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Population genomic data has revealed patterns of genetic variation
associated with adaptation in many taxa. Yet understanding the
adaptive process that drives such patterns is challenging; it requires
disentangling the ecological agents of selection, determining the
relevant timescales over which evolution occurs, and elucidating the
genetic architecture of adaptation. Doing so for the adaptation of
hosts to their microbiome is of particular interest with growing
recognition of the importance and complexity of host–microbe
interactions. Here, we track the pace and genomic architecture of
adaptation to an experimental microbiome manipulation in rep-
licate populations of Drosophila melanogaster in field mesocosms.
Shifts in microbiome composition altered population dynamics and
led to divergence between treatments in allele frequencies, with
regions showing strong divergence found on all chromosomes.
Moreover, at divergent loci previously associated with adaptation
across natural populations, we found that the more common allele
in fly populations experimentally enriched for a certain microbial
group was also more common in natural populations with high
relative abundance of that microbial group. These results suggest
that microbiomes may be an agent of selection that shapes the
pattern and process of adaptation and, more broadly, that varia-
tion in a single ecological factor within a complex environment can
drive rapid, polygenic adaptation over short timescales.
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Agrowing number of studies have identified genes that con-
tribute to adaptation (1–4), but the ecological mechanisms

that drive evolution are rarely identified (5). Ecological factors
often covary in nature, so disentangling the effects of putative
agents of selection on changes in allele frequencies requires ex-
perimental manipulation. Patterns of intraspecific genomic varia-
tion in nature can be shaped by differences in founder populations,
connectance between populations, and demography, complicating
inferences of selection (6). Replicated selection experiments pro-
vide a way to test whether particular ecological mechanisms act as
agents of selection and assess the genomic architecture of adap-
tation, both key challenges to understanding adaptation (2, 6–8).
Yet, using selection experiments to identify mechanisms capable
of driving rapid evolution in nature also presents methodologi-
cal challenges; it is difficult to create both ecologically realistic (e.g.,
complex selective environment, population sizes allowed to vary
across treatments) and evolutionarily realistic (e.g., sufficient
standing genetic variation, multiple generations, selection agents
similar to those in nature) conditions that allow experimental re-
sults to translate to populations in nature (5). Combining field
selection experiments with population genomic data from both
experimental and natural populations presents a powerful ap-
proach to determine whether and how particular agents of selec-
tion drive rapid evolution in the genome.
Many prominent theories in evolution suggest that species in-

teractions are the primary mechanism that drives evolution and
diversification (9–14). Yet, determining which species interactions
actually drive evolution when selective landscapes are complex is

crucial to understanding both the mechanisms and outcomes of
adaptation (15–17). Outdoor experiments that manipulated spe-
cific species interactions have provided convincing evidence that
competition and predation can act as agents of selection capable of
driving rapid phenotypic evolution (18–21). Host–microbe inter-
actions can be strong and there is evidence they can drive mac-
roevolutionary patterns (22–26), but associated microorganisms
have not been experimentally investigated as an agent capable of
driving rapid host evolution (27, 28) except where symbiont evo-
lution is tied to the host through vertical transmission (29, 30).
Bacteria play a crucial role in the physiology, ecology, and evolu-
tion of animals even if they are not transmitted or acquired across
generations (22, 31–34), and the composition of affiliated micro-
bial communities can impact host performance and relative fitness
(35). Moreover, patterns of intraspecific variation in microbiome
composition that could have considerable effects on host physiol-
ogy and performance have been described in a growing number of
taxa (36–39). The amount of intraspecific variation in microbiome
composition and its effects on host phenotypes have led to con-
siderable speculation, but little data, on the important role the
microbiome may play in host evolution (27, 28, 34, 40).
Drosophila melanogaster presents an excellent system in which to

investigate whether microbiome composition acts as an agent that
drives rapid host genomic adaptation. D. melanogaster populations
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vary in their microbiome composition in eastern North America,
driven by latitudinal variation in the relative proportion of
acetic acid bacteria (AAB) and lactic acid bacteria (LAB) (41).
Inoculation experiments in the laboratory have demonstrated
that LAB and AAB directly influence the functional traits of
D. melanogaster including development rate, lipid storage, and
starvation tolerance (42, 43). The influences of AAB and LAB on
these traits are species-specific, but generally AAB speeds up de-
velopment and decreases starvation resistance relative to LAB. D.
melanogaster populations in eastern North America have long been
a model for adaptation, as there are strong patterns of both phe-
notypic and genomic variation across latitudes that are presumed to
be driven by temperature and photoperiod (44–48). Extensive ge-
nomic sequencing of natural populations has revealed thousands of
independent SNPs that vary clinally and, hence, are likely involved
in adaptation (46, 48). Finally, large D. melanogaster populations
can be manipulated in replicated outdoor mesocosms, providing the
opportunity to connect the wealth of genomic information about
this species with an understanding of evolution in field contexts.
To test whether microbiome composition can drive rapid evo-

lution, we introduced outbred populations of D. melanogaster into
14 individual 2 m × 2 m × 2 m outdoor experimental enclosures.
We then applied 1 of 3 treatments to these populations as they
evolved over a 45-d period: 1) Addition of the AAB species
Acetobacter tropicalis to the food resource (At treatment), 2) addi-
tion of the LAB species Lactobacillus brevis to the food resource
(Lb treatment), and 3) no microbial inoculation (No-Ad treatment).
At and Lb strains were selected as representative AAB and LAB
based on their different influences on D. melanogaster life history
traits, with At-inoculated flies displaying faster development times
and shorter periods of starvation resistance than Lb-inoculated flies
(41). We used 16s rRNA sequencing and microbial culture to as-
certain the efficacy of the treatments and tracked host population
size in each replicate to determine whether treatments altered host
population dynamics. We tested for rapid evolution in response to
microbiome treatments by coupling whole genome data for each
replicate with previously identified lists of putatively adaptive loci
and examining whether microbiome treatments led to genomic
divergence. In addition, we compared the direction of allele fre-
quency change to determine whether differences between experi-
mental treatments were similar to those observed in natural
populations as a way of assessing the importance of microbial
variation in driving adaptation across natural populations.

Results and Discussion
Efficacy of Shifting the Microbiome in an Outdoor Experiment.
Microbial addition treatments shifted the overall microbiome com-
position of D. melanogaster populations (Bray Curtis F1,29 = 15.8,
P < 0.001) (Fig. 1A; Unifrac metrics in SI Appendix, Fig. S1),
the relative abundance of individual operational taxonomic units
(OTUs), the abundance of colony forming units (CFUs), and the
total abundance of microbes (SI Appendix, Figs. S2–S4). Micro-
biome composition in At and Lb cages became more similar over
time (SI Appendix, Fig. S1), as expected if wild environmental
microbiota established in the population in addition to the ad-
ministered microorganisms. While the different treatments dis-
played substantial variation in the relative abundance of AAB and
LAB, both microbial groups were present in the microbiome of all
experimental populations (SI Appendix, Fig. S3). Sequencing the
V4 region of the 16S rRNA gene demonstrated that microbiomes
of D. melanogaster in At- and Lb-treated cages were enriched for
OTUs with perfect identity to the 16s rRNA gene of At and Lb,
respectively. Whole genome sequencing of randomly selected
microbial colonies isolated from 1 At replicate revealed AAB
with >99.9% whole-genome similarity to the added At strain,
further supporting that inoculated strains were present in the
microbiome (SI Appendix, Fig. S5). Wolbachia, an intracellular
microbe common in D. melanogaster and many insect species (49),

was present in all populations. Wolbachia increased in relative
abundance during the experiment in flies from Lb replicates but
not At replicates, consistent with the previously reported negative
relationship between Wolbachia and Acetobacteraceae abundance
(50, 51) (SI Appendix, Fig. S6B). Our experiment was conducted
using a rich diet. Future work manipulating microbiomes on a
variety of diets, which are known to influence the microbiome (36,
52, 53), could help disentangle the role of diet and microbiome
in driving local adaptation. Overall, the differences in microbiome
composition between the At and Lb treatments are modest compared
to population-level differences in microbiome composition found

Fig. 1. The effect of microbial additions on the gut microbiomes of D.
melanogaster in the At and Lb treatments, measured by 16S rRNA marker gene
analysis. (A) The effect of At and Lb treatments at the fourth week of the ex-
periment on microbiome composition of pools of adult males collected from
cages. (B and C) The relative abundance of AAB and LAB (respectively) in the
microbiomes ofD. melanogaster from each microbial addition replicate (plotted
as means ± SEM).
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across latitudes, where high-latitude locations have microbiomes
dominated by LAB and microbiomes in low-latitude populations
are dominated by AAB (41).
The influences of distinct AAB and LAB on various D. mela-

nogaster phenotypes are well characterized (42, 54–58). To confirm
the previously reported phenotypic effects are also detectable in
outbred D. melanogaster populations, we compared the larval de-
velopment of individuals from theNo-Ad experimental cages when
monoassociated with At and Lb. Consistent with previous work,
bacterial treatment significantly influenced larval development
time: At led to ∼10% higher development rate than Lb (Z = −15.9,
P < 0.001) (SI Appendix, Fig. S7). The effects of microbiome
composition on host ecology presents a mechanism by which
microbiomes may shape rapid evolution of host populations.

Influences of Microbiota Treatments on Host Ecology. To determine
whether microbiome communities alter the ecological charac-
teristics of host populations in outdoor mesocosms and, hence,
could plausibly shape host evolution, we measured 2 key eco-
logical characteristics in field mesocosms: fly body mass and
population size. Individuals collected directly from At treat-
ment populations had 28% higher mass than those from Lb-
treated populations (F2,19 = 13.81, P = 0.0002) (Fig. 2A). We
also observed increased sexual dimorphism in At treatments in
body size relative to the Lb- and No-Ad treatments (F2,19 =
5.73, P = 0.0113). In contrast, Lb replicates had significantly
higher population sizes than At replicates (chisq = 14.86, df = 1,
P = 0.0001) (Fig. 2B), suggesting that microbiome treatments
influence the tradeoff between somatic and reproductive in-
vestment. The difference in population size demonstrates that
shifts in the relative abundance of the D. melanogaster microbiota
can significantly alter host population dynamics. Differences in
population size associated with microbiome composition pro-
vides clear evidence to support previous assertions that natural
population-level variation in the microbiota that has been ob-
served across the animal kingdom (39, 41, 59, 60) may influence
the population ecology of hosts bearing diverse communities of
partners (28, 34, 61). Such patterns are established for hosts
bearing obligate partners (62–64) or infected with microbial
symbionts (65), but our data demonstrate that changes in the
relative abundance of microbial taxa can shape host populations.
These differences in body size and population dynamics, due to
a presumed combination of ecological and evolutionary forces,
demonstrate that modest shifts in microbiomes can alter host
populations in outdoor settings, which bolsters the hypothesis
that microbiomes could drive rapid evolution.

Microbiome Composition Shapes Host Genomic Evolution.We assessed
whether differences in the microbiome across At and Lb treat-
ments shaped D. melanogaster evolution over the course of 5 host
generations. Using a whole-genome pool-seq approach (66), we
generated data on allele frequencies at 1,988,853 biallelic segre-
gating sites after filtering (Materials and Methods and SI Appendix,
Table S4) for the founder population and from each experimental
replicate after 45 d of microbiome treatment. Given that our ex-
periment was founded with a genetically diverse population with
little linkage disequilibrium (67) and any divergent selection be-
tween treatments was limited to 5 overlapping generations, we did
not expect substantial genome-wide divergence (68, 69). To assess
any genome-wide divergence from the initial founding population,
we calculated the mean FST statistic between the founder pop-
ulation and the 3 treatment populations, for subsets of 1,000 sites
sampled randomly from across the genome (SI Appendix, Fig. S8).
We also conducted a principal component analysis (PCA) of allele
frequencies from all sampled populations to visualize divergence
genome-wide (SI Appendix, Fig. S9). In both figures, we observe
nonsignificant trends indicating that microbial addition treat-
ments (both At and Lb) are associated with greater genome-wide

divergence from the founder population than No-Ad over the
relatively short duration of the experiment.
In addition to whole-genome analyses, we also assessed patterns

of divergent selection between At and Lb populations at individual
sites. Linkage disequilibrium decays over ∼200 bp in most regions
of the D. melanogaster genome (67) and our founding populations
contained substantial standing genetic variation, giving us consid-
erable genomic resolution with which to detect selection. To assess
divergent selection between treatments at each segregating site, we
fit a generalized linear model to allele frequencies as a function
of microbiome treatment. We found 297 sites diverged signifi-
cantly between At and Lb treatments with false-discovery rate
(FDR) < 0.05 and minimum effect size of 2% (SI Appendix, Table
S1). These sites were located on all chromosomes and were
found in or near 281 genes, indicating little linkage between the
most divergent sites. As signal from individual sites can be
confounded with technical and biological noise, we also con-
ducted a region-based analysis to assess divergence between
treatments in overlapping windows of 250 SNPs. We found
280 regions of significantly enhanced divergence (FDR ≤ 0.05)
between At and Lb populations, with at least 23 such windows
found on each of the 5 main chromosome arms (Fig. 3). The D.
melanogaster genome contains several inversions that vary in fre-
quency across natural populations in a way that is suggestive of
adaptation (70), but we observed no enrichment for divergence of
inversion frequencies associated with microbial treatment (based
on marker sites) (SI Appendix, Table S2), meaning overall patterns
of divergence were not driven by shifts in inversion frequencies.
The patterns of divergence we observed across resolutions suggest
that modest variation in microbiome composition can drive genomic

A

B

Lactobacillus

Fig. 2. Population size and body mass of D. melanogaster populations from
each microbial addition treatment. (A) The mean from each treatment at the
end of experiment of the dry weight of D. melanogaster individuals of each sex
from each replicate cage. (B) Host population size over the course of the ex-
periment. In both graphs, values plotted are means ± SEM.
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divergence of host population when standing genetic variation is
present. Moreover, the architecture of this divergence, with sig-
natures of selection at many independent regions of the genome,
fits with a polygenic model of adaptation, in which many genes
contribute to adaptation (71), and suggest that the genomic basis
of adaptation over very short timescales can be polygenic.

Links Between Microbiome Manipulation and Changes in Allele
Frequency in Nature. Combining our experiment with population
genomic data from nature allows us to test whether differences in
microbiome composition alone are capable of driving divergence
in allele frequencies at SNPs that vary across natural populations.
Previous work has found predictable changes in allele frequency at
many independent SNPs across seasons from spring to fall in
North American orchard populations of D. melanogaster (72, 73).
We found more overlap than expected by chance between SNPs
that show significant differentiation between At and Lb treatments
and SNPs that vary significantly across seasons, using multiple
cutoffs for SNP significance (SI Appendix, Table S5). Notably, we
did not find this same pattern of seasonal overlap with sites that
showed differentiation between the No-Ad treatment and any
other treatment, nor between subsets of No-Ad populations. Taken
together, these results suggest that SNPs that diverged across At
and Lb treatments are also involved in seasonal adaptation in wild
D. melanogaster populations.
In addition to changes in allele frequency across time, pop-

ulation genomic sequencing of D. melanogaster populations along
the east coast of North America has uncovered thousands of pu-
tatively adaptive sites that vary significantly (FDR < 0.05) in allele
frequency with latitude (73), 15,399 of which were also segregating
in our experimental populations. There is also variation in
microbiome composition of D. melanogaster populations across
latitudes, as high-latitude populations of D. melanogaster have
LAB-enriched microbiomes and populations from lower lati-
tudes have AAB-enriched microbiomes (41). We tested whether
the allele that was more common in populations experimentally
enriched for a microbial group was also more common in the
natural clinal population that has a high relative abundance of the
same microbial group, noting the caveat that At and Lb are indi-
vidual strains and cannot represent the breadth of influence pos-

sible in wild flies bearing diverse AAB and LAB strains. We
labeled sites as “directionally concordant” if the allele that was at
higher frequencies in high-latitude populations compared to low-
latitude populations was also the allele that was at higher fre-
quencies in Lb populations compared to At populations. When we
considered all ∼2 million variant sites, the percent of directionally
concordant sites was 50.3%, indistinguishable from a null expec-
tation. However, concordance rose significantly in subsets of sites
with both strong divergence between microbial treatments and
strong clinal variation (Fig. 4). For example, 70.7% were concor-
dant among the 945 SNPs with At-Lb divergence pval < 0.05, effect
size > 2%, and clinal P value <10−5, while 80.0% were concordant
among the 35 SNPs with At-Lb divergence pval < 0.01, effect
size > 2%, clinal P value <10−8. One-thousand rounds of randomly
sampling sites matched to observed data for chromosome and
allele frequency demonstrated that these concordance values are
both significantly higher than expected by chance (P < 0.001 in
both cases). In the latter case, the majority of the 35 SNPs are
on chromosome arm 3R, yet are located in or near 32 different
genes, several of which are known to play a role in local adaptation
(72–74) (SI Appendix, Table S3). Although these high levels of
concordance at top divergence sites may suggest long-range link-
age, we did not find significantly elevated concordance in any of
7 large chromosomal inversions (SI Appendix, Table S2). The
surprising concordance of the identity of AAB-associated and
LAB-associated alleles in experimentally treated populations and
natural clinal populations suggests microbiome composition may
be a significant component of the fitness landscape and, hence,
adaptation in natural populations.

Conclusion
Moving from documenting cases of rapid evolution to studying the
driving mechanisms is crucial to understanding adaptation in nat-
ural populations (16). Microbiomes can influence nearly all aspects
of host biology (27, 40, 75), and it has long been assumed that
microbiomes are also an important factor at the population level
(28, 76). Our manipulative experiment demonstrates that changes in
the relative and total abundance of the D. melanogastermicrobiome
are sufficient to cause genomic divergence of host populations over
only 5 generations. The magnitude of divergence was heterogeneous
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across the genome, but we uncovered regions of strong divergence
on all chromosomes. Genomic patterns also illustrate that variation
in microbiome composition is a sufficiently strong agent of se-
lection to drive evolution at loci that exhibit putatively adaptive
patterns across populations in nature. We detected concordance
in the directionality of allelic change at these sites between our
experiment and natural populations, which provides evidence that
variation in microbiome composition is a substantial component
of the fitness landscape. Overall, our results demonstrate that
shifts in microbiome composition can be important drivers of
ecological and evolutionary processes at the population level and
that a single ecological factor within a complex environment can
drive polygenic adaptation over short timescales.

Materials and Methods
Experimental Setup. We constructed the founding D. melanogaster population
for this experiment by crossing 150 wild-collected isofemale lines from
Pennsylvania. Ten males and 10 females were taken from each line and
combined into a single breeding cage. After 3 generations of mating and
density-controlled rearing in favorable laboratory conditions, we introduced
500 females and 500 males of a single age cohort into each experimental cage
on June 15, 2017. Subsamples of the founding population were collected on
June 15th for initial genomic sequencing. Flies were in enclosures from June
15 to August 3, 2017, which, based on larval development rates in outdoor
cages, allowed for ∼5 overlapping generations. Outdoor cages are 2 m × 2 m ×
2 m enclosures constructed of fine mesh built around metal frames (BioQuip
PO 1406C) (77, 78). Inside of these enclosures, we planted 1 peach tree and
vegetative ground cover to provide shading and physically mimic the natural
environment. Peaches were removed before ripening to prevent flies from
feeding on them. Photographs of 8 quadrats within each cage were taken, and
flies were counted to estimate population size at 5 time points during the
experiment. We tested for effects of microbiome treatments on host pop-
ulation size using an LME with microbial treatment as a fixed effect and
sample date as a random effect. Each cage was used as a statistical replicate,
and our analysis was conducted on all census data after the initial population
expansion (>day 21 of the experiment).

Microbial Treatments. The experiment consisted of 3 treatments: diet supple-
mented with L. brevis DmCS_003 (Lb), diet supplemented with A. tropicalis
DmCS_006 (At), and no bacterial addition (No-Ad). To prepare the bacterial
inoculum, a 24- to 72-h culture of each species was centrifuged for 10 min at
15,000 × g and resuspended in PBS at OD600 = 0.1. Separately, 300 mL of
modified Bloomington diet was prepared in a 1.5-lb aluminum loaf pan under
standard laboratory conditions (nonsterile). Within 24 h of diet preparation,
2.2 mL of normalized bacteria were spread on the surface of the food inside of
the loaf pan. The inoculated diets were covered for a 12- to 36-h incubation at
25 °C and transported to the outdoor experiment site 3 times each week. Pans
were uncovered immediately after introduction to outdoor fly enclosures and
placed on shelving units to protect from rain. Pans were left undisturbed for
2 to 3 d to allow for egg laying and then covered with mesh caps to permit
larval development but exclude further egg laying. When adults started to
eclose, pans were transferred to a small cage inside the larger cage and caps
were removed to allow adults to emerge while preventing additional egg
laying on pans where adults had already eclosed. We allowed 14–16 d (twice
the time needed for the fastest developing eggs) for adults to eclose from the
time pans were introduced before discarding them. The protocol for the No-Ad
replicates mimicked the above but did not include any inoculation of the food.
The diets provided were the only source of food available that was capable of
supporting D. melanogaster development.

Quantification of Microbial Communities from Experimental Treatments. For
culture-dependent analysis, 5 pools of 5 male flies were collected from each
treated outdoor cage and homogenized in a microcentrifuge tube containing
125 μL of mMRS (modified De Man, Rogosa, Sharpe agar) medium. Homoge-
nates were dilution plated onto mMRS and grown at 30 °C under ambient and
restricted oxygen conditions. Tan- or copper-colored colonies were classified as
AABs, and white or yellow colonies were classified as LABs. One milliliter of the
same homogenate was pelleted for DNA extraction via the QuickDNA Fecal/Soil
Microbe kit (Zymo Research, D6011) and analyzed by culture-independent
analysis as described below. Pairwise comparisons between absolute CFU
abundances were determined by a Dunn test.

We used 16S rRNA marker genes of pooled whole-body flies to survey the
microbial community associated with the pooled fly homogenates. From each
DNA extraction, the V4 region of the 16S rRNA gene was amplified as described
previously, except using a HiSeq 2500 at the Brigham Young University DNA
sequencing center (79). Sequence variants were clustered and assigned to the
sequencing data using QIIME 2 (80, 81). After taxonomic assignment, sequences
identified as Wolbachia, which were present in every sample, were removed
(Wolbachia are analyzed separately in SI Appendix, Fig. S6), and the OTU tables
were rarefied to balance sequence depth with sample retention (OUT table
available as Dataset S1). The single OTUs with perfect matches to the At and Lb
genomes were identified using BLASTn (82). Tests for significant differences in
microbial beta-diversity (Bray-Curtis, weighted Unifrac, unweighted Unifrac) were
performed in R using PERMANOVA (83). Differences in taxonomic abundance
were assessed using ANCOM, which uses relative abundances to assess differ-
ences in community composition (84). Figures were created using ggplot2 (85).

Measuring Body Size and Development Rate. At the conclusion of the exper-
iment, we sampled adult individuals from all cages. To determine adult mass
content of cage-caught individuals, we took pools of 5 individuals of each sex,
dried them at 55 °C for 24 h, weighed them, and divided the total weight by
5 to obtain average individual mass. Body size data (dry weight) were ana-
lyzed using a ANOVA with microbial treatment and sex as fixed effects with
cage used as the unit of replication.

We collected eggs from each No-Ad cage to determine the effect of mono-
association with At and Lb on development rate. To rear in monoassociation,
fly eggs were collected within 24 h of deposition, bleached twice for 150 s
each, rinsed thrice in sterile H2O, transferred to a sterile diet at a target density
of 30 to 60 eggs per vial, and inoculated with a PBS-washed overnight culture
of either bacterial species, normalized to OD600 = 0.1 (86). The period of larval
development was determined by counting the number of empty pupae in each
vial 3 times each day (at 1, 6, and 11 h into the daily light cycle) until all flies
had eclosed or until no flies eclosed in 3 consecutive time periods, whichever
came first. Bacteria-dependent differences in D. melanogaster development
were analyzed using Cox mixed survival models in R. Development rate was
calculated as the inverse time to eclosion. Significant differences between
treatments were determined by a Cox proportional hazards model, analyzed
separately for each bacterial inoculation, and are reported as different letters
over the symbols. Summary statistics were also calculated by ANOVA.

Genomic Sequencing. We sequenced pools composed of 120 males and 80 fe-
males collected from each cage at the end of the study. We extracted the DNA

Fig. 4. Concordance of allelic divergence in natural and experimental
populations. Concordance is calculated as the percent of sites in which the
allele found at higher frequencies in natural high-latitude populations com-
pared to low-latitude populations was also found at higher frequencies in
experimental Lb populations compared to At populations. Each point refers to
a distinct subset of sites, binned according to clinality (x axis) and At-Lb di-
vergence (color); the number of sites examined is indicated by the size of the
point. A dashed black line is drawn at the null expectation of 50% concor-
dance. Solid-colored points represent site subsets in which concordance is sig-
nificantly elevated compared to the shuffled null distribution.
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and prepared libraries using ∼500-bp fragments for whole-genome sequencing
using KAPA Hyper Prep kit. Libraries were multiplexed with dual-indexing and
sequenced on multiple lanes of an Illumina NovaSeq (6 samples on each lane)
system with 150-bp paired-end reads. Reads were checked for quality using
FastQC. Adapters were trimmed with Skewer (87) and reads with a quality
score <20 were removed, and overlapping read pairs were merged with PEAR
(88). We aligned reads to a reference genome composed of the D. mela-
nogaster reference sequence (v5) (89), the L. brevis, and the A. tropicalis ge-
nomes using BWA (90), then removed duplicate reads with Picard tools (91)
and realigned remaining reads around indels with GATK’s IndelRealigner (92).
For logistical reasons, the 16 samples included in this study were multiplexed
and sequenced with other samples in 2 batches run on separate days. The first
batch of samples (n = 12) was sequenced in the same lanes as multiplexed
human genome samples, and we detected trace numbers of human reads,
likely due to index switching that can happen on Illumina HiSeq platforms (93).
We removed any reads that mapped to the human genome (version hg19)
using bbmap (94) and excluded from our analysis any D. melanogaster sites to
which these putatively human reads mapped.

After mapping and QC, we retained an average of 83 M mapped reads per
sample at an average coverage (mosdepth; ref. 95) of 109× of the D. mela-
nogaster autosomes (range 92–133×) and average coverage 92× on the X
chromosome. We then used PoPoolation2 (96) to obtain allele counts at seg-
regating sites, discarding bases with quality <20. To be included for down
stream analysis, we required SNPs to be biallelic with 1 of the 2 alleles matching
the reference allele, and we excluded SNPs overlapping any called indels, SNPs
with less than 10 mapped reads containing the minor allele (an allele frequency
of ∼0.5% across all samples), and SNPs with min and max read depths less than
50 or greater than 250, respectively. Since the timescale of our experiment was
too short to expect any true signal from new mutations arising during the
5 generations of evolution, we additionally filtered out any SNPs with allele
frequencies <1% in either sample from the founder population. SNPs within
repeat regions as defined by University of California, Santa Cruz RepeatMasker
(97) were excluded. Finally, we examined a larger panel of 112 samples all
founded from the same starting population (of which the 16 samples included
in this study were a subset) that were sequenced in 2 separate sets of lanes and
excluded any SNPs that showed distinct allele frequency ranges across sets. This
yielded at dataset of ∼2 million SNPs. A full table of the number of sites ex-
cluded due to different filters is presented in SI Appendix, Table S4.

PCA and Fst Analyses.Allele frequencies at each segregating site for each sample
were used to conduct a PCA using the R function prcmpwith scale = TRUE, and
the first 2 PCs were plotted to examine genome-wide divergence across sam-
ples visually. To obtain a more quantitative account of the divergence of
populations under each treatment from the founder population, a bootstrap-
Fst analysis was conducted with 1,000 rounds. In each round, 1,000 sites were
randomly selected from across the genome, and Fst was calculated at each site
between the average allele frequency in the 2 founder samples and allele
frequencies averaged within treatment groups (3 of the 8 No-Ad samples were
randomly averaged for each round tomatch the number ofAt and Lb samples).
Fst values for each round were averaged across the 1,000 sites for each treat-
ment, and the resulting distributions were plotted as boxplots.

SNP Divergence Analysis. To find SNPs that changed in associated with mi-
crobial treatment, we used the R function glm to fit a generalized linear model
(GLM) to the allele frequencies at each SNP to test for significant associations
between allele frequency and treatment. GLMs were fit using a quasibinomial
error structure, as this reduces the rates of false positives relative to other
significance testing protocols in genomic data (98), and to account for sam-
pling of chromosomes, all allele frequencies were first scaled to counts out of
Neffective, where n is the number of individuals sampled from the population

(200 for all samples), rd is the true read depth, and Neffective = 2n*rd−1
2n+ rd (72, 99,

100). We identified outliers as sites with significant divergence between At
and Lb samples at an FDR < 0.05 (101), and a mean difference in allele fre-
quency (effect size) of 2%, as this was approximately the average difference in
allele frequency between treatments for all SNPs.

Window-Based Divergence Analysis. To identify local regions of enhanced di-
vergence, we first identified putatively diverged sites between At and Lb

treatments using a relaxed GLM cutoff of P < 0.05 and an effect size threshold
of 2% (n = 81,492 sites). Then, a hypergeometric test was conducted (with R
function “phyper”) to assess enrichment of these sites in windows of 250 con-
secutive SNPs, with 50-SNP step-size between windows. Enriched windows
were identified as those with enrichment FDR < 0.2, which resulted in a min-
imum of 22 putatively diverged sites in each enriched window. The same
process was used to separately identify windows enriched for sites with clinal
GLM P value <0.05 and seasonal GLM P value <0.05.

Seasonal Enrichment Analysis. We used a hypergeometric test to determine
whether sites that were divergent between treatments were enriched among
sites previously found to vary over seasonal time in populations from eastern
North America (73). From the 1,372,676 sites assayed in both the seasonal
analysis and our experiment, nsea putatively seasonal sites were first identified
using various GLM cutoffs (P < 0.1, P < 0.05, P < 0.01, P < 0.005, P < 0.001).
Then, for each pair of treatments, ndiv putatively diverged sites between
treatments were identified using the same GLM cutoff and an effect size
threshold of 2%, and the number of overlapping sites nboth was calculated.

Test for Directional Concordance with Clinality. SNPs that vary across the North
American latitudinal cline may reflect local adaptation (72–74, 102), and rep-
resent potential sources of adaptation to microbiome composition, which is
1 of many factors known to vary along this cline. Although we do not expect
extensive overlap between SNPs that vary predictably along the cline and SNPs
that vary predictably between treatments in our experiment (due to different
segregating sites, different nonmicrobiome-related selective pressures, and
different timescales of adaptation), we did predict that the subset of SNPs that
are strongly predictable in both cases should be “oriented” in the same di-
rection: i.e., an allele strongly associated with natural clinal populations har-
boring more AAB should also be the allele associated with experimental
populations experimentally enriched for AAB (here, the At treatment). As
such, we used an existing genomic dataset on clinal variation (72, 73) to see if
the SNPs that showed both 1) divergence between microbial treatments in our
experiment, and 2) divergence between natural clinal populations, were more
likely to be “directionally concordant” than other SNPs. We first collected P
values and coefficients for each SNP in our dataset from our generalized linear
model of allele frequency divergence between treatments (pAt-Lb and coefAt-Lb),
and P values and coefficients from a previously conducted generalized linear
model of allele frequency divergence across the cline (pcline and coefcline).
The models were oriented such that a positive coefAt-Lb indicated that the
frequency of the alternate allele was higher in Lb samples than At samples,
while a positive coefcline indicated that the frequency of the alternate allele
was higher in high-latitude (LAB-enriched) populations than low-latitude
(AAB-enriched) populations. We assigned each SNP to 2 bins: an At-Lb di-
vergence bin equal to the integer nearest −log10(pAt-Lb), and a clinality bin
equal to the integer nearest −log10(pcline). We then examined the inter-
section of each At-Lb bin and each clinality bin and recorded the percent of
SNPs where the sign of coefAt-Lb matched the sign of coefcline, which we
termed “directional concordance.” Finally, we shuffled the bin labels across
SNPs 500 times (maintaining the same bin pairs) and remeasured directional
concordance values to obtain a P value for each true concordance value.

Tests for Enrichment at Inversions. We identified breakpoints (103) and seg-
regating marker sites (104) associated with 7 large chromosomal inversions.
To test for enrichment of divergence between At and Lb samples at marker
sites for each inversion, we first assigned every segregating site a divergence
score equal to −log10 of the P value from the GLM analysis of per-site di-
vergence. We then recorded the percent of times (of 1,000 replicates) that
an equally sized random set of sites had a mean divergence score higher
than the markers of a particular inversion. Similarly, to test for enrichment
of At-Lb divergence at sites within each inversion, we recorded the percent
of times (of 1,000 replicates) that a randomly selected set of 1,000 sites from
outside an inversion had a mean divergence score higher than a randomly
selected set of 1,000 sites from inside an inversion. Finally, to test for en-
richment of clinal concordance within each inversion, we recorded the
percent of times (of 1,000 replicates) that a randomly selected set of
1,000 sites from outside an inversion had a concordance rate higher than a
randomly selected set of 1,000 sites from inside an inversion.

1. F. C. Jones et al.; Broad Institute Genome Sequencing Platform & Whole Genome

Assembly Team, The genomic basis of adaptive evolution in threespine sticklebacks.

Nature 484, 55–61 (2012).
2. Z. Gompert et al., Experimental evidence for ecological selection on genome varia-

tion in the wild. Ecol. Lett. 17, 369–379 (2014).

3. D. Bradley et al., Evolution of flower color pattern through selection on regulatory

small RNAs. Science 358, 925–928 (2017).
4. S. E. Miller, M. Roesti, D. Schluter, A single interacting species leads to wide-

spread parallel evolution of the stickleback genome. Curr. Biol. 29, 530–537.e6

(2019).

20030 | www.pnas.org/cgi/doi/10.1073/pnas.1907787116 Rudman et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907787116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1907787116


5. R. D. H. Barrett et al., Linking a mutation to survival in wild mice. Science 363, 499–
504 (2019).

6. O. Savolainen, M. Lascoux, J. Merilä, Ecological genomics of local adaptation. Nat.
Rev. Genet. 14, 807–820 (2013).

7. J. Stapley et al., Adaptation genomics: The next generation. Trends Ecol. Evol. 25,
705–712 (2010).

8. A. Long, G. Liti, A. Luptak, O. Tenaillon, Elucidating the molecular architecture of ad-
aptation via evolve and resequence experiments. Nat. Rev. Genet. 16, 567–582 (2015).

9. T. Dobzhansky, Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
10. P. R. Ehrlich, P. H. Raven, Butterflies and plants: A study in coevolution. Evolution 18,

586–608 (1964).
11. V. L. Valen, A new evolutionary law. Evol. Theory 1, 1–30 (1973).
12. M. Berenbaum, P. Feeny, Toxicity of angular furanocoumarins to swallowtail but-

terflies: Escalation in a coevolutionary arms race? Science 212, 927–929 (1981).
13. D. Schluter, The Ecology of Adaptive Radiation (OUP Oxford, 2000).
14. L. J. Harmon et al., Detecting the macroevolutionary signal of species interactions. J.

Evol. Biol. 32, 769–782 (2019).
15. C. W. Benkman, Biotic interaction strength and the intensity of selection. Ecol. Lett.

16, 1054–1060 (2013).
16. P. Nosil et al., Natural selection and the predictability of evolution in Timema stick

insects. Science 359, 765–770 (2018).
17. S. M. Rudman et al., What genomic data can reveal about eco-evolutionary dy-

namics. Nat. Ecol. Evol. 2, 9–15 (2018).
18. J. A. Endler, Natural Selection in the Wild (Princeton University Press, 1986).
19. D. A. Reznick, H. Bryga, J. A. Endler, Experimentally induced life-history evolution in

a natural population. Nature 346, 357–359 (1990).
20. D. Schluter, Experimental evidence that competition promotes divergence in adap-

tive radiation. Science 266, 798–801 (1994).
21. D. N. Reznick, J. Losos, J. Travis, From low to high gear: There has been a paradigm

shift in our understanding of evolution. Ecol. Lett. 22, 233–244 (2019).
22. R. E. Ley et al., Evolution of mammals and their gut microbes. Science 320, 1647–

1651 (2008).
23. A. W. Brooks, K. D. Kohl, R. M. Brucker, E. J. van Opstal, S. R. Bordenstein, Phylo-

symbiosis: Relationships and functional effects of microbial communities across host
evolutionary history. PLoS Biol. 14, e2000225 (2016).

24. M. Groussin et al., Unraveling the processes shaping mammalian gut microbiomes
over evolutionary time. Nat. Commun. 8, 14319 (2017).

25. C. A. Gaulke et al., Ecophylogenetics clarifies the evolutionary association between
mammals and their gut microbiota. MBio 9, e01348-18 (2018).

26. T. J. Sharpton, Role of the gut microbiome in vertebrate evolution. mSystems 3,
e00174-17 (2018).

27. M. Shapira, Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol.
Evol. 31, 539–549 (2016).

28. E. Macke, A. Tasiemski, F. Massol, M. Callens, E. Decaestecker, Life history and eco‐
evolutionary dynamics in light of the gut microbiota. Oikos 126, 508–531 (2017).

29. N. A. Moran, P. Baumann, Bacterial endosymbionts in animals. Curr. Opin. Microbiol.
3, 270–275 (2000).

30. A. E. Douglas, How multi-partner endosymbioses function. Nat. Rev. Microbiol. 14,
731–743 (2016).

31. P. J. Turnbaugh et al., An obesity-associated gut microbiome with increased capacity
for energy harvest. Nature 444, 1027–1031 (2006).

32. I. Semova et al., Microbiota regulate intestinal absorption and metabolism of fatty
acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

33. V. Tremaroli, F. Bäckhed, Functional interactions between the gut microbiota and
host metabolism. Nature 489, 242–249 (2012).

34. M. McFall-Ngai et al., Animals in a bacterial world, a new imperative for the life
sciences. Proc. Natl. Acad. Sci. U.S.A. 110, 3229–3236 (2013).

35. A. L. Gould et al., Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci.
U.S.A. 115, E11951–E11960 (2018).

36. D. I. Bolnick et al., Individuals’ diet diversity influences gut microbial diversity in two
freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).

37. M. Sevellec et al., Microbiome investigation in the ecological speciation context of
lake whitefish (Coregonus clupeaformis) using next-generation sequencing. J. Evol.
Biol. 27, 1029–1046 (2014).

38. J. Wang et al., Analysis of intestinal microbiota in hybrid house mice reveals evo-
lutionary divergence in a vertebrate hologenome. Nat. Commun. 6, 6440 (2015).

39. K. D. Kohl, J. Varner, J. L. Wilkening, M. D. Dearing, Gut microbial communities of
American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations
to novel diets. J. Anim. Ecol. 87, 323–330 (2018).

40. E. Rosenberg, I. Zilber-Rosenberg, Microbes drive evolution of animals and plants:
The hologenome concept. MBio 7, e01395 (2016).

41. A. W. Walters et al., The microbiota influences the Drosophila melanogaster life
history strategy. https://doi.org/10.1101/471540 (16 November 2018).

42. J. M. Chaston, P. D. Newell, A. E. Douglas, Metagenome-wide association of microbial
determinants of host phenotype in Drosophilamelanogaster.MBio 5, e01631-14 (2014).

43. A. M. Judd et al., Bacterial methionine metabolism genes influence Drosophila
melanogaster starvation resistance. Appl. Environ. Microbiol. 84, e00662-18 (2018).

44. P. S. Schmidt, L. Matzkin, M. Ippolito, W. F. Eanes, Geographic variation in diapause
incidence, life-history traits, and climatic adaptation in Drosophila melanogaster.
Evolution 59, 1721–1732 (2005).

45. P. S. Schmidt, A. B. Paaby, Reproductive diapause and life-history clines in North
American populations of Drosophila melanogaster. Evolution 62, 1204–1215 (2008).

46. D. K. Fabian et al., Genome-wide patterns of latitudinal differentiation among pop-
ulations of Drosophilamelanogaster fromNorth America.Mol. Ecol. 21, 4748–4769 (2012).

47. A. B. Paaby, A. O. Bergland, E. L. Behrman, P. S. Schmidt, A highly pleiotropic amino
acid polymorphism in the Drosophila insulin receptor contributes to life-history
adaptation. Evolution 68, 3395–3409 (2014).

48. H. E. Machado et al., Comparative population genomics of latitudinal variation in
Drosophila simulans and Drosophila melanogaster. Mol. Ecol. 25, 723–740 (2016).

49. M. E. Clark, C. L. Anderson, J. Cande, T. L. Karr, Widespread prevalence of wolbachia
in laboratory stocks and the implications for Drosophila research. Genetics 170,
1667–1675 (2005).

50. R. K. Simhadri et al., The gut commensal microbiome of Drosophila melanogaster is
modified by the endosymbiont Wolbachia. MSphere 2, e00287-17 (2017).

51. N. N. Moghadam et al., Strong responses of Drosophila melanogaster microbiota to
developmental temperature. Fly (Austin) 12, 1–12 (2018).

52. P. J. Turnbaugh et al., The effect of diet on the human gut microbiome: A meta-
genomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

53. B. D. Muegge et al., Diet drives convergence in gut microbiome functions across
mammalian phylogeny and within humans. Science 332, 970–974 (2011).

54. G. Storelli et al., Lactobacillus plantarum promotes Drosophila systemic growth by
modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab.
14, 403–414 (2011).

55. S. C. Shin et al., Drosophila microbiome modulates host developmental and meta-
bolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

56. P. D. Newell, A. E. Douglas, Interspecies interactions determine the impact of the gut
microbiota on nutrient allocation in Drosophila melanogaster. Appl. Environ. Mi-
crobiol. 80, 788–796 (2014).

57. E. S. Keebaugh, R. Yamada, B. Obadia, W. B. Ludington, W. W. Ja, Microbial quantity
impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).

58. B. Obadia, E. S. Keebaugh, R. Yamada, W. B. Ludington, W. W. Ja, Diet influences
host-microbiota associations in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 115, E4547–
E4548 (2018).

59. K. E. Sullam et al., Divergence across diet, time and populations rules out parallel
evolution in the gut microbiomes of Trinidadian guppies. ISME J. 9, 1508–1522 (2015).

60. M. Sevellec, N. Derome, L. Bernatchez, Holobionts and ecological speciation: The
intestinal microbiota of lake whitefish species pairs. Microbiome 6, 47 (2018).

61. B. K. Trevelline, S. S. Fontaine, B. K. Hartup, K. D. Kohl, Conservation biology needs a
microbial renaissance: A call for the consideration of host-associated microbiota in
wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).

62. P. Buchner, Endosymbiose der Tiere mit Pflanzlichen Mikroorganismen (Springer-
Verlag, 1953).

63. Y. Hongoh et al., Complete genome of the uncultured Termite Group 1 bacteria in a
single host protist cell. Proc. Natl. Acad. Sci. U.S.A. 105, 5555–5560 (2008).

64. H. Feldhaar, Bacterial symbionts as mediators of ecologically important traits of
insect hosts. Ecol. Entomol. 36, 533–543 (2011).

65. P. Asiimwe, S. E. Kelly, M. S. Hunter, Symbiont infection affects whitefly dynamics in
the field. Basic Appl. Ecol. 15, 507–515 (2014).

66. C. Schlötterer, R. Tobler, R. Kofler, V. Nolte, Sequencing pools of individuals - mining
genome-wide polymorphism data without big funding. Nat. Rev. Genet. 15,
749–763 (2014).

67. C. H. Langley et al., Genomic variation in natural populations of Drosophila mela-
nogaster. Genetics 192, 533–598 (2012).

68. P. W. Messer, D. A. Petrov, Population genomics of rapid adaptation by soft selective
sweeps. Trends Ecol. Evol. 28, 659–669 (2013).

69. P. W. Messer, S. P. Ellner, N. G. Hairston, Jr, Can population genetics adapt to rapid
evolution? Trends Genet. 32, 408–418 (2016).

70. M. Kapun, D. K. Fabian, J. Goudet, T. Flatt, Genomic evidence for adaptive inversion
clines in Drosophila melanogaster. Mol. Biol. Evol. 33, 1317–1336 (2016).

71. E. A. Boyle, Y. I. Li, J. K. Pritchard, An expanded view of complex traits: From poly-
genic to omnigenic. Cell 169, 1177–1186 (2017).

72. A. O. Bergland, E. L. Behrman, K. R. O’Brien, P. S. Schmidt, D. A. Petrov, Genomic
evidence of rapid and stable adaptive oscillations over seasonal time scales in Dro-
sophila. PLoS Genet. 10, e1004775 (2014).

73. H.E. Machado et al., Broad geographic sampling reveals predictable and pervasive
seasonal adaptation in Drosophila. https://doi.org/10.1101/337543 (5 June 2018).

74. P. S. Schmidt et al., An amino acid polymorphism in the couch potato gene forms the
basis for climatic adaptation in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A.
105, 16207–16211 (2008).

75. G. Sharon et al., Commensal bacteria play a role in mating preference of Drosophila
melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056 (2010).

76. I. Zilber-Rosenberg, E. Rosenberg, Role of microorganisms in the evolution of animals and
plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

77. S. Rajpurohit et al., Adaptive dynamics of cuticular hydrocarbons in Drosophila. J.
Evol. Biol. 30, 66–80 (2017).

78. S. Rajpurohit et al., Spatiotemporal dynamics and genome-wide association
genome-wide association analysis of desiccation tolerance in Drosophila mela-
nogaster. Mol. Ecol. 27, 3525–3540 (2018).

79. J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, P. D. Schloss, Development
of a dual-index sequencing strategy and curation pipeline for analyzing amplicon
sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol.
79, 5112–5120 (2013).

80. J. G. Caporaso et al., QIIME allows analysis of high-throughput community se-
quencing data. Nat. Methods 7, 335–336 (2010).

81. E. Bolyen et al., QIIME 2: Reproducible, interactive, scalable, and extensible micro-
biome data science. PeerJ. Preprints 6, e27295v2 (3 December 2018).

82. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment
search tool. J. Mol. Biol. 215, 403–410 (1990).

Rudman et al. PNAS | October 1, 2019 | vol. 116 | no. 40 | 20031

EV
O
LU

TI
O
N

https://doi.org/10.1101/471540
https://doi.org/10.1101/337543


83. J. Oksanen et al., vegan: Community Ecology Package. 2015 (R Package Version:
2–2, 2015). https://CRAN.R-project.org/package=vegan. Accessed 21 November 2018.

84. S. Mandal et al., Analysis of composition of microbiomes: A novel method for
studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

85. H. Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer Publishing
Company, Incorporated, ed. 2, 2009).

86. M. L. Koyle et al., Rearing the fruit fly Drosophila melanogaster under axenic and
gnotobiotic conditions. J. Vis. Exp., 10.3791/54219 (2016).

87. H. Jiang, R. Lei, S.-W. Ding, S. Zhu, Skewer: A fast and accurate adapter trimmer for
next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182 (2014).

88. J. Zhang, K. Kobert, T. Flouri, A. Stamatakis, PEAR: A fast and accurate Illumina
paired-end reAd mergeR. Bioinformatics 30, 614–620 (2014).

89. R. A. Hoskins et al., Sequence finishing and mapping of Drosophila melanogaster
heterochromatin. Science 316, 1625–1628 (2007).

90. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754–1760 (2009).

91. Broad Institute, Picard tools. (2018). broadinstitute.github.io/picard/. Accessed 15
October 2018.

92. G. A. Van der Auwera et al., From FastQ data to high confidence variant calls: The
genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43,
11.10.1–11.10.33 (2013).

93. M. Costello et al., Characterization and remediation of sample index swaps by non-
redundant dual indexing on massively parallel sequencing platforms. BMC Genomics
19, 332 (2018).

94. B. Bushnell, “BBMap: A fast, accurate, splice-aware aligner” (Lawrence Berkeley
National Laboratory, Berkeley, CA, 2014). https://www.osti.gov/biblio/1241166-
bbmap-fast-accurate-splice-aware-aligner. Accessed 10 July 2019.

95. B. S. Pedersen, A. R. Quinlan, Mosdepth: Quick coverage calculation for genomes
and exomes. Bioinformatics 34, 867–868 (2018).

96. R. Kofler, R. V. Pandey, C. Schlötterer, PoPoolation2: Identifying differentiation
between populations using sequencing of pooled DNA samples (Pool-Seq). Bio-
informatics 27, 3435–3436 (2011).

97. R. M. Kuhn, D. Haussler, W. J. Kent, The UCSC genome browser and associated tools.
Brief. Bioinform. 14, 144–161 (2013).

98. R. A. W. Wiberg, O. E. Gaggiotti, M. B. Morrissey, M. G. Ritchie, Identifying consistent
allele frequency differences in studies of stratified populations. Methods Ecol. Evol.
8, 1899–1909 (2017).

99. B. Kolaczkowski, A. D. Kern, A. K. Holloway, D. J. Begun, Genomic differentiation
between temperate and tropical Australian populations of Drosophila mela-
nogaster. Genetics 187, 245–260 (2011).

100. A. F. Feder, D. A. Petrov, A. O. Bergland, LDx: Estimation of linkage disequilibrium
from high-throughput pooled resequencing data. PLoS One 7, e48588 (2012).

101. Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing
under dependency. Ann. Stat. 29, 1165–1188 (2001).

102. A. O. Bergland, R. Tobler, J. González, P. Schmidt, D. Petrov, Secondary contact and
local adaptation contribute to genome-wide patterns of clinal variation in Dro-
sophila melanogaster. Mol. Ecol. 25, 1157–1174 (2016).

103. R. B. Corbett-Detig, D. L. Hartl, Population genomics of inversion polymorphisms in
Drosophila melanogaster. PLoS Genet. 8, e1003056 (2012).

104. M. Kapun, H. van Schalkwyk, B. McAllister, T. Flatt, C. Schlötterer, Inference
of chromosomal inversion dynamics from Pool-Seq data in natural and
laboratory populations of Drosophila melanogaster. Mol. Ecol. 23, 1813–
1827 (2014).

20032 | www.pnas.org/cgi/doi/10.1073/pnas.1907787116 Rudman et al.

https://CRAN.R-project.org/package=vegan
http://broadinstitute.github.io/picard/
https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner
https://www.osti.gov/biblio/1241166-bbmap-fast-accurate-splice-aware-aligner
https://www.pnas.org/cgi/doi/10.1073/pnas.1907787116

