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Abstract

Commercial applications of artificial intelligence and machine learning have made remarkable 

progress recently, particularly in areas such as image recognition, natural speech processing, 

language translation, textual analysis and self-learning. Progress had historically languished in 

these areas, such that these skills had come to seem ineffably bound to intelligence. However, 

these commercial advances have performed best at single task applications in which imperfect 

outputs and occasional frank errors can be tolerated. The practice of anesthesiology is different. It 

embodies a requirement for high reliability, and a pressured cycle of interpretation, physical action 

and response rather than any single cognitive act.

This review covers the basics of what is meant by artificial intelligence and machine learning for 

the practicing anesthesiologist, describing how decision-making behaviors can emerge from 

simple equations. Relevant clinical questions are introduced to illustrate how machine learning 

might help solve them – perhaps bringing anesthesiology into an era of machine-assisted 

discovery.

Summary Statement

Anesthesiologists synthesize data from disparate sources, of varying precision and prognostic 

value, making life-critical decisions under time pressure. This review describes the evolution of 

artificial intelligence and machine learning through application to this challenging environment.

Introduction

The human mind excels at estimating the motion and interaction of objects in the physical 

world, at inferring cause and effect from a limited number of examples, and at extrapolating 

those examples to determine plans of action to cover previously unencountered 

circumstances. This ability to reason is backed by an extraordinary memory that 
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subconsciously sifts events into those experiences that are pertinent and those that are not, 

and is also capable of persisting those memories even in the face of significant physical 

damage. The associative nature of memory means that the aspects of past experiences that 

are most pertinent to the present circumstance can be almost effortlessly recalled to 

conscious thought. However, set against these remarkable cerebral talents are fatigability, a 

cognitive laziness that presents as a tendency to short-cut mental work, and a detailed short-

term working memory that is tiny in scope. The human mind is slow and error-prone at 

performing even straightforward arithmetic or logical reasoning1.

In contrast, an unremarkable desktop computer in 2019 can rapidly retrieve and process data 

from 32 gigabytes of internal memory – a quarter of a trillion discrete bits of information – 

with absolute fidelity and tirelessness, given an appropriately constructed program to 

execute. The greatest progress in artificial intelligence (AI) has historically been in those 

realms that can most easily be represented by the manipulation of logic and that can be 

rigorously defined and structured, known as classical or symbolic AI. Such problems are 

quite unlike the vagaries of the interactions of objects in the physical world. Computers are 

not good at coming to decisions – indeed, the formal definition of the modern computer 

arose from the proof that certain propositions are logically undecidable2 – and classical 

approaches to AI do not easily capture the idea of a “good enough” solution.

For most of human history, the practice of medicine has been predominantly heuristic and 

anecdotal. Traditionally, quantitative patient data would be relatively sparse, decision 

making would be based on clinical impression, and outcomes would be difficult to relate 

with much certainty to the quality of the decisions made. The transition to evidence-based 

practice3 and Big Data is a relatively recent occurrence. In contrast, anesthesiologists have 

long relied on personalized streams of quantified data to care for their unconscious patients, 

and advances in monitoring and the richness of that data have underpinned the dramatic 

improvements in patient safety in the specialty4. Anesthesiologists also practice at the 

sharper end of cause-and-effect: decisions usually cannot be postponed, and errors in 

judgment are often promptly and starkly apparent.

The general question of artificial intelligence and machine learning in anesthesiology can be 

stated as follows:

1. There is some outcome that should be either attained or avoided.

2. It is not certain what factors lead to that outcome, or a clinical test that predicts 

that outcome cannot be designed.

3. Nevertheless, a body of patient data is available that provides at least 

circumstantial evidence as to whether the outcome will occur. The data is 

plausibly, but not definitively, related.

4. The signal, if it is present in the patient data, is too diffuse across the dataset for 

it to be learned reliably from the number of cases that an anesthesiologist might 

personally encounter, or the clinical decision-making relies upon a subconscious 

judgment that the anesthesiologist cannot elucidate.
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5. Can an algorithm, derived from the given data and outcomes, provide insight in 

order to improve patient management and the decision-making process?

This form of machine learning might be termed machine-assisted discovery.

This article takes the form of an integrative review5, defined as “a review method that 

summarizes past empirical or theoretical literature to provide a more comprehensive 

understanding of a particular phenomenon or healthcare problem.” The article therefore 

introduces the theory underlying classical and modern approaches to artificial intelligence 

and machine learning, and surveys current empirical and clinical areas to which these 

techniques are being applied. Concepts in the fundamentals of the artificial intelligence and 

machine learning are introduced incrementally:

1. Beginning with classical/symbolic AI, a logical representation of the problem is 

crafted and then searched for an optimal solution.

2. Model fitting of physiological parameters to an established physiological model 

is shown as an extension of search.

3. Augmented linear regression is shown to allow certain non-linear relationships 

between outcomes and physiological variables to be discerned, even in the 

absence of a defined physiological model. It requires sufficient expertise about 

which combinations of non-physiological transformations of the variables might 

be informative.

4. Neural networks provide are shown to provide a mechanism to establish a 

relationship between input variables and an output without defining a logical 

representation of the problem or defining transformations of the inputs in 

advance. However, this flexibility comes at considerable computational cost and 

a final model whose behavior may be hard to comprehend.

Numerous other theoretical and computational approaches do exist, and these may have 

practical advantages depending on the nature of the problem and the structure of the desired 

outputs.6

The literature search for an integrative review should be transparent and reproducible, 

comprehensive but focused and purposive. A literature search was performed using PubMed 

for articles published since 2000 using the following terms: “artificial intelligence 

anesthesiology” (543 matches), “computerized analysis anesthesiology” (353 matches), 

“machine learning anesthesiology” (91 matches) and “convolutional neural network 

anesthesiology” (1 match). Matches were reviewed for suitability, and augmented with 

references of historical significance. The specialty of anesthesiology features a broad history 

of attempts to apply computational algorithms, artificial intelligence and machine learning to 

tasks in an attempt to improve patient safety and anesthesia outcomes (Table 1). Recent 

significant and informative empirical advances are reviewed more closely.
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Classical Artificial Intelligence and Searching

Creating a classical artificial intelligence algorithm begins with the three concepts of a 

bounded solution space, an efficient search, and termination criteria.

Firstly, using what is known about the problem, a set of possible solutions that the algorithm 

can produce is defined. The algorithm will be allowed to choose one of these possible 

solutions, and so the solution set must be created in such a way that it is reasonably certain 

that the best possible solution is among the choices available. The algorithm will never be 

able to think outside of this “box”, and in that sense the solution space is bounded. In the 

game of tic-tac-toe, for example, the set of solutions is those squares that have not yet been 

taken. The best solution is the one that most diminishes the opponent’s ability to win, ideally 

until victory is achieved (i.e. minimax)7. In real life problems, however, it can be difficult to 

define a bounded set of solutions or even say explicitly what “best” means.

Secondly, the possible solutions are progressively evaluated and searched, trying to find the 

best one. In designing and programming the search strategy, anything else of worth that is 

known about the problem should be incorporated, such as how to value one solution versus 

another, ways to search efficiently by focusing on areas of the solution space that are more 

likely to be productive8, and intermediate results that might allow certain subsets of the 

solution space to be excluded from further evaluation (i.e. pruning). Sometimes the 

knowledge and understanding of the underlying problem might be quite weak, and then in 

the worst case it may be necessary to fall back on an exhaustive and computationally-

intensive brute-force search of all the possible solutions.

Thirdly, the algorithm must terminate and present a result. Given enough time, eventually 

the algorithm should ideally find and select the optimum solution. Depending on the 

structure of the problem and the search algorithm, it may be possible to guarantee through 

theory that the algorithm will terminate with the optimal solution within a constrained 

amount of time. A weaker theoretical guarantee would be that the algorithm will at least 

improve its solution with each search iteration. However, in the general case and if no such 

theoretical guarantee is possible, the algorithm might only select the best good-enough 

solution found within an allowed time limit, or perhaps issue an error message that no 

sufficiently satisfactory solutions were identified.

Search-based classical AI has obvious applications to practical problems such as wayfinding 

on road maps, in which a route must be chosen that is connected by legal driving maneuvers 

and arrives in the shortest time. Less obviously, this same logic can be applied to real-world 

problems such as locating a lost child in a supermarket. According to the order of operations 

above, the first step is to create a bounded solution set: by covering the exit, the location of 

the child is reasonably bounded to be somewhere within the supermarket. Secondly, a search 

is begun. A naive approach might be to walk up and down every aisle in turn until the child 

is found but, from insight, far better search strategies for this problem can be easily 

identified. The most efficient search strategy is clearly to walk along the ends of the aisles: 

this allows whole aisles to be scanned and excluded (i.e. pruned) rapidly. Thirdly, the search 
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terminates either on finding the child, or on determining that additional resources must be 

employed if the child cannot be found within a certain time.

Designing classical AI algorithms is not a turnkey mathematical task; it is heavily dependent 

on the human expertise of the designer. In classical AI, the role of the computer is to 

contribute its immense power of calculation to evaluate the relative merits of a large number 

of possible solutions, which the designer provides. This division of labor can be dated back 

to Ada Lovelace’s 1843 description of the conception of the modern computer: “The 

Analytical Engine has no pretensions whatever to originate anything. It can do whatever we 

know how to order it to perform. It can follow analysis; but it has no power of anticipating 
any analytical relations or truths. Its province is to assist us in making available what we are 

already acquainted with.”9

In 1997, the IBM supercomputer Deep Blue defeated the then world champion, Garry 

Kasparov, at chess. It had been a longstanding goal for a machine to be able to play chess at 

levels unattainable by humans10. The rules of chess are clear and unambiguous, and the 

actions take place within the confines of the board. The state of play is completely apparent 

and known to both players. It is possible to list all the available legal moves, all responses to 

those moves, all responses to those responses, and so on – the solution space is bounded. In 

principle, it is not even particularly difficult to write a program that can play chess 

flawlessly. The program simply tries out (i.e. searches) all possible moves, and all possible 

responses until the game is either won or lost. However, a computer program that tried to 

evaluate every possible move and all of its consequences would not be able to make its first 

move, so immense is the search space.11 Deep Blue’s success rested on two pillars. Firstly, 

its search algorithm possessed an evaluation function to approximate the relative value of a 

position. This function was crafted from the distilled, programmed, strategic wisdom of 

human chess experts, and allowed the search algorithm to ignore choices that were likely to 

be unproductive. Secondly, this search algorithm was supported by brute-force computing 

power capable of evaluating two hundred million moves per second. These techniques 

proved sufficient for Deep Blue to achieve superhuman mastery of a game with 

approximately 1047 possible board positions - an immense but bounded space. In many 

ways, however, mastery of chess was classical AI’s triumph but also its swansong. The 

division of labor remains the same as in Lovelace’s original description, and the human 

strategic understanding of the game was not outdone but instead overwhelmed by the 

indefatigability of the machine’s tactical evaluation of millions and millions of positions. 

The computer did what it was told, but it did not learn.

In anesthesiology practice, the closest example is open-loop Target Controlled Infusion 

(TCI). Pharmacokinetic (PK) models describe the forwards relationship from a drug 

administration schedule D(t) to an effect site concentration e(t). However, it is the inverse 

solution that is required: for a requested e(t), some D(t) should be produced, perhaps subject 

to limits on administration rate or plasma concentration12. An open-loop TCI pump will 

perform a search for a drug administration schedule that brings the predicted concentration 

of the medication within the body towards this goal, subject to the given constraints. The 

underlying equations are concise and effective13, but the device cannot become more 

proficient at its task. It follows the algorithms that it is given.
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Model Fitting as a Form of Searching

Anesthesiologists take particular interest in objective patient outcomes, and whether these 

good or bad outcomes can be predicted from the data that are available. Lacking a direct test 

for the desired outcome (in which case prognosis would be straightforward), the research 

question becomes whether the patient’s outcome is in some way imprinted upon and 

foreshadowed by the imperfectly informative data that are available. An approach is to seek 

to fit models to the data in order to try to make more reliable predictions, and therefore 

potentially discover previously unappreciated but useful relationships within the data. This 

approach requires a large enough body of data and patient outcomes on which model fitting 

can be performed, and this large body of data cannot reasonably be analyzed by hand.

A model is created using an example set for which the data and outcomes are known – i.e. 

the training data. The essence of a useful model is that it should be able to make useful 

predictions about data it has not previously seen, i.e. that it is generalizable. An overly 

complicated model may become over-fit to its training data, such that its predictions are not 

generalizable. Figure 1 shows examples of this. Each figure shows a population of green 

circles, representing notionally favorable outcomes, and red crosses, representing notionally 

unfavorable outcomes. The question is whether the two available items of data, Feature X 

and Feature Y, can predict the outcome. Three models are fit to the exact same training data, 

to produce a black line (known as the discriminant) that separates the figure into prediction 

regions, shaded either green or red, accordingly. An item of training data is correctly 

classified when its symbol falls in a region that is shaded the same color, and is misclassified 
when it does not (i.e. when it lies on the wrong side of the discriminant).

Figure 1A shows a model that is underfit. Although most of the symbols are correctly 

classified, there are several misclassified red crosses on the left of the figure and the simple 

linear discriminant has no way to capture these. A decision algorithm based on this model 

would have high specificity (green circles are almost all correctly classified), but a lower 

sensitivity (several bad outcomes are erroneously predicted as good). The decision 

performance is therefore somewhat reminiscent of the Mallampati test14 which also 

demonstrates high specificity but low sensitivity15. The discriminant in Figure 1A would 

function better if it could assume a more complex form. Figure 1B, in contrast, shows a 

model that is overfit. Although all the training data is correctly classified, the unwieldy 

discriminant is governed too much by the satisfaction of individual data points rather than 

the overall structure of the problem. This model is unlikely to generalize well to new data, as 

it is overly elaborate. Figure 1C shows a model that is appropriately fit to the data (indeed, 

the data were created to illustrate this point). The discriminant is complex enough to capture 

the distribution of the outcomes, but it is also parsimonious in that the shape of the 

discriminant is described by only a few parameters. In practice, of course, the true 

underlying distribution is not known in advance, so the performance of the discriminant 

must be tested statistically. The discriminant in Figure 1C has fewer degrees of freedom than 

the discriminant in Figure 1B, so its performance is statistically more likely to represent the 

true nature of the underlying process even though it has more misclassifications than the 

overfit discriminant. Model fitting is therefore a form of search in which the choices are the 

parameters admitted to the model and their relative weights, in order to find models that are 
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statistically most likely to represent the underlying process based upon the training data that 

are available.

Discovering Non-Linear Relationships in Clinical Medicine

Many judgments in anesthesiology are based on absolute thresholds or linear combinations 

of variables. A patient with a heart rate above 100 is tachycardic, one with a temperature 

above 38°C is febrile. A man whose EKG features an R wave in aVL and an S wave in V3 

that combined exceed 28 mm has left-ventricular hypertrophy16.

Logistic regression is useful when fitting a weighted combination of variables to an 

outcome. Logistic regression defines an error function that measures the extent to which the 

current weighted combination of variables tends to misclassify outcomes. These weights are 

subsequently modified in order to improve the classification rate. The regression algorithm 

determines the changes in the weightings that would most improve the present classification, 

and then repeats the process until an optimum weighting is settled upon. The regression 

algorithm therefore performs a gradient descent on the error function; one can picture an 

imaginary ball rolling down a landscape defined by the error function until a lowest, 

optimum, point is reached such that the best linear combination of the input variables is 

determined. Logistic regression is a powerful machine learning technique that works quickly 

and is also convex, meaning essentially that the “ball” can roll down to the optimum solution 

from any starting point (for almost all well-posed problems). However, many outcome 

problems in anesthesiology and critical care clearly do not depend on linear criteria. For 

example, ICU outcomes that may depend on a patient’s potassium level, or glucose level, or 

airway PEEP are more likely to be Goldilocks problems: the best outcomes require an 

amount that is neither too big, nor too small, but just right. Figure 2A illustrates such a 

situation, in which the good outcomes are clustered around a point in the feature space, and 

deviations from that point result in poor outcomes. As a clinical correlate, one might 

imagine that the outcomes are timely ICU discharges17 and the data K and G represent well-

controlled levels of potassium and glucose, although the data shown here are purely artificial 

and created solely for this example. The data show a clear clustering of the outcomes, but an 

algorithm that is only capable of producing a discriminant based on a linear combination of 

K and G would not be able to capture that separation. Rather than performing a non-linear 

regression over the two variables K and G, a solution lies in transforming the data by 

calculating the squares of K and G (i.e. K2, G2) and their cross-term KG, and then 

performing an augmented linear logistic regression over the five variables K, G, K2, G2 and 

KG.

As shown in Figure 2B, a linear discriminant in the K2, G2 plane will perfectly separate the 

outcomes. This discriminant, given by (K2) + (G2) – 9 = 0, is exactly the same as a circle of 

radius 3 in Figure 2A, demonstrating that non-linear boundaries can be discovered. Although 

it may seem clinically bizarre to talk about the squared value of the serum potassium (K2), it 

is easy to write a quadratic function that has clinical meaning. For example, the function 35 

– 17K – 2K2 is positive if the value of K lies between 3.5 and 5.0, but turns negative for any 

more hypokalemic or hyperkalemic value outside that range. This simple example 

underscores the ways in which the outputs from machine learning algorithms can seem 
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inscrutable or black box. To a computer, the two definitions are essentially equivalent: one is 

no more meaningful or better than the other. It takes human effort to explain numerical 

results in a clinically meaningful way18.

Augmenting the variable space with quadratic terms allows a linear algorithm to define non-

linear features like islands (as in Figure 2A) and open curves (as in Figure 1B), but the 

technique can be extended further by using higher polynomial terms. Augmentation can also 

be performed with reciprocal powers such as K−1 (i.e. 1/K), which would in principle allow 

the machine-learning algorithm to discern useful relationships based on ratios. Common 

such clinical examples include:

• the Shock Index19 (SI = HR / Systolic BP), which rises in response to the 

combined increase in heart rate and fall in blood pressure associated with 

hypovolemia.

• the Rapid Shallow Breathing Index20 (RSBI = f / Vt) which rises in response to 

the fast, small, panting breaths associated with respiratory failure.

• the Body Mass Index (BMI = Weight / Height2), which represents obesity as 

excess weight distributed over an insufficiently-sized physical frame.

A downside to augmenting the variable space is that the number of input variables can 

increase dramatically, which can overwhelm the size of the available training data and lead 

to a significant risk of overfitting. One challenge is that the input variables and the 

augmented combinations that are to be considered must be fully defined in advance. Only 

non-linear relationships that can be approximated from a linear combination of the variables 

that are supplied can be found. For real-world problems in medicine and biology, 

considerable expertise is required in order to define a meaningful and informative set of 

inputs. Human insight must also be applied to determine what problem should be solved and 

what outputs are useful. When only limited knowledge is available about the best way to 

frame a problem numerically, modern AI and neural networks provide an alternative 

approach.

Modern AI

The limitations of classical AI were particularly apparent in attempts to produce programs 

capable of playing Go. Go is, at least in terms of its rules, a simpler game than chess. Two 

players take it in turns to place a stone, white or black respectively, on a 19×19 board. Plays 

in Go take place at the intersections of the grid lines, rather than on the squares as in chess. 

Once a stone is placed, it does not subsequently move. Briefly, the game is won by whoever 

manages to corral the largest total space on the board. However, in play, Go is a much more 

complex game than chess, with approximately 10170 board positions compared to 1047. It is 

hard to overstate the magnitude of these combinatoric numbers. There are about 1080 atoms 

in the universe, so if each individual atom were actually another universe in its own right, 

then that would still represent only a total of 10160 atoms. Even the best classical AI 

approaches to Go seemed unable to accomplish anything better than amateurish play.
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In March 2016, a computer program, AlphaGo, defeated a 9-dan rated human player, the 

world number-two Lee Sedol, in a head-to-head five-game series of Go. This was the first 

time that a computer program had beaten a player of that level of skill without handicaps. 

Although AlphaGo featured an algorithm to choose moves that was somewhat guided by the 

design of its developers, its evaluation function was composed of a neural network that had 

been trained against a database of recorded games and outcomes21. In chess, a crude 

valuation of a position can be made from the strength of the pieces remaining to the player 

and their ability to move freely. In Go, the stones do not have an equivalent individual worth 

and the valuation of a Go position instead depends on the relative spatial interplay of the 

player’s stones and the opponent’s stones. Where classical AI algorithms were unable to 

discern this strategic posture, AlphaGo’s neural network approach was successful.

Neural Networks

Figure 3A illustrates the simplest feasible fully-connected feed-forward neural network, 

taking two inputs and returning one outcome. The network is composed of the inputs, an 

input layer, a hidden layer, an output layer, and the output. Each layer is fully connected to 

the next, meaning there is path from each node (i.e. neuron) to every node in the following 

layer. Each path has an associated weight, which describes how much the signal traveling 

along that path is amplified or attenuated or inverted. At each node, the weighted inputs are 

added together and then applied to an activation function. Each of the nodes illustrated here 

uses a sigmoid activation function, which is the most basic of the standard activation 

functions as shown in Figure 3B. The general idea is that a node, in a manner reminiscent of 

a biological neuron, will remain ‘off’ until a suitable degree of excitation is reached, at 

which point it will quickly turn ‘on’. The first node in the input layer, for example, receives 

inputs from Features S and T. These inputs are weighted by wfs,i1 and wft,i1 respectively, so 

the total input z to the first input node is given by z = wfs,i1S + wft,i1T. The total input is then 

applied to the sigmoid function, producing an output from this node of 
1

1 + e−z . This output 

feeds forward to the next, hidden layer along with the other weighted contributions from the 

input layer, and so forth until an output is produced. The output of the sigmoid activation 

function is always between 0 and 1, so if the outcomes are classified as 0 (e.g. red crosses) 

and 1 (e.g. green circles), the performance of the network can be assessed from how closely 

it predicts the various outcomes in the training data.

The behavior of the network depends on the values of the various weights w, and so the 

general idea of machine learning in a neural network is to adjust these weights until 

satisfactory performance is achieved. To begin, the weights are set to random values and so 

the initial performance of the network will usually be poor. However, for each error in 

prediction that is output, a degree of blame can be apportioned over the weights that 

contributed to it, and these weights can then be adjusted accordingly. This process is called 

back propagation22, and it is the process by which the network learns to improve from its 

mistakes. Data is fed forward through the weights and nodes to produce output predictions, 

and then the errors in these predictions are propagated backwards through the network to 

readjust the weights. This process is continued until, hopefully, the network settles to some 

form in which it is able to model the outputs satisfactorily based upon the input data. 
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Beyond this basic description, of course, there are extraordinary implementational details 

and subtleties. For example, even in the rudimentary neural network shown in Figure 3A, 

there are already ten different weights that can be adjusted. The number of parameters in any 

practical network will be very large, and a great deal of care is required in the handling of 

the training data in order to avoid immediate overfitting. Additionally, the error function for 

neural networks is not globally convex, so there is no guarantee that the learning process will 

converge upon the optimum solution and it may instead settle on some less ideal solution. In 

the gradient descent analogy described earlier, this would be like the imaginary ball 

becoming stuck in a small divot and failing to roll down to the valley below. Two ways 

around this problem are either to survey the landscape by starting from a selection of 

different locations, or to occasionally give the ball (or the landscape) some sort of shake (i.e. 

stochastic gradient descent23). Nevertheless, the process remains very computationally 

intensive and slow, despite technical advances in repurposing the hardware of 3D graphics 

cards (i.e. GPUs) to parallelize the calculations24.

The primary reason to take on the burden of training neural networks is that they possess the 

new property of universality25. Universality means that, given an adequately large number of 

nodes in the respective layers, the weights of a neural network can be configured to 

approximate any other continuous function to within any desired level of accuracy25. This 

leads to two immediate and important benefits.

1. The property of universality stipulates that the neural network can, in principle, 

represent any continuous function to any desired degree of accuracy. The idea of 

a function is very broad – it does not just mean the transformation of one 

numerical value into another. It incorporates any transformation of input data 

into an output, such as a Go board position into a verdict into whether that 

position is winning or losing21, or determining the location of a lesion on a 3D 

brain MRI26. A function can be any transformation, even if its mathematical 

form is not known in advance.

2. The behavior of the network is dependent on the weights. The network learns the 

appropriate weights solely from the training data that it is given. Therefore, the 

network can learn the functional relationship between the outcome and the data 

even if there is no pre-existing knowledge about what that relationship might be. 

However, it can be extraordinarily difficult to reverse this process to determine an 

efficient statement of the functional relationship that is described by the fitted 

weights. This leads to the well-known criticism that the operation of a neural 

network is particularly hard to characterize and therefore hard to validate.

As shown in Figure 4 therefore, it is possible, at least in the abstract, for a neural network to 

take a pre-operative image of a patient and produce a prediction about how difficult that 

patient’s intubation might be. The proposed function is a transformation from the pixel 

values of the image to an estimated Cormack-Lehane view27, but it is hard to intuit in 

advance what the form of that underlying function might turn out to be. While the picture 

alone is very unlikely to contain sufficient information to produce a reliable prediction, it is 

plausible that it is in some way informative as to the outcome. Although a fully-connected 

neural network is shown, the universality theorem only demonstrates that a fully-connected 
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network with a single hidden layer can represent any function. It does not guarantee that the 

network contains a reasonably tractable number of nodes, nor that the inputs are informative 

as to the output, nor that convergence to a satisfactory answer can occur within a feasible 

amount of time. The current state of the art in computer science therefore involves finding 

network topologies that use a more efficient number of nodes and can be trained in a 

reasonable period of time. Two examples of these alternative network connection patterns 

are deep convolutional neural networks28, in which there are several hidden layers but many 

weights are constrained to have the same set of values, and residual neural networks29, in 

which additional paths with a weight of 1 skip over intervening hidden layers. Both of these 

approaches derive plausible justification from analogous arrangements of neurons in the 

mammalian brain, such as visual field maps for convolutional networks and pyramidal 

projection neurons for residual networks.

Evolution in Time

Each of the feed-forward neural network tasks illustrated so far make their predictions based 

solely on the input data available at that immediate time. They are stateless, i.e. they have no 

temporal relationship to any measurement taken before or after. If a neural network is 

intended to make intraoperative decisions about patient management, then the network will 

require some way to base its decision-making on memories of evolving trends. Figure 5 

illustrates an Elman network30, with three inputs and one output. In this topology, weighted 

paths project from the outputs of the hidden layer to a context layer, and then further 

weighted paths return from the context layer to the inputs of the hidden layer. An Elman 

network is the simplest example of a recurrent neural network (RNN) that can evaluate 

changes in data over time. For example, the output might be a decision whether to transfuse 

or not31, and the inputs might be the clinically observable parameters heart rate (R), blood 

pressure (P) and estimated blood loss (B). The context layer would allow the network to 

discern and respond to trends in these inputs.

Practical Approaches to Machine Learning in Anesthesiology

Advances in technology and monitoring can change the impetus for machine learning. For 

example, a neural network developed to detect esophageal intubation from flow-loop 

parameters32 is obviated by continuous capnography33,34. In this instance, a reliable clinical 

test has made readily apparent what was once an insidious and devastating complication. A 

machine-learning model to predict difficult intubation from patient appearance35 must now 

be tempered by the convenience and ubiquity of video laryngoscopy. Advances in airway 

management technology have broadened the range of outcomes of laryngeal visualization 

that can be accepted. Anesthesiologists have long considered the possibility of an algorithm 

that might autonomously control depth of anesthesia based on EEG recordings36,37 since the 

1950s – yet, this concept remains very much a topic of current research38.

Two papers from 2018 illustrate the theoretical concepts covered. The first paper by Hatib et 
al39 uses a very highly augmented data set in conjunction with logistic regression to produce 

an algorithmic model that can, in post hoc analysis, detect the incipient onset of hypotension 

up to 15 minutes before hypotension actually occurs. For model training, the authors 
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employed a database of 545,959 min of high-fidelity (100Hz) arterial waveform recordings 

acquired from the records of 1,334 patients, internally validated against the records of 350 

additional patients that were held back. The training dataset included 25,461 episodes of 

hypotension. The model itself is derived from 51 base variables obtained from the 

processing of arterial waveforms by the Edwards FloTrac device40. Each variable was 

augmented with its squared term and their reciprocals (i.e. X, X2, X−1, X−2) and then every 

combination of these variables was generated to produce an overall input set of 2,603,125 

parameters. The authors chose two clearly separated outcomes: hypotension defined as MAP 

< 65 mmHg (e.g. notionally red crosses), and non-hypotension defined as MAP > 75 mmHg 

(e.g. notionally green circles), but did not consider the “gray zone” between these outcomes. 

Despite the large number of available parameters and the risk of overfitting, the authors were 

nevertheless able to use a parsimonious parameter selection process to produce a final model 

that depended on only 23 of the 2.6 million available inputs (M. Canneson, personal 
communication). The study did have some limitations: notably that it did not include any 

episodes in which hypotension was caused by surgical intervention, all model-fitting and 

assessments were retrospective and off-line, and the algorithm made no recommendations as 

to whether an intervention should be performed. Nevertheless, the authors demonstrated an 

algorithm that was apparently able to foresee episodes of hypotension in operative and ICU 

patients up to 15 minutes in advance of the onset of the event itself with an area-under-the-

curve (AUC) of 0.95.

The second paper by Lee et al41 describes a neural network approach to predicting the 

bispectral index (BIS) based upon the infusion history of propofol and remifentanil. This 

paper is particularly noteworthy because a strongly theoretical approach to this question 

already exists in the TCI literature. The classical approach is to model the pharmacokinetics 

of propofol42 and remifentanil43 in the body independently, based upon the infusion history. 

The effect site concentration of each drug is then combined in a response surface model44, 

producing an estimate of the BIS. These classical pharmacokinetic models are well-

established and have been used to demonstrate closed-loop TCI control of anesthetized 

patients45. In contrast, Lee et al created a neural network comprised of two stages. The first 

stage receives the infusion history of propofol and remifentanil over the preceding 30 

minutes with a resolution of 10 seconds (i.e. 180 inputs for each medication). The inputs for 

each medication are fed to 2 separate 8-node RNNs. Rather than using an Elman30 

arrangement, as seen in Figure 5, the paper made use of a newer configuration known as a 

Long Short Term Memory (LSTM)46. Simple RNNs such as Elman have difficulty recalling 

or learning events that happen over a long timeframe as their training error gradients become 

too small to be adaptive. The LSTM is a more robust memory topology that also includes 

pathways that explicitly cause the network to reinforce or forget remembered states. The 

output from the LSTM layer is applied directly to a simple fully-connected feed-forward 

neural network with 16 nodes of the type shown in Figure 2 and Figure 3. A single output 

node emits a scaled BIS estimation. The network was developed from a database of 231 

patient cases (101 cases used for training, 30 for validation, and 100 for final testing), and 

comprised a total of around 2 million data points. In post hoc analysis, the classical PK/PD 

models were able to predict the BIS value with a root-mean-square error (RMSE) of 15 over 

all phases of the anesthetic. Despite being naïve to all existing theory, the neural network 
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comfortably outperformed the best current models with an RMSE of 9 – a remarkable 

victory for modern AI over existing classical PK/PD expert systems47 that might lead us to 

question the ongoing utility of classical response surface models48.

Future Directions

The most exciting recent advance in machine learning has been the development of AlphaGo 

Zero49, a system capable of learning how to play board games without any human guidance, 

solely through self-play alone. It performs at a level superior to all previous algorithms and 

human players in chess, go and shogi. This learning approach requires that the system be 

able to play several lifetimes worth of simulated games against itself. Though anesthesia 

simulators exist, they do not presently simulate patient physiology with the fidelity with 

which a simulated chess game matches a real chess game.

The most plausible route to the introduction of AI and machine learning into anesthetic 

practice is that the routine intraoperative management of patients will begin to be handed off 

to closed-loop control algorithms. Maintaining a stable anesthetic is a good first application 

because the algorithms do not necessarily have to be able to render diagnoses, but rather to 

detect if the patient has begun to drift outside the control parameters that have been set by 

the anesthesiologist50. In this regard, such systems would be like an autopilot, maintaining 

control but alarming and disconnecting if conditions outside the expected performance 

envelope were encountered – hardly a threat to the clinical autonomy of the 

anesthesiologist51. A closed-loop control system need not necessarily have any learning 

capability itself, but it provides the means to collect a large amount of physiological data 

from many patients with high fidelity and this is an essential precursor for machine learning. 

Access to large volumes of high quality data will enable more machine learning successes, 

such as the off-line post hoc prediction of bispectral index41 and hypotension39 discussed 

above. For now, finding algorithms that provide good clinical predictions in real time should 

be emphasized. Management of all the parameters of a stable anesthetic is not a simple 

problem52, but embedding53 the machine in the care of the patient is a good way to begin54.

For further reading, the following books provide accessible introductions to decision making 

by humans1 and algorithms55, neural networks56, information theory57 and the early history 

of computer science58.
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Figure 1: 
Examples of model fitting to data. The data are synthetic, for the purposes of illustration 

only.

(A) An under-fit representation of the data. Although the linear discriminator captures most 

of the green circles, numerous red crosses are misclassified. The linear model is too simple.

(B) The discriminator is over-fit to the data. Although there are no classification errors for 

the example data, the model will not generalize well when applied to new data that arrives.

(C) A parabola discriminates the data appropriately with only a few errors. This is the best 

parsimonious classification.
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Figure 2: 
Examples of model fitting using augmented variables. The data are synthetic, for the 

purposes of illustration only.

(A) An example of a model-fitting problem in which desirable outcomes (represented by 

green circles) are clustered around a mean point, and adverse outcomes (represented by red 

crosses) are associated with deviations from that point. For clinical correlation, one might 

imagine that the data represent favorable or unfavorable ICU outcomes based on rigorous 

control of potassium (Feature K) and glucose (Feature G).

(B) Rather than attempting to fit outcomes solely to the variables K and G, the variable 

space can be augmented by also fitting to K2 and G2. This example demonstrates that the 

fitting of a perimeter around a mean value is easily accomplished by a linear fitting within 

the augmented space of K2 and G2. The linear discriminant of (K2) + (G2) – 9 = 0 as shown 

produces a circular boundary of radius 3 in the K,G space.
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Figure 3: 
(A) The simplest, fully-connected neural network from two input features to one output. The 

weights for each connection are illustrated, and each neuron in the network uses the sigmoid 

activation function to relate the sum of its weighted inputs, z, to its output. The sigmoid 

function is σ z = 1 + e–z –1

(B) Other biologically-inspired activation functions are possible and have practical benefits 

beyond the original sigmoid. Further evolutions are the tanh function (essentially two 

sigmoids arranged symmetrically), the softplus (the integral of the sigmoid), and the 

rectified linear unit (a non-smooth variant of the softplus).

Connor Page 21

Anesthesiology. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
The property of universality means that neural networks can represent any continuous 

function. The neural network shown here represents a hypothetical system to take a 

photographic image of a patient and render a prediction of their Cormack-Lehane view at 

intubation. (Not all nodes and connections are illustrated, as the input and hidden layers 

would each contain several thousand nodes. More pragmatic network topologies can be 

applied to visual recognition problems than the general case shown here.)
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Figure 5: 
Recurrent Neural Networks (RNNs) employ feedback such that the output of the system is 

dependent on both the current input state and also the preceding inputs, enabling the network 

to respond to trends that evolve over time. In the Elman network arrangement shown here, 

the Context Layer feeds from and to the Hidden Layer.
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Table 1

Results of a survey of the primary literature for articles on the application of artificial intelligence and machine 

learning to clinical decision-making processes in anesthesiology.

Topic References

ASA Score and Preoperative Assessment 35,59,60

Depth of Anesthesia and EEG processing 61–65

PK/PD and Control Theory 41,66–73

Blood Pressure Homeostasis and Euvolemia 6,31,39,74–76

Surgical Complications and Trauma 77–81

Post-operative Care 82–84

Acute Pain Management and Regional Anesthesia 85–91

ICU Sedation, Ventilation and Morbidity 17,92–97

Anesthesiology. Author manuscript; available in PMC 2020 December 01.


	Abstract
	Summary Statement
	Introduction
	Classical Artificial Intelligence and Searching
	Model Fitting as a Form of Searching
	Discovering Non-Linear Relationships in Clinical Medicine
	Modern AI
	Neural Networks
	Evolution in Time
	Practical Approaches to Machine Learning in Anesthesiology
	Future Directions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1

