficient extracted from fn(t) remains large at the 
early stages of the dissemination (Fig. 5b), reminiscent of the patterns observed for  nRes,  in Fig. 3a above. This 
indicates that few nodes fill their initial demand early on, while the majority of nodes take a long time to satisfy 
their quota, hence the large inequality observed for small t. Similar patterns are also observed through the time 
evolution of P(f), capturing the probability density for a random node n to have ∈ +f t f f f( ) ( , d )n . Indeed, 
Fig. 5c shows that P(f) recovers the signature two peak structure observed earlier for P( )Res : an increased density 
around →f 0 and ∼f 1, capturing a coexistence of early vs. late supplied nodes (compare to Fig. 3b). Finally, we 
used T nSupp, , the time for n to fill its demand, to estimate n’s average supply rate as ξ = T1/sn nSupp, , namely the aver-
age volume of doses entering n per unit time. In Fig. 5d we find that P(ξ) recovers the power-law form predicted 
in (7) with ν = .1 86, hence fully retrieving the patterns of distribution inequality exposed in Fig. 4g,k.

Together we find that even under optimal distribution, the unequal supply rate, indeed the root cause of inef-
ficiency of centralized mitigation, is practically impossible to avoid. Therefore, it is not unique to our modeling 
via Eq. (15), or to our specific network design, but rather represents an intrinsic characteristic of network-based 
dissemination, further illustrating the crucial need for a decentralized mitigation strategy.

Discussion
Network spreading processes are at the heart of many crucial applications, from the flow of information to the 
diffusion of physical commodities. The resulting propagation patterns may be highly diverse, owing to the distinct 
spreading dynamics governing each process34,35. The consequences for disease mitigation are crucial, as we find 
that diseases spread roughly homogeneously, while therapeutics tend to distribute extremely heterogeneously. 
Intrinsic to the nature of commodity vs. viral flow these patterns are practically impossible to avoid – placing 
severe limits on our ability to efficiently address global epidemics. We, therefore introduce decentralized mitiga-
tion, a currently unexplored strategy, as likely the only tenable response for this threat.

While current technology is not fully mature for immediate implementation of decentralization, in Section 
A we discuss its potential applicability within the foreseeable future, providing estimates for the level of techno-
logical enhancement that it entails. We also emphasize that in real scenarios, a combined approach is likely best, 
where highly capable populations (cn > 1) can ship their excess synthesized therapeutics to less capable ones 
(cn < 1). This hybrid – physical/digital – strategy can further homogenize the therapeutic supply, and minimize 
the burden on the transportation networks to treat only the needy destinations. Hence, even if imperfect, decen-
tralization capabilities are a crucial component of future mitigation of global pandemics.
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Our findings are most crucial in case the epidemic spreads globally. In such scenario, the peak infection occurs 
approximately simultaneously at logarithmic time-scales. Equations (8) and (10) indicate that such concurrent 
global demand cannot be met even under the most optimistic estimates for the capacity Cs. Under these circum-
stances, decentralized mitigation is more efficient, even if it is inferior in other characteristics, such as production 
rate (cn) or efficacy (γ). This calls for a change in the current paradigm of classification and prioritization of ther-
apeutics. At present, we focus mainly on the therapeutic efficacy36,37, i.e. how efficiently the biological/chemical 
agent cures the disease. We relate little weight, however, to the agent’s chemical classification – e.g., whether it 
is a small molecule, a protein, or a nucleic acid, as, indeed, these details seem marginal as long as it overcomes 
the lethal pathogen. However, these distinctions become crucial if we consider digital-distributability, as not all 

Figure 5.  Optimizing centralized mitigation. (a) To enhance the efficiency of the centralized drug distribution 
we used the commodity flow framework: each node is assigned an initial demand dn(0), proportional to its 
population (node size); and each air-route is assigned a daily carrying capacity Cnm (numbers by edges), 
proportional to its daily volume of passenger traffic. In each time step t we optimize the flow from the source s 
to supply as much of the therapeutic as possible, within the constrained Cnm. As nodes accumulate the 
therapeutic (blue fill) their demand is updated accordingly. For example, node 2’s initial demand is d2(0) = 3. 
Following the first round of shipment (t = 1) a single unit is shipped from s, supplying a fraction =f (1) 1/32  of 
d2(0), and hence reducing its demand to d2(1) = 2. A node is fully supplied (fully blue) at time T nSupp, , when 

= =( )f t T 1,n nSupp, and accordingly =( )d T 0n nSupp, . For node 2 we have =T 3Supp,2 . (b) The Gini coefficient 
vs. t, as obtained from the time dependent fractional stock levels fn(t). We find that despite the optimization, 
inequality continues to govern the therapeutic distribution, as expressed by the high Gini coefficient at small t. 
This describes a scenario in which few nodes are fully stocked early on, while the majority of nodes will only 
reach →f t( ) 1n  (and hence Gini → 0) at much later times. (c) The probability density P(f) vs. f at three selected 
time points t. Similarly to Fig. 3b we observe a highly unequal distribution in which selected nodes are fully 
supplied (right peaks), while others are still deprived (left peaks). These patterns in (b) and (c) are strikingly 
reminiscent of the those observed earlier in Fig. 3a,b. (d) P(ξ) vs. ξ, capturing the probability density that a 
randomly selected node enjoys a supply rate of ξ ξ ξ∈ +( d ). Here we approximate rates as ξ = T1/sn nSupp, , 
namely the average supply rate in n under therapeutic distribution from s. The power-law form of P(ξ) (solid 
line represents ξ ν− ) demonstrates the uneven dissemination of the therapeutic, in which supply rates range over 
orders of magnitude. This pattern of P(ξ) is, again, analogous with the identical patterns of distribution 
inequality observed in Fig. 4d,g,k, further reinforcing the intrinsic heterogeneity characterizing network-based 
centralized mitigation.
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molecular media are equally digitizable. Hence, the utility of a drug emerges not just from its chemical effective-
ness, but also from how such effectiveness is balanced alongside the drug’s distributability.

Most crucially, our analysis shows that mitigation effectiveness, i.e. the amount of lives saved, may be distinct 
from therapeutic efficacy. This motivates future research into decentralizable therapeutic technologies, which, 
even if biomedically inferior, may translate to significantly more lives saved under a global spreading scenario 
(see Box 1 and Section A).

In a broader perspective, our finding that homogenous spread enhances mitigation efficiency may be relevant 
in other distribution scenarios, even if digitizablity is not available. For instance, most distribution algorithms for 
physical commodities optimize for maximal flow or for minimum cost30–32,38–40. However, our results indicate that 
optimizing for homogeneity may often provide the most desirable outcome, not only in terms of equality, but also 
in terms of overall mitigation efficiency.

Section A - biological applicability and current gaps.  Decentralization is motivated primarily by net-
work science considerations, showing that it enhances equality and hence the mitigation efficiency. Its realization, 
however, is limited by bio-technology, which at present offers several pathways towards digitization, as discussed 
in Box 1. Here we analyze the challenges in the DNA aptamer path, as we believe it exhibits several advantages16 
over the alternatives, such as the diversity of their initial random library69 their rapid discovery process60, and 
their relatively stable nature, which underlies their smooth handling and shipping, compared to, e.g., peptides. 
We are also motivated by recent reviews16,70 that expose the therapeutic potential of DNA aptamers, citing the 
major obstacle towards their biomedical applicability as the lagging research rather than any intrinsic therapeutic 
deficiency they possess. Of course, other biomedical realizations are equally relevant, as our main focus is on the 
efficiency of decentralization as a mitigation strategy, not on advocating for a specific biomedical application.

The main bottleneck on the track to application via DNA-based therapeutics is the scalability of DNA print-
ing16. Present day oligonucleotide synthesizers are capable of synthesizing ∼10 gram/day of a short oligonucle-
otide, at a cost of ∼500 USD, requiring thorough purification, and generating, as a byproduct, large amounts of 
liquid waste. For RNA nucleosides, LNA, or other modified materials, the cost becomes approximately 10 times 
higher, i.e. ∼5,000 USD per 10 grams. Combined with the current cost of the required instrumentation, estimated 

Box 1. Digitizable therapeutics.

While classic medications are shipped and transported in their physical form, a digitizable therapeutic can be 
distributed as data and manufactured on location via scalable printing technology. We consider three relevant 
therapeutic media with digitizable potential:

Small molecules. Envisioned as a future means of drug distribution, technology for printing biomedically 
relevant molecules has been recently introduced. The molecular 3D printers are designed to enable several 
pharmaceutical applications, such as drug design, personalized drug dosing and the fabrication of treatment 
devices41–43. The main advantage of small molecules is that they underlie the majority of current mainstream 
pharma. Indeed, most established drugs are, at present, based on small molecules, and are therefore consid-
ered the natural candidate for treating pathogens.

Nucleic acids. Built from a selection of four natural building blocks (G, C, A, T/U) and additional artificial 
ones, their synthesis is sufficiently facile and inexpensive as to be carried out locally16,18. DNA/RNA sequences 
operate either by interfering with gene expression, e.g., antisense oligonucleotides44–46 and RNAi47–49, or 
through their unique folding geometry, which allows them to interact structurally with a target molecule, 
e.g., aptamers16,50–54 and ribozymes55–57. While not widespread at this point, these short DNA-sequences 
have already proven their potential efficacy, for example inhibiting the activity of human immunodeficiency 
virus (HIV)58,59, as well as other applications at various stages of clinical trials52. A crucial advantage of DNA 
aptamers is their rapid ab-initio discovery, which can be accomplished within hours or days60, allowing a 
potentially rapid response when confronted with an unknown pathogen.

Peptides. Peptide sequences are coded from a selection of twenty natural building blocks, i.e. amino acids, 
folding into a defined geometric 3D structure to bind or modify selected target molecules61–63. Short peptides 
can be efficiently digitized, thanks to their relatively facile printability64; larger ones, however, often require 
additional modification65, and are hence harder to produce and fold properly. Finally, proteins, essentially 
very large peptides, are at present too complex for local synthesis outside a biological system, such as a cell 
culture, therefore prohibiting their current use as locally synthesized therapeutics.

The main advantage of nucleic acids and peptides is their polymeric structure, comprising a limited set of 
discrete recurring building blocks. These building blocks are digital in the same sense that binary data is 
digital, with the sequence of monomers serving as data bits. Consequently, one can flexibly print any desired 
sequence using a standard printing apparatus, without specific adaptation or calibration, in a similar fash-
ion to the way a standard printer can print any desired text. In the face of a novel pathogen, such flexibility 
can provide a crucial advantage over molecular printing. The therapeutic potential of such polymer-based 
drugs, while not yet widespread, has been demonstrated on several existing treatments, such as Fomivirsen66, 
Pegaptanib67 and Insulin68. Their digital advantage, we believe, merits further research into expanding their 
therapeutic applicability.
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Box 2. Modeling a lethal global epidemic under centralized and decentralized mitigation.

In a network of N coupled nodes = …n N1, , , each with a population of Mn individuals, we use the SIR 
model to track the fraction of Mn who are susceptible (sn), infected (jn) or removed (rn). Each of these 
sub-populations is divided among the treated individuals (s j r, ,n n n

T T T), who have been provided a therapeutic, 
and the untreated individuals (s j r, ,n n n

U U U), who have not yet gained access to it. For a lethal epidemic, rn
U 

represents the deceased population, while rn
T are the saved individuals, who, absent any treatment, would have 

perished. The epidemic dynamics is driven by (Supp. Sec. 1)
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where α is the infection rate, β is the mortality rate of the untreated individuals and ζ β>  is the recovery rate 
under treatment. The therapeutic efficacy is γ≤ ≤0 1 and its consumption rate ρ q( )n  depends on the availa-
bility of the therapeutic qn(t) in n, as
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Hence ρ q( )n  increases linearly with qn(t) as long as the demand (denominator) exceeds the supply, and satu-
rates to unity when n has excess quantities of the therapeutic, avoiding over consumption (Supp. Sec. 1.2). In 
(12) we introduce an invasion threshold ε through the sigmoidal function
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which activates the local SIR dynamics only when the local infection levels = +j j jn n n
U T exceed ε. The diffu-

sion of individuals between nodes is mediated by Anm, derived from the empirical international air-travel 
network61 (Supp. Sec. 2.1).

Drug availability. Under Centralized mitigation we have
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where the first term captures local drug consumption, and the second term, activated following a response 
time tR, represents drug production/shipment from the source s; δns is the Kronecker δ-function and θ x( ) is the 
Heavyside step-function. The pre-factor κs is derived in Supp. Sec. 1.3. The shipping routes are governed by 
Znm and Bnm, constructed in Supp. Sec. 2.2.
 In Supp. Sec. 5 we also consider optimized distribution strategies based on commodity flow algorithms.
In Decentralized mitigation we have
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in which the central production in s is replaced by local production in each node at a rate cn. Here 
= =c C Cn s  translates to a cumulative production capacity of a C-fraction of the global demand per day, 

with the only distinction being whether this production is centralized (Cs) or decentralized (cn); Supp. Sec. 1.3.
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at ∼2.5 × 105 USD, we believe, that despite the unequivocal advantages of decentralization, it is currently of 
limited applicability at a global scale. This status-quo, however, is a consequence of our current priorities, rather 
than an intrinsic technological restriction. Indeed, the need for scalable low-cost mass-printing of short DNA 
sequences was not evident until now, and hence the development of the relevant technology was never prioritized. 
Our findings, together with the potential usefulness of such therapeutics16,70, suggest reassessing these priorities.

Another issue regarding the mass-production of DNA-based therapeutics, is the need for large amounts 
of phosphorous, a limited resource, that constitutes ∼10% of the DNA mass71. It was recently estimated that 
Earth’s accessible phosphorous reserves are in excess of 6 × 1013 kg, with global production in 2016 amounting to 
2.6 × 1011 kg, mainly serving the fertilizer industry72. Our calculations, based on these figures, indicate that phos-
phorous availability is orders of magnitude higher than that required for global dissemination of our proposed 
DNA-based therapeutics. To be on the safe side, we assume the oligonucleotide dosage to be of the order of ∼10−2 
kg per person, and the synthesis yield to be only 10%. Even under these stringent assumptions, we can treat the 
global population of ∼1010 individuals with ∼108 kg of phosphorous, amounting to less than 0.1% of the current 
annual consumption.

Most crucially, our findings clearly show that even imperfect digitizable therapeutics – e.g., costly or 
non-efficient (low cn), are still significantly more effective than the non-digitizable (centralized) alternative. Our 
analysis indicates that cn ∼ 0.2, a distributed coverage of approximately 20%, can efficiently tackle a virulent epi-
demic. Hence, to implement decentralized mitigation capabilities we must aim for local production capacity of 
the order of 2 × 105 doses per day – printing and locally disseminating – per each population of 106 individuals. 
At ∼1 gram per dose, this requires ∼2 × 104 printers with a synthesis rate of ∼10 grams/day each. Under current 
costs, this amounts to ∼5 × 103 USD per individual. Therefore, to meet this desired capacity, we must aim for a 
10–100 fold reduction in the cost of the required instrumentation. Once achieved, the infrastructure for decen-
tralized mitigation can be established over the course of ∼10 years with an annual investment of 5–50 USD per 
person. While a 10–100 fold cost reduction is, indeed, no incremental advance, we believe that it is within our 
reach if only the priority is set.

Data Availability
Numerical codes to reproduce the results presented in the paper are available at https://figshare.com/projects/
Digitable_therapeutics_for_decentralized_mitigation_of_global_pandemics/69062.
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