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Abstract

Solving high-resolution structures of membrane proteins has been an important challenge for 

decades, still lagging far behind that of soluble proteins even with the recent remarkable 

technological advances in X-ray crystallography and electron microscopy. Central to this 

challenge is the necessity to isolate and solubilize membrane proteins in a stable, natively folded 

and functional state, a process influenced by not only the proteins but also their surrounding 

chemical environment. This review highlights recent community efforts in the development and 

characterization of novel membrane agents and ligand tools to stabilize individual proteins and 

protein complexes, which together have accelerated progress in membrane protein structural 

biology.

Introduction

Much has been written about the critical biological and biomedical significance of 

membrane proteins (MPs). Structural knowledge is crucial for understanding the underlying 

biological function and mechanism, as well as for structure-based drug design. However, 

membrane protein structural biology lags far behind that of soluble proteins [1–3]. Currently, 

X-ray crystallography, electron cryomicroscopy (cryoEM), and nuclear magnetic resonance 

spectroscopy are the major biophysical techniques for solving high-resolution structures, 

with each method having its own advantages and limitations [4–6]. Regardless of the 

technique, sample preparation is the most significant challenge for MP structure 

determination. Important tasks throughout this process are engineering of protein constructs 

and selection of the best expression platform. Stabilization of individual MPs or their 

complexes in a solubilized state is essential, requiring optimization of the chemical 

environment, including lipids, detergents, membrane mimetics and ligands [7,8]. The 

development of novel chemical and protein-centric tools together and significant 
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technological advancements in cryoEM and X-ray crystallography have accelerated progress 

in MP structural biology. This review describes chemical tools, including both membrane 

reagents and ligands (Figure 1), highlights recent achievements and discusses unmet 

challenges, with a perspective for more innovative tool development to impact both MP 

structural biology and drug discovery.

Detergents for MP Stabilization

MPs reside in cells in an anisotropic and heterogeneous membrane environment, where the 

lipid bilayer imposes geometric constraints on their structure and thermodynamic stability 

(Figure 1a). Specific lipid interactions are crucial for the function of many MPs [9,10]. 

Ideally, MP structures should be determined in their native biological membranes, where the 

proteins of interest are stable and fully functional, retaining their endogenous lipids, ligands 

and protein partners. However, very few MPs, such as bacteriorhodopsin [11], vertebrate 

rhodopsin [12], the acetylcholine receptor [13], and the sarcoplasmic reticulum Ca2+-

ATPase [14], are sufficiently abundant in their native membranes for direct electron 

crystallography, typically at low to subnanometer resolution. Most MPs are present in low 

copy numbers within cell membranes, necessitating purification and enrichment from either 

natural sources or overexpression using recombinant methods. A common practice is to 

extract and solubilize MPs using small-molecule detergents that can partition into and 

effectively disperse the membrane. Detergent micelles provide an artificial and less than 

ideal membrane-mimetic environment, in which MPs are prone to denaturation, aggregation 

and loss of activity. For structural studies, use of detergents may cause additional problems, 

such as the difficulty in crystallization of MPs with small soluble ectodomains that mediate 

protein-protein interactions in 3D crystals. A common vexation is the growth of low-quality 

MP crystals that are difficult to improve [15]. A challenge of cryoEM is the exceedingly low 

signal-to-noise ratio between the protein and the surrounding vitreous ice. Empty detergent 

micelles contribute to the background and interfere with single-particle image analysis, 

especially for MPs of similar particle size to the micelles. Nevertheless, despite all the 

challenges associated with their use, detergents were the first and remain the most versatile 

and invaluable tools for MP sample preparation. For both crystallography and cryoEM, a 

large fraction of MP structures are still determined in detergent micelles. Most other types of 

membrane mimetics (e.g. amphipols, nanodiscs, lipidic cubic phase (LCP)), as will be 

discussed in this review, do not effectively disperse cell membranes, and their use requires 

detergent solubilization and purification of MPs prior to exchange into the mimetic. A brief 

comment on the advantages and limitations of various membrane-mimicking reagents is 

included in Table 1.

Many new, less harsh detergents have been developed in recent years with improved 

properties, which enhance the stability of MPs for structural studies (Figure 1b). Of 

particular interest among these are molecules with improved properties as membrane 

mimetics, which include lipid-like branched or double alkyl chain detergents [15–19], as 

well as cholesterol-like, steroid-based detergents [20–24]. Although structurally distinct 

from each other, these detergents share common features, including enhanced 

hydrophobicity and compactness, allowing tighter association with MP surfaces than 

conventional single-chain detergents. New detergent designs that include an even larger 
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hydrophobic surface or contain more than two alkyl chains further increase MP stability 

[25–27]. Related to the development of various steroid-based detergents, many MPs can be 

stabilized by a combination of cholesteryl hemisuccinate (CHS) with common detergents 

such as dodecyl-β-D-maltoside (DDM) or lauryl maltose neopentyl glycol (LMNG). CHS 

may impart this important benefit by mimicking direct interactions of cholesterol with some 

eukaryotic MPs [28]. Structurally, the incorporation of CHS into DDM micelles induces 

flattened bicelle-like structures that better mimic a membrane setting [29].

It is also worthwhile to note recent successful cryoEM MP structures using digitonin or 

similar molecules (glyco-diosgenin/GDN [23]). Digitonin has had a long history of use in 

membrane biochemistry, but to the best of our knowledge, it has yet to succeed in supporting 

crystallization of MPs. The reason for its lack of success in crystallography might be 

attributed to its mixed (and variable) chemical composition, its complex phase properties, or 

the large size of micelles that it forms. Digitonin is, nevertheless, among the best detergents 

for stabilization of challenging eukaryotic MPs or MP complexes, as it has been used in the 

structure determination of some notoriously difficult targets, such as γ-secretase [30], the 

cystic fibrosis transmembrane conductance regulator (CFTR) [31], and the multidrug 

resistance protein 1 (MRP1) [32]. Digitonin has also been demonstrated to retain 

phospholipids during the solubilization of the transporter associated with antigen processing 

(TAP) [33]. The unique steroid moiety of digitonin along with extreme structural rigidity 

may confer its particularly mild properties compared to other detergent types. Given the 

known limitations of digitonin for crystallographic use and the scarcity of digitonin analogs, 

it is worthwhile to expand this promising class of detergents by synthesizing new digitonin-

like molecules with improved chemical and physical properties. To this end, DGN, a 

synthetic digitonin, has now been commercialized (Anatrace).

Detergent-free Solubilization of MPs

Dramatic advances made in cryoEM methodology over the last few years have greatly 

expanded the utility of non-detergent membrane-mimetic systems for high-resolution MP 

structural studies. Prominent examples for single-particle cryoEM are phospholipid bilayer 

nanodiscs [34] and amphipols [35] (Figures 1c and 1d), but they have thus far eluded 

applications in MP crystallization. In contrast to traditional detergent molecules, amphipols 

are amphiphilic polymers decorated with multiple alkyl chains that can wrap around the 

hydrophobic surfaces of MPs to form a less dynamic protein-polymer assembly (Figure 1d). 

Nanodiscs are usually prepared by mixing detergent-solubilized MPs, lipids, and membrane 

scaffold proteins (MSPs) at controlled ratios, followed by removal of detergent. Individual 

MPs or MP complexes become embedded in the resulting lipid bilayer discs, which are 

encircled by the MSP “belt” of defined size (Figure 1c). MSPs were originally designed 

based on the differently truncated sequences of high-density apolipoproteins [36–38]. More 

recent variations include covalently circularized MSPs, designed to achieve more precise 

control over the nanodisc size [39], and an alternative scaffold-protein, called saposin [40]. 

The various nanodisc systems offer a wide range of disc diameters (from 6 nm up to 80 nm), 

capable of accommodating small to large MPs or MP complexes at different stoichiometries, 

for structural and functional studies. We refer readers to more extensive reviews on the 

applications of protein-based nanodiscs [34,41].
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Unlike MSPs and aforementioned amphipols, styrene-maleic acid (SMA) copolymers have 

been recently shown to have the ability to solubilize MPs directly from cell membranes 

[42,43]. The membrane solubilization efficacy of SMA polymers, which randomly display 

hydrophobic styrene and hydrophilic maleic acid moieties along their linear hydrocarbon 

chains, varies with the polymer length, styrene/maleic anhydride ratio, and pH [44]. An 

important feature of direct solubilization with SMAs is its co-solubilization of endogenous 

lipids together with MPs into nanosized lipid particles termed SMALPs (Figure 1c). Along 

with bypassing the use of conventional detergents, this is an ideal strategy to capture MPs in 

a nearly native environment for subsequent purification and structure determination. But at 

present, the solubilization efficacy and stabilizing benefits of SMAs remain less well 

established than many other widely adopted chemical tools for MP structural and functional 

studies. In some cases, SMAs can be difficult to utilize. For instance, UV absorbance of the 

styrene moieties in the polymer presents an inconvenience. Chelation of divalent cations 

(e.g. Ni2+, Ca2+ and Mg2+), owing to the density of carboxylate anions, constrains the use of 

SMAs for some chromatographic purifications (e.g. immobilized metal affinity 

chromatography) and for certain functional assays (e.g. ATPases). As such, various 

structural modifications in both polar and apolar segments of the polymer have been made in 

order to improve the properties of these polymers [45–47].

SMALP nanoparticles appear to have distinct properties compared to MSP nanodiscs. In 

MSP nanodiscs the lipid movement is largely confined within individual discs, providing a 

relatively static, stable lipid environment. In contrast, fast lipid transfer (occurring within 

seconds) has been observed between SMALP particles [48]. In this way SMALP 

nanoparticles are a dynamic system similar to detergent micelles. Direct crystallization of 

SMA-solubilized MPs will likely be challenging, although bacteriorhodopsin crystals have 

been grown in LCP after detergent-free SMA solubilization and purification [49]. In a recent 

marked success, SMA-solubilized nanoparticles yielded a 3.4-Å resolution cryoEM structure 

of the Flavobacterium johnsoniae alternative complex III (ACIII), together with a structure 

of its supercomplex with an aa3-type cytochrome c oxidase [50]. The cryoEM map revealed 

a surprisingly thin layer of density contributed by SMA and lipids, following the contours of 

the protein. The structural flexibility of SMALPs was also manifested in another recent 

cryoEM structure of the bacterial multidrug exporter AcrB, where a putative thin layer of 

lipid was described that followed the contours of the protein [51].

Membrane-Mimetic Mesophases for Crystallization

MPs can readily crystallize directly from lipid bilayers, provided that the bilayers are 

interconnected to form a 3D network, such as the arrangement that exists in LCP or in mixed 

lipid-detergent, perforated lamellar phases, often referred to as bicelles. Since the high-

resolution structure determination of bacteriorhodopsin in 1996 [52], LCP has become one 

of the most successful membrane-mimetic matrices for stabilization and crystallization of 

MPs. MPs have also been crystallized in bicelle systems [53–55], but their popularity 

appears to be waning.

LCP spontaneously self-assemble upon mixing of specific lipids with an aqueous buffer to 

create a periodic structure with cubic symmetry. Topologically, LCP consists of a single 
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lipid bilayer dividing the space into two networks of interwoven water channels (Figure 1e). 

The most commonly used and least expensive host lipid for LCP crystallization is 

monoolein, a monoacylglycerol with a double bond in the middle of its 18-hydrocarbon 

chain (9.9 MAG) [56]. An efficient synthesis of variable chain MAGs has been described 

[57,58]. In particular, the shorter chain MAGs that support larger diameter solvent channels 

were essential for crystallization of several challenging MPs, including GPCRs bound to 

their heterotrimeric G protein signaling partners [59,60], a proton-translocating 

transhydrogenase enzyme [61], and other MPs [62,63]. As an alternative to MAGs, a series 

of isoprenoid-chain lipids have been developed, and one of them (β-XylOC16+4) supports 

MP crystallization in LCP [64].

Native lipids of biological membranes do not spontaneously produce LCP. However, certain 

types of phospholipids, cholesterol, and other natural lipids can be doped into an LCP 

mixture to tune such properties as the membrane thickness and curvature, or to provide 

specific lipid-protein interactions. Despite the wide adoption of the LCP crystallization 

method, the number of available host lipids and their properties remain limited. Among 

recent developments to expand the LCP host lipid repertoire, the double bond of monoolein 

was replaced with a cyclopropyl group (monodihydrosterculin, MDS), extending the 

temperature range of LCP to enable low-temperature crystallization [65]. The relatively low 

chemical stability of MAGs was recently addressed by the development of non-hydrolysable 

lipids (e.g. GlyNCOC15+4), which also support MP crystallization at 20 °C and 4 °C [66].

Custom Ligands for Stabilization of MPs

In addition to engineering a membrane-like environment, selecting or designing tightly 

bound ligands can provide synergistic MP stabilization (Figure 1f). The early structural 

studies of bacteriorhodopsin and rhodopsin took advantage of the stability conferred by the 

covalently-bound retinal ligand. Similarly, many recent successful structural studies of 

GPCRs have benefited from wide-ranging medicinal chemistry efforts that produced a 

wealth of high-affinity antagonists and agonists. These ligands substantially enhance MP 

thermal stability and conformational homogeneity [67]. To overcome generally low affinity 

or a brief residence time of natural or synthetic agonists, covalent agonists have also been 

designed to trap receptors in active conformations [68,69]. The design and synthesis of 

stabilizing antagonists also contributed to the successful crystallization of full-length 

smoothened [70] and cannabinoid receptor 1 [71]. Nevertheless, there is a pressing need to 

generate ligand tools for many other GPCRs that have thus far defied high-resolution 

structural determination, such as the largest subfamily of ~400 olfactory receptors.

Unlike the rich pharmacology of GPCRs, there is a general lack of high-affinity ligands for 

transporters and channels. Conformational heterogeneity of transporters poses a significant 

challenge for their high-resolution structure determination, and obtaining ligand-bound 

structures will be especially important to define ligand binding sites in the context of a 

dynamic conformational pathway for substrate transport. For instance, several crystal and 

cryoEM structures of the multidrug resistance P-glycoprotein (ABCB1) were determined at 

3.4–3.8 Å resolution in complexes with several ligands bound within a V-shaped 

transmembrane cavity [72–74]. These ligands have only moderate affinities (> 200 nM) and 
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do not appear to stabilize P-glycoprotein in a single conformation. As such, development of 

higher affinity ligands may lead to higher-resolution structures of this multidrug transporter. 

To this end, a 2.9 Å-resolution crystal structure of the bacterial P-glycoprotein homolog 

MsbA was recently solved in a complex with both the lipopolysaccharide substrate and a 

potent inhibitor, which was discovered in a screen of ~ 3 million compounds [75]. In this 

case, the use of a novel facial amphiphile [21] also contributed to stabilization of MsbA.

Assaying a Large Chemical Space

It can be a daunting task to screen a vast number of chemical variables including membrane 

mimetics, ligands, as well as other buffer conditions and additives to identify a stabilizing 

matrix for structural studies of a given MP. Various stability assays, such as those based on 

protein activity, thermal stability, aggregation, or chemical denaturation, have been 

frequently employed. Among these, several fluorescence-based thermal stability assays, 

including, for example, fluorescent protein-based size-exclusion chromatography (FSEC) 

[76,77] and a protein unfolding assay using a cysteine-reactive fluorescent dye (CPM) [78] 

are appealing because of their high sensitivity and easy adaptability to different MPs. The 

use of only nanogram to microgram protein samples in these assays allows screening of 

many conditions typically in a medium-to-high throughput format. Despite these advances, 

it is still imperative for the community to develop MP-specific sparse matrix type high-

throughput screens, such as those recently reported for studies of soluble proteins [79]. 

Complications involving a membrane matrix in MP assays limit the application of many 

fluorescent dye-based stability assays because of the high fluorescence background that is 

amplified in a hydrophobic environment. The advantage of using a CPM dye that becomes 

highly fluorescent upon conjugation with free cysteines partly addresses this issue. On the 

other hand, the application of CPM assays may require careful engineering of free cysteines 

embedded in the protein core, which could be especially challenging for multidomain 

proteins and complexes. Binding of CPM to cysteines in MP ectodomains may also 

complicate the interpretation. Lastly, non-specific CPM reactivity limits its application for 

broad screening of chemical libraries, as well as some buffer and high pH conditions. In this 

regard, miniaturized label-free differential scanning fluorimetry that measures the changes of 

intrinsic protein fluorescence represents a promising and relatively new development for 

thermal stability assays of MPs [80].

Conclusions and Future Perspectives

Preparing high-quality samples amenable to high-resolution structural studies continues to 

be a major challenge in MP structural biology. The fundamental issue is stabilization of MPs 

while faithfully maintaining their native activity through solubilization, purification and 

structural studies. Over the last two decades, many innovative reagents have been developed 

that solubilize and stabilize MPs in a more membrane-like environment. However, despite 

the exciting progress, the selection of the most efficient combinations of such chemical tools 

for a new MP target remains largely a process of trial-and-error.

Direct solubilization of MPs into a nearly native environment, as embodied in the concept of 

amphipols such as SMAs, can make the handling of MPs more convenient and economical, 
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which would significantly impact a broad range of MP research beyond structural 

applications. In addition, access to large libraries of chemical or biological ligands, with 

high affinities and high propensity for thermostabilization would have an enormous impact 

on structural studies of MPs. New developments in synthetic chemistry could be applied to 

the discovery of such ligands. For example, the rapidly evolving DNA-encoded library 

(DEL) synthesis has enabled the generation of an unprecedented number of compounds (> 

108), which can be screened efficiently [81]. In a recent example, the DEL strategy was used 

to identify the first allosteric antagonist of the β2-adrenergic receptor, which was 

subsequently co-crystallized with the receptor [82,83]. Covalent in situ attachment of a 

ligand, such as by biorthogonal SuFEx chemistry [84,85], may be attempted to stabilize the 

numerous MP targets that currently lack high-affinity binders. Looking forward, we envision 

exciting opportunities for synthetic chemists to play an important role in advancing MP 

structural biology and pharmacology.
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Figure 1. 
Chemical tools for MP stabilization outside of their native membrane environment.
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Table 1.

Advantages and limitations of different chemical tools for MP structural studies.

Advantages Limitations

Detergents - Highly versatile - Often too harsh
- Less than ideal membrane mimic
- High background in cryoEM
- Poor crystal quality for MPs with small soluble domains

Polymers - Gentler alternative to detergents - Most do not directly extract MPs

MSPs - Used for encompassing nanodiscs
- Most native-like membrane mimic
- Great for cryoEM

- Do not directly extract MPs
- Not suitable for crystallography

Lipid
Mesophases

- Membrane-like environment
- Support crystallization

- Not suitable for cryoEM
- Limited range of host lipids

Ligands - Provide synergistic stabilization
- Can be covalently attached

- Not available for many MPs
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