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Abstract

Purpose—Genetically engineered mouse models of sporadic cancers are critical for studying 

tumor biology and for preclinical testing of therapeutics. We present an MRI-based pipeline 

designed to produce high resolution, quantitative information about tumor progression and 

response to novel therapies in mouse models of medulloblastoma (MB).

Methods—Sporadic MB was modeled in mice by inducing expression of an activated form of the 

Smoothened gene (aSmo) in a small number of cerebellar granule cell precursors. aSmo mice were 

imaged and analyzed at defined time-points using a 3D manganese-enhanced MRI (MEMRI)-

based pipeline optimized for high-throughput.

Results—A semi-automated segmentation protocol was established that estimates tumor volume 

in a time-frame compatible with a high-throughput pipeline. Both an empirical, volume-based 

classifier and a Linear Discriminant Analysis (LDA)-based classifier were tested to distinguish 

progressing from non-progressing lesions at early stages of tumorigenesis. Tumor centroids 

measured at early stages revealed that there is a very specific location of the probable origin of the 

aSmo MB tumors. The efficacy of the MEMRI pipeline was demonstrated with a small scale 

experimental drug trial designed to reduce the number of tumor associated macrophages and 

microglia (TAMs).

Conclusion—Our results revealed a high level of heterogeneity between tumors within and 

between aSmo MB models, indicating that meaningful studies of sporadic tumor progression and 

response to therapy could not be conducted without an imaging-based pipeline approach.
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INTRODUCTION

Brain and other nervous system tumors are among the most prevalent and deadly cancer 

types in children1. Of these cancers, the cerebellar tumor Medulloblastoma (MB), is the 

most common malignant pediatric brain tumor1. Although survival rates in MB patients 

range between 60–80% following surgery, chemotherapy, and radiation therapy (for children 

over three years of age)2, the long-term prognosis for many MB patients includes moderate 

to severe cognitive and neurological deficits, often attributable to the therapies used to 

prolong survival3–7. Thus, there is a need for preclinical small animal studies to test drugs 

targeted to vulnerabilities in pediatric brain tumors.

Over the last decade, genetic profiling studies have classified four distinct molecular 

subgroups of MB (Wingless, WNT; Sonic Hedgehog, SHH; Group 3; and Group 4) based on 

their signaling pathways, activating mutations and cell types of origin8,9. As a result, novel 

targeted therapeutics are currently being designed and tested to exploit these pathways to 

mitigate off-target effects in MB survivors. Concurrently, in order to study MB and potential 

therapeutics, mouse models have been developed relevant to each of the four MB 

subtypes10–14. In efforts to genetically engineer mice that model sporadic MB, inducible 

genetic systems based on CreER technology are being used to initiate MB formation in 

small numbers of cells of origin at a desired developmental time-point15–17.

A key advantage of the genetically engineered mouse models of sporadic human MB 

compared to other models, where all the cells of origin are mutated or xenograft models in 

immunocompromised host mice, is the preservation of the clonal nature of tumor growth and 

the tumor microenvironment (i.e. stroma, host immune system including tumor associated 

macrophages/microglia (TAMs), and physical barriers to growth)18–21. Clonality in the cells 

of origin and preservation of the tumor microenvironment both drive tumor formation and 

progression in a stochastic manner, leading to heterogeneous disease presentation among 

tumors at a range of times after triggering the driver mutation16. While clonal models with 

heterogeneity in progression rate and high rates of regression can recapitulate human MB 

more accurately than xenograft models or use of constitutive Cre, they also introduce 

challenges for controlled studies of tumor development and the effects of anticancer 

therapeutics because of the heterogeneity 22,23.

Assessing heterogeneity in MB progression in sporadic mouse models is difficult, if not 

impossible without noninvasive imaging. Longitudinal changes in brain tumor size and 

morphology cannot be analyzed without in vivo imaging, and obvious clinical symptoms are 

not observed until animals have advanced MB. Fluorescence and bioluminescence imaging 

approaches have been used to gauge disease state for superficial or subcutaneous 

tumors24–27, but are subject to poor signal-to-noise ratio (SNR) for brain tumors and are 

unable to provide quantitative tumor volume data. X-ray and computed tomography (CT) 
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images are useful for high-throughput screening, but exposure to ionizing radiation limits 

their application in longitudinal studies of cancer28,29. In contrast, magnetic resonance 

imaging (MRI) operates at non-ionizing radio-frequencies, provides unparalleled soft-tissue 

contrast for whole brain imaging, and produces images with sufficiently high spatial 

resolution to resolve small tissue features, including early-stage tumors. In addition, MRI 

has been used to study heterogeneity in clinical presentation across different subtypes of 

MB30,31. Although gadolinium-enhanced MRI is a prevalent method for detection of central 

nervous system tumors in the clinic, usually producing positive lesion contrast32, it does not 

effectively delineate MB tumor margins in genetically-engineered mouse models16,33. In 

contrast, T1-weighted manganese-enhanced MRI (MEMRI) has been shown to produce 

unparalleled contrast-to-noise ratio (CNR) images of the cerebellum34,35 and enables early 

detection and monitoring of MB from pre-neoplastic lesions to advanced tumors16 in mice. 

Short MEMRI acquisition times enable high-throughput screening and reduces anesthetic 

exposure time – a significant cause of attrition of animals with advanced tumors. We have 

previously demonstrated the utility of MEMRI for detailed analyses of longitudinal MB 

progression and normal cerebellar development in mice from early postnatal to adult 

stages16,34,35.

The goal of the current study was to design a practical, time-efficient MEMRI-based 

pipeline for studies of tumor progression in mouse models of sporadic MB (Fig. 1), 

including application of the pipeline to preclinical drug trials. To this end, we implemented 

and validated both short acquisition-time MEMRI sequences and semi-automated tumor 

segmentation methods. These methods were used to obtain longitudinal tumor volume data 

in two mouse MB models with the same underlying activating mutation in the Smoothened 
gene (aSmo) in different numbers of cells soon after birth. Longitudinal tumor volume data 

were analyzed to provide quantitative insights into the likely location where aSmo MBs 

originate, a fundamental question in MB tumor biology. To address the heterogeneity of 

sporadic MB models, we developed and tested both an empirical, volume-based classifier 

and a Linear Discriminant Analysis (LDA) based classifier to distinguish progressing from 

non-progressing lesions at early stages of tumorigenesis, and applied the resulting pipeline 

to study the effects of an experimental therapeutic agent on mouse MB progression.

METHODS

Animals

All mice used in this study were maintained under protocols approved by the Institutional 

Animal Care and Use Committee at New York University School of Medicine. aSmo mice, 

which express an activated (oncogenic) form of the Smoothened gene (SmoM2) in rare 

cerebellar granule cell precursors after postnatal day 2 (P2), were generated by breeding 

Atoh1-CreER transgenic mice36 with homozygous R26loxPSTOPloxP-SmoM2 (R26LSL-SmoM2) 
mice37. Expression of the SmoM2 oncogene was induced by subcutaneous injection of low 

doses (1µg/g or 5µg/g) of Tamoxifen (TMX) at P2 to produce two models of sporadic MB: 

aSmo-1 or aSmo-5, respectively. The genotype of each mouse was confirmed by PCR of 

DNA from a tail or ear biopsy using primers for SmoM2 and Cre17.
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Longitudinal MEMRI Data Acquisition

30 mM solution of manganese chloride (MnCl2) tetrahydrate (Sigma-Aldrich-221279) in 

isotonic saline was injected intraperitoneally (IP) 24 hours before each imaging session at a 

dose per weight of 0.5 mmol/kg (62.5 mg MnCl2 per kg body weight). This MnCl2 dose was 

similar to the dose documented in our previous work using MEMRI for brain and MB 

imaging16. At this dose, no chronic adverse effects were observed as a consequence of 

MnCl2 administration in this study.

aSmo mice were imaged between postnatal week (W)3 and W13, where each time point was 

the specified week ± 3 days. MRI was performed in a 7-Tesla, 200-mm diameter horizontal 

bore magnet (Magnex Scientific) interfaced to a Bruker Biospec Avance II console (Bruker 

BioSpin MRI) with actively shielded gradients (750 mT/m; BGA9S; Bruker) and using a 25-

mm quadrature Litzcage coil (Doty Scientific). Animals were anesthetized using isofluorane 

at 1.5 L/minute compressed air flow rate −3% isoflurane for induction and 1–2% isoflurane 

for maintenance during each imaging session, delivered through a nose cone. Core body 

temperature and respiration rate were monitored using a MRI-compatible rectal 

thermocouple and respiratory pillow (SAII; SA Instruments). Molded plastic sleds 

customized to secure mice of varying size were used to minimize motion (Dazai Research 

Instruments). T1-weighted MEMRI sessions were conducted using the following protocol: 1 

min low-resolution pilot, 21min 150µm isotropic resolution spoiled 3D gradient echo (GE) 

sequence (echo time/repetition time, TE/TR = 4/30 ms; flip angle, FA = 20°; field-of-view, 

FOV = 19.2 mm × 19.2 mm × 12 mm; Matrix = 128 × 128 × 64). Resultant images from 

online reconstruction followed by offline, image-space, bicubic interpolation to a final 

matrix size of 384 × 384 × 192 (50 µm isotropic resolution) were used for further analysis.

3D Segmentation of MB Tumors from MEMRI Images

3D MEMRI data were analyzed in Amira (v. 5.5.0, Visualization Sciences Group) after each 

imaging time point using a tablet and stylus (Wacom). Manual tumor segmentations required 

the paintbrush tool, using a 20-voxel spot size for first-pass tumor region-of-interest (ROI) 

drawing and 3-voxel brush size for cleanup. Initial segmentations were done in axial 

orientation from superior to inferior 2D sections. Semi-automated segmentations required 

use of the image histogram partitioning tool with slight modifications (Fig. 2). Freehand 

boundary ROIs were drawn around approximate tumor regions in each 2D axial section to 

generate a partitioned histogram. Seed voxels were selected within the apparent abnormal 

hypointensity within the drawn boundary, and the histogram range was truncated 

symmetrically about the seed voxel intensity value to produce 3D tumor segmentations using 

the Surface Rendering toolbox. Artifact or blood vessel-borne gaps in the segmentation were 

corrected by flood filling the ROI. Minor corrections (involving less than 1% of the 

segmented voxels) to both manual and semi-automated segmentations were done in sagittal 

orientation, including smoothing to remove jagged edges and section-to-section 

incongruities, and voxel counts from the 3D tumor ROIs were obtained using the Material 

Statistics function. In mice with bilateral tumors that grew together at the midline of the 

vermis, and were therefore indistinguishable, the midline was assigned to be a boundary 

between the two tumor ROIs. For visualization, these tumor ROIs were interpolated by a 3 × 

3 × 3-voxel kernel smoothing pass. Whole brain segmentations were obtained by applying 
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the 4-connected neighbor Magic Wand tool to known voxels within the skull to select all 

‘skull’ voxels. Inverting this selection produces initial brain segmentation, which were 

corrected by whole-volume 2-voxel erosion and a 3 × 3 × 3-voxel kernel smoothing pass.

Tumor Origin Site Analysis

An average template was created from all images in the study using iterative linear and 

nonlinear image registration as previously described38,39 using Pydpiper40, MINC tools41, 

and ANTs42 for nonlinear registration. The centroid of each tumor was calculated and 

rendered using ITK-SNAP’s43 ‘Convert3D’ tool, which contains a list of functions for 3D 

image manipulation and format conversion. Specifically, the ‘-centroid’ and ‘-centroid-

mark’ functions were used to calculate and render the tumor centroids. The corresponding 

centroid points in the average template were then computed using the subject-to-model 

transformations. It should be noted that registration between subjects lacking homology, 

such as tumor-bearing mouse brains, is ill-defined, so the resulting centroids are only 

approximate. The voxel-wise incidence of tumor was integrated over all images and 

normalized by the number of images to produce a tumor probability heatmap. The 

transformed centroids and heatmap were nonlinearly aligned to the template using ANTs, 

then overlaid on a control mouse image using Amira.

Classifier Analysis: Progressing vs Non-Progressing

Empirical classification of longitudinal tumor volume data employed an absolute volume 

threshold of 7-mm3 at W7. Tumors that exhibited positive volume change between W5 and 

W7, and met the volume threshold criterion were considered ‘Progressing’; all other tumors 

were considered ‘Non-progressing’. Classification criteria were validated on cohorts of 

aSmo-1 and aSmo-5 tumors by monitoring progression biweekly from W5 to W9–W13, 

retrospectively applying the volume threshold to these data, and comparing the predicted 

class (‘Progressing’ or ‘Non-progressing’) to the observed outcome.

In an attempt to improve the accuracy in early detection of ‘Progressing’ tumors, an LDA 

classifier was trained in R using these progression data44. W5 – W13 longitudinal 3D 

MEMRI data were preprocessed to obtain the following features:

1. ‘W5 Tumor Volume’ - defined as volume measured on W5 VW5 ;

2. ‘W7 Tumor Volume’ - defined as volume measured on W7 VW7 ;

3. ‘Volume Change’ - defined as the volume change between W5 and W7

VW7 − VW5 ;

4.
‘Normalized Growth Rate’ - defined as 

VW7 − VW5
VW5 * Time , where Time is the (exact) 

elapsed time in weeks between the W5 and W7 time points (approximately two 

weeks).

The progression data were retrospectively classified with LDA, and predicted classes were 

compared to observed outcome.
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Administration of PLX5622

Mice with progressing tumors, as determined by the empirical classifier, were fed ad libito 
with PLX5622 (Plexxikon) (PLX) or control chow (CTL) beginning as early as W7 and as 

late as W945. PLX was delivered at 1200 mg drug per kg chow. PLX or CTL feeding 

continued until W13 or time of sacrifice.

Statistical Analyses

Statistical analyses were performed in R (R, v3.5.0) and G*Power46,47. Linear mixed-effects 

models48 were used to assess the effects of tumor model (aSmo-1 or aSmo-5) and/or 

treatment arm (CTL or PLX in the drug trial data) on tumor volume while allowing for small 

variation between subjects – each subject having up to two tumors. The general form of the 

linear mixed effects-models used in our analysis can be written as follows:

yi = β0 + β1x1i + ⋯ + βnxni + Si + ε

More specifically: individual tumors were denoted by (i); the interaction between tumor 

model and treatment arm x1i  as well as pre-treatment tumor volume x2i  were fixed-effects 

regressors with corresponding fixed-effects coefficients β1 and β2 ; we allowed for a fixed-

effect offset β0 ; accounted for subtle, subject-specific variation as a random-effect Si ; and 

assumed normally distributed error ε . Given these parameters, two models were built in 

order to:

1. check for potential pre-treatment tumor volume yi  bias in tumor model and 

treatment arm x1i  assignment;

2. directly assess the effects of the interaction between tumor model and treatment 

arm x1i , as well as pre-treatment tumor volume x2i  on post-treatment absolute 

tumor volume yi .

Raw data, and implementation of these models in R, are provided in the Supporting 

Information Data S1. The same analyses were applied to the reclassified data after LDA. T-

tests of the fixed-effect coefficients after Kenward-Roger approximation49 were applied for 

pairwise comparison. Bland-Altman50 analysis was used to assess inter-reader agreement 

using semi-automated segmentation and comparative overestimation of tumor volume 

between semi-automated and manual segmentation.

Results

Development of a high-throughput tumor imaging pipeline

A pipeline approach was developed for studies of tumor development in mouse models of 

sporadic MB. The pipeline included four sequential stages, described below (Fig. 1): Model 

Generation; Imaging; Segmentation; and Analysis.
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Model Generation—aSmo-1 (n=27) and aSmo-5 (n=21) mice were generated for 

longitudinal MEMRI and development of the pipeline. Disease progression, including 

symptoms at advanced stages of MB progression (ataxia, hunched posture and domed head), 

were similar to our previous studies of aSmo-1 mice17.

Imaging—As previously reported, MEMRI provides an effective method for detecting and 

monitoring cerebellar MBs, which appear hypointense (Fig. 3)16,17. Furthermore, these 

hypointense regions were shown previously to correlate well with pre-neoplastic lesions and 

MB tumors on matched histological sections15,17. At W3, most aSmo-1 animals imaged had 

widespread, manually-segmentable, pre-neoplastic lesions throughout the cerebellum, 

characteristic of persistent external granule cell layer thickening (n=22/27; Fig. 3). By W5, 

most of these pre-neoplastic lesions had regressed below detectable volume and focal early 

stage tumors were observed (n=20/22 mice), similar to our previous report17. We therefore 

chose W5 as the starting point for longitudinal MEMRI studies of the aSmo-1 and aSmo-5 
mouse MB models.

aSmo-1 (n=14) and aSmo-5 (n=21) mice were followed with biweekly MEMRI sessions 

starting at W5 to assess tumor progression in the two MB models. In 12/14 of the aSmo-1 
mice, MB tumors grew focally in the left cerebellar hemisphere (n=1), focally in the right 

hemisphere (n=3), and bilaterally (n=8) for a total of 20 aSmo-1 tumors. In contrast, MB 

tumors grew bilaterally in all 21 of the aSmo-5 mice for a total of 42 tumors. In both models, 

tumors were observed qualitatively to progress, to regress, and to both progress and regress 

at different time points, including some tumors that regressed below detectable levels. In 

mice that had progressing MB tumors, characteristic late-stage MB symptoms were often 

observable between W11 and W13, including displacement of normal cerebellar structures, 

expansion of the ventricles and skull deformation.

Segmentation - Semi-automated Approach—In order to quantify the tumor 

progression properties in the aSmo MB models, tumor volumes were segmented from 

MEMRI images. Fully manual segmentation, used in our previous studies of mouse 

MB16,17, require 4–5 hours per animal, which is not compatible with the needs of a high-

throughput imaging pipeline. Therefore, a semi-automated approach was developed to 

significantly reduce the segmentation time to 10 ± 5 minutes per mouse (Figs. 2,3).

Visually, 3D renderings of the semi-automated segmentations (Fig. 3, yellow) tended to 

overestimate tumor volume compared to manual segmentation (Fig. 3, purple). Inter-reader 

agreement was generally strong and semi-automated segmentation quality was relatively 

reader skill independent (Fig. 4; n = 8 readers, n = 10 images; Bland-Altman coefficient of 

variation = 1.53, reproducibility coefficient = 9.49 mm3). Linear regression analysis of the 

inter-reader results showed a slightly higher slope compared to the unity line (1.13 vs 1.00), 

due to an overestimation of tumor volume by the semi-automated method. The cause of 

inter-reader discrepancy in small tumor volume estimation was inclusion by some readers of 

normal, hypointense white matter in the tumor segmentation. For segmentations of large 

tumors, untrained readers (<10 hours experience) applied the same histogram threshold for 

all axial sections, while skilled readers (black open circles) adjusted histogram threshold 

bounds to account for other sources of hypointensity at late tumor stage such as 
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hydrocephalus, black blood artifact, and necrosis. Similarly, regions of apparent 

hyperintensity – generally produced by normal cerebellar lobules being compressed by large 

tumors – were included in the tumor segmentation by untrained readers while trained readers 

excluded these regions. The rapid time-to-result afforded by semi-automated segmentation 

enabled more efficient longitudinal quantitative analysis of aSmo tumors and justified use of 

semi-automated segmentation by readers with at least 10–20 hours of training to assess 

tumor volume.

Using semi-automated segmentation, quantitative tumor volume data were extracted from 

the longitudinal MEMRI data acquired from aSmo-1 and aSmo-5 MBs (Figs. 5, 6).

Segmentation – Tumor Origin Sites—A fundamental question related to tumor 

biology, in MB and other cancers, is whether there are common locations for the origin of 

different tumor sub-types. Our previous studies revealed that all aSmo-1 MBs arise in the 

lateral cerebellum (hemispheres)17. To investigate this further, and to provide quantitative 

data related to aSmo-1 and aSmo-5 MB origin sites, tumor centroid and heatmap analyses 

were performed at W5, the earliest time point that overt tumors were reliably detected by 

MEMRI (Fig. 7). These analyses revealed that in both aSmo models the majority of tumor 

centroids (n=60/62), and the most probable tumor voxels in the heatmaps were localized 

specifically in the copula pyramidis underlying the lateral hemispheres.

Analysis – Empirical Classification of Tumor Progression—In order to utilize the 

imaging pipeline to assess tumor progression in the two MB models, an Analysis stage was 

required to classify individual tumors in terms of their early growth characteristics and to 

predict whether a given tumor was progressing or non-progressing. Given the heterogeneity 

in tumor growth characteristics in the aSmo MBs, it is important for studies testing 

experimental therapeutics to distinguish the ‘Progressing’ cohort early on and to eliminate or 

minimize the number of tumors from the ‘Non-progressing’ cohort. From our longitudinal 

MEMRI data, we determined empirically that MBs that grew in volume from W5 to W7, 

and which had tumor volume ≥ 7 mm3 at W7, were most likely to be ‘Progressing’. In 

aSmo-1 MBs, this method correctly identified ‘Progressing’ tumors in 72.7% (n=8/11) of 

cases and ‘Non-progressing’ tumors in 77.8% of cases (n=7/9). In aSmo-5 MBs, this method 

correctly identified ‘Progressing’ tumors in 72.0% of cases (n=18/25) and ‘Non-progressing’ 

tumors in 70.6% of cases (n=12/17) (Fig. 8).

Analysis – Linear Discriminant Analysis (LDA)—A linear discriminant classifier was 

trained in R over the aSmo progression data (Fig. 9). In the aSmo-1 model, ‘Progressing’ 

tumors were correctly identified with the same accuracy as the empirical classifier (n=8/11, 

72.7%), and ‘Non-progressing’ tumors with slightly lower accuracy (n=6/9, 66.7%). In the 

aSmo-5 model, ‘Progressing’ tumors were identified with slightly higher accuracy than 

empirical classifier (n=19/25, 76.0%), and ‘Non-progressing’ tumors were identified with 

slightly lower accuracy (n=11/17, 64.7%). Overall, there were minimal changes in 

classification between the empirical classifier and LDA. Therefore, the empirical 

classification method was implemented as the ‘Analysis’ stage in the application of this 

pipeline.
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Application – Preclinical trial of PLX5622—A previous report found that CSF-1R 

inhibitors showed promise for treating glioma tumors in adult mice, suggesting that such 

TAM-targeted drugs can be effectively delivered through the blood-brain barrier and raising 

the possibility they could be effective in slowing the growth of other brain tumors51. We 

applied our MEMRI-based pipeline approach to test the efficacy of an experimental CSF-1R 

inhibitor, PLX5622, on aSmo MBs.

Model generation—Cohorts of 40 aSmo-1 and 25 aSmo-5 mice were generated for this 

study. Early time point imaging of these animals revealed 51 aSmo-1 tumors and 39 aSmo-5 
tumors, for a total of 90 tumors. These tumors were monitored with MEMRI at W5 and W7 

for outcome prediction.

Imaging, segmentation, and analysis of PLX5622 trial data—After pre-treatment 

imaging at W5 and W7, semi-automated tumor segmentation, and prediction using the 

empirical classification method, 26 aSmo-1 and 26 aSmo-5 tumors met the threshold criteria 

for ‘Progressing’ and were entered into the drug study. Mice with at least one tumor 

classified ‘Progressing’ were assigned to receive either control chow (CTL) or chow 

containing PLX5622 (PLX). Assignment of animals into PLX and CTL arms of the study 

was not biased in terms of pre-treatment tumor volume (Supporting Information Fig. S1). 

Animals entered into the study were monitored with MEMRI from treatment start to W13, 

or until time of sacrifice (Fig. 10A). Response to treatment was variable, and tumor model-

dependent. It was also evident that some individual tumors did not stop progressing during 

PLX therapy, although it is impossible to know whether their growth was affected by the 

drug (Supporting Information Fig. S2). Interestingly, longitudinal data from the aSmo-5 
MBs demonstrated a significant reduction in tumor volume during the time period between 

W11 and W13, comparing PLX tumors to CTL tumors, but that difference was no longer 

significant by W13 (Fig. 10A).

Longitudinal tumor centroid analysis showed that tumors were generally clustered in the 

same regions of the posterior cerebellar hemispheres at early pre-treatment time points (Fig. 

10B), as observed in the previous measurements of aSmo-1 and aSmo-5 tumors. The two 

exceptions were from a single animal carrying tumors centered in more anterior lobules of 

the cerebellar hemispheres, however both tumors regressed below detectable levels by W7. 

The centroids spread medially from W9 through W11, as the MB tumors grew from 

hemispheres into the vermis. Many animals had been removed from the study by W13, and 

the remaining tumors were again centered in the hemispheres.

As expected, pre-treatment tumor volume had a statistically significant, positive effect on 

post-treatment tumor volume (effect size = 1.378, p = 0.003). The effect of CTL chow on 

final tumor volume was generally positive, but not statistically significant in either the 

aSmo-1 (effect size = 3.41, p = 0.765) or the aSmo-5 MBs (effect size = 9.27, p = 0.428). 

Interestingly, the effect of PLX chow was strongly negative in the aSmo-5 (effect size = 

−10.82, p = 0.384), but not in the aSmo-1 MBs (effect size = 1.17, p = 0.920). The overall 

effect of treatment was relatively small (Cohen’s d = 0.29). However, the apparent model-

specific efficacy suggests an effect of PLX on the aSmo-5 MBs (Cohen’s d = 0.52), but not 

the aSmo-1 MBs (Cohen’s d= 0.04).
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The pre-treatment time point data were also re-analyzed, retrospectively, using the trained 

LDA classifier to verify our preclinical trial entry criteria. The results of LDA re-analysis 

showed minimal differences in progression classification compared to the empirical 

classifier (Supporting Information Fig. S3).

DISCUSSION

Heterogeneous tumor progression is unavoidable in sporadic tumor models that mimic many 

important features of the human disease. We have developed a MEMRI-based pipeline and 

tested its utility to objectively characterize heterogeneous tumor progression in genetically-

engineered mouse models of sporadic human MB. Our goal was to optimize each stage of 

the pipeline, including: i) production of mice with sporadic MB; ii) acquisition of time-

efficient longitudinal 3D brain images through critical stages of disease progression; iii) 

time-efficient, semi-automated segmentation of tumor volumes from MEMRI images; and 

iv) unbiased classification of MB tumors based on their early stage progression features. We 

further applied this pipeline to test the effects of an experimental therapy on MB 

progression.

The aSmo MB model system was tunable (via TMX dose) in terms of the number of granule 

cell progenitors inheriting the activating SmoM2 mutation. This potentiated study of tumor 

biology and drug efficacy in two models of MB with the same initiating mutation: aSmo-1 
and aSmo-5. Tumor centroid analysis reinforced that the aSmo-1 and aSmo-5 models share a 

common point of origin – the posterior cerebellar hemispheres. This feature could serve as 

specific metric for aberrant aSmo tumor formation in future tumor progression classification 

efforts. Although there were challenges in characterizing heterogeneity in tumor progression 

within each model, as well as between the two models, the MEMRI-pipeline was sensitive to 

differences in tumor presentation, both at the same time point, as well as analyzing trends 

over time. Indeed, the inherent heterogeneity observed in sporadic mouse models of MB 

makes it difficult or impossible to conduct studies of tumor progression and/or preclinical 

drug studies without an imaging-based pipeline approach. Moreover, it should be possible to 

apply our MEMRI-pipeline to other models of human MB.

A valid question is how generally applicable MEMRI will be for imaging other tumor types, 

both neural and non-neural. In the brain, T1-weighted Mn-enhancement is most obvious in 

the cerebellum, hippocampus and olfactory bulb, but there is also global enhancement of the 

brain and other organs, including heart, kidney and liver,52 after systemic administration of 

Mn. In MBs, the tumor cells take up significantly less Mn than the surrounding (enhanced) 

cerebellum cells, resulting in the negative contrast utilized in the current study. If future 

studies demonstrate that brain and other tumor cells are generally resistant to Mn uptake, 

then it is possible that MEMRI can be applied for imaging many types of tumors. 

Interestingly, we previously showed that by engineering glioma cells to overexpress the 

Divalent Metal Transporter, DMT1, we were able to convert negative to positive contrast 

using the same MEMRI protocol53. This implies that Mn uptake and storage is likely to be 

highly dependent on the set of proteins expressed by each tumor type, which is clearly 

beyond the scope of the current study.
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Manual segmentation, although generally regarded to be accurate, is prohibitively time 

inefficient for pipelines and requires readers to be well trained. Efforts to employ atlas-

based, fully-automated tumor segmentation techniques have shown promise54,55. However, 

deformation of normal tissue surrounding advanced tumors leads to significant error that 

requires reader correction. Our semi-automated segmentation protocol substantially reduced 

time-to-result and was generally agnostic to reader skill, but overestimated tumor volume 

compared to manual segmentation. Although the time-efficiency justified use of this method, 

ongoing efforts to develop a fully-automated segmentation technique – by means of trained 

convolutional neural networks56 or random forest classification57 – may have the potential to 

eliminate inter-reader error and further reduce time-to-result in the future.

Our empirical classification framework employed a simple volume threshold at a critical 

time point to predict whether a tumor would progress. We found that natural regression is a 

common feature in our mouse MB models, however the high propensity for tumors to 

naturally regress after early progression was surprising. Using the imaging pipeline, we 

discovered that a simple volume threshold was sometimes insufficient to parse the 

heterogeneity in progression present in this model of sporadic human cancer. The problem 

with objective characterization of longitudinal quantitative information is that large sample 

size is required to identify relevant, reproducible trends in the data58. Features used for 

classification must be carefully chosen as each additional degree of freedom geometrically 

increases requisite sample size to achieve sufficient statistical power. In addition, inclusion 

of unimportant features unnecessarily increases training time without providing meaningful 

axes for result interpretation59. Use of LDA with this relatively high-dimensional, low 

sample size dataset is prone to data piling, which usually results in failure to properly 

classify data60. However, classification methods that are more data-driven than our empirical 

classification method, including methods like LDA, will likely parse tumor progression 

heterogeneity more effectively after more data is acquired in future applications of this 

pipeline.

Statistical methods commonly employed in analysis of preclinical drug trial data61,62 are 

useful for understanding general trends in results. However quantitative comparisons 

between treatment arms are not feasible without more specific tests, nor can p-values alone 

be used to gauge effect size through direct comparison63. In addition, outcome measures are 

entangled with biological and experimental features or confounds e.g. sex, age, etc. It is not 

possible to correct for these effects using Student’s t-test or ANOVA. Because of this, 

incorrect result interpretation is common. For example, Kruskal-Wallis test (ANOVA using 

the ranks of the data) applied to the current PLX5622 trial data would suggest that 

statistically significant differences exist, comparing normalized tumor volume between the 

CTL and PLX groups in the aSmo-5 cohort (p = 0.043). However, this significance does not 

persist after Dunn’s Multiple Comparison correction (p = 0.072) nor does it account for 

multiple tumors from the same subject. Modeling outcome measures as a function of 

individual features, as performed in the current study, is a more appropriate method for 

hypothesis testing since pairwise comparisons can be made directly from individual fixed-

effect coefficients.
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The pipeline we developed is time-efficient, reproducible, and generates high-density 

quantitative information that has the potential to guide preclinical drug studies in other 

mouse models of sporadic human cancer in the future. It should be noted that we present a 

general framework for longitudinal brain tumor imaging and response-to-therapy 

monitoring, rather than a one-time implementation of a specific protocol. Each stage of the 

“modular” pipeline has potential to be further refined. There are several considerations that 

should be made for future studies. Thorough study of the span in heterogeneity of novel 

tumor models is essential before using this procedure de novo. Imaging modalities and 

parameters should be chosen carefully to effectively delineate tumor margins, if tumor 

volume is the only critical metric. As distributed computing and machine learning 

approaches continue to improve in efficiency, discriminator-driven segmentation and 

classification will likely become the norm for high-throughput analysis. With the emergence 

of such new imaging technologies, genetic engineering tools, and data analysis techniques, 

we propose that this pipeline provides a flexible scaffold for future longitudinal tumor 

progression characterization efforts.
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Figure 1. Schematic overview of the imaging pipeline.
Animal models are bred in-house and recombination events are triggered at predetermined 

developmental time points to initiate tumor formation. Animals are imaged longitudinally 

after tumorigenesis to noninvasively probe disease state. Tumor margins found in imaging 

data are segmented to produce tumor volume measurements, determine tumor origin, and 

monitor progression quantitatively. Quantitative data, in addition to relevant categorical 

features, are used to classify tumor progression retrospectively. In addition, prediction of 

disease outcome at early tumor stage is possible after sufficient baseline classification 

efforts. Classification and prediction methods are validated and iteratively improved upon by 

feedback image acquisition and segmentation.
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Figure 2. Semi-automated segmentation workflow.
For each 2D section in the 3D raw image, readers draw freehand ROIs (green contour) 

around the apparently hypointense tumor and select a seed voxel (yellow “x”) within this 

ROI to produce an initial segmentation (purple). Then, the ROI histogram is truncated 

symmetrically about the seed voxel value. The “holes” left due to extreme hypo- or 

hyperintensity excluded after histogram truncation are flood filled and the resulting 

segmentation is stored for analysis.
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Figure 3. Semi-automated segmentation enables high throughput quantitative analysis, but 
overestimates tumor volume.
2D axial, T1-weighted MEMRI (top row) reveals preneoplastic lesion formation at W3 

throughout the cerebellum. The majority of these lesions naturally regress. However, some 

lesions may accumulate secondary mutations which give rise to focal tumors apparent at 

W5. In this animal, the MB tumor continues to grow through W13 and displaces the 

remaining normal cerebellum. 3D manual segmentation (purple) of the hypointense lesions 

found in MEMRI (bottom row) shows the widespread preneoplastic lesion presentation at 

W3, followed by tumor growth, including anterior encroachment of this right-hemisphere 

tumor into the forebrain over time. Semi-automated segmentation (yellow) of these lesions 

illustrates the regions of overestimation in lesion volume. Scale bar – 2 mm.
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Figure 4. Semi-automated segmentation generally overestimates tumor volume compared to 
manual segmentation, but is relatively reader skill independent.
Linear regression analysis shows relatively strong agreement between manual and semi-

automated segmentations for small (<25 mm3) tumor volumes, and increasing 

overestimation for larger tumor volumes in a study of 10 aSmo-1 MEMRI datasets read by 8 

readers. Dashed line – unity or 1:1 agreement line; Solid red line – modeled linear 

regression (y=1.133x-0.125, r2 = 0.960). Semi-automated segmentation by two skilled 

readers (R1, R4 - highlighted with black open circles) closely agreed with manual 

segmentation over all tumor volumes.
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Figure 5. Study of aSmo tumor heterogeneity in progression is made possible by MEMRI and 
semi-automated segmentation.
Mouse 1 (top row) presents distinct tumors in each cerebellar hemisphere at W5. The tumor 

in the left hemisphere decreased in volume whereas the tumor in the right hemisphere 

increased at W7. By W9, the tumor in the right hemisphere has encroached under the vermis 

and connected with the tumor in the left hemisphere. At W11, the large accumulated tumor 

mass has grown rapidly and infiltrated to the level of the brain stem. In cases with tumors of 

this size and location, hydrocephalus and deformation of the remaining normal cerebellum 

are common. Mouse 2 (bottom row) shows similar tumor presentation at W5 – distinct 

tumors are apparent in each cerebellar hemisphere. However, by W7 both tumors have 

reduced in volume while their morphology remains approximately the same. At W9, the 

tumor in the right hemisphere has reduced in volume while the tumor in the left hemisphere 

remains relatively unchanged. By W11, both tumors have regressed and are localized to the 

flocculae. Scale bar – 2 mm.
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Figure 6. Raw progression data from aSmo-1 and aSmo-5 tumors.
Longitudinal volumetric data from semi-automated segmentation of aSmo-1 and aSmo-5 
tumors quantitatively demonstrates the heterogeneity in progression apparent in these 

models.
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Figure 7. Tumor centroid and heatmap analysis illustrates aSmo tumors originate in the 
posterior cerebellar hemispheres.
At W5, aSmo-1 (A) and aSmo-5 (B) tumors have centroids (green) closely clustered 

together in the lateral cerebellar hemispheres. (C,D) Heatmap analysis showed broad 

distribution of tumors in the posterior cerebellum. The peak voxel-wise tumor probability 

coincides with the localization of the centroids in the copula pyramidis. Scale bar – 2 mm.
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Figure 8. Empirical classification of aSmo-1 and aSmo-5 longitudinal progression data.
Initial classification utilized positive volume change between W5 and W7, and tumor 

volume threshold of 7-mm3 at W7 (dashed line) as discrimination criteria. Tumors meeting 

these criteria were classified ‘Progressing’ (blue, P), and those not meeting these criteria 

were classified ‘Non-progressing’ (red, NP). These predictions were compared to observed 

outcome, and mismatches between prediction and outcome were considered ‘Misclassified’ 

(black, open circles). In the aSmo-1 MBs, the true positive rate was 72.7% and the true 

negative rate was 77.8%. In the aSmo-5 MBs, the true positive rate was 72.0% and the true 

negative rate was 70.6% (see confusion tables, insets).
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Figure 9. LDA training over aSmo-1 and aSmo-5 longitudinal progression data.
A LDA classifier was trained over the longitudinal aSmo tumor progression data. Variables 

included ‘W5 Tumor Volume’, ‘W7 Tumor Volume’, ‘W5–W7 Volume Change’, and 

‘Normalized W5–W7 Growth Rate’, and were used to predict ‘Progressing’ (blue, P) or 

‘Non-progressing’ (red, NP) outcomes (triangles and circles, respectively). The dashed lines 

indicate the volume threshold used in the empirical classifier. In the aSmo-1 cohort, LDA 

had a 72.7% true positive rate and 66.7% true negative rate; in the aSmo-5 cohort, LDA had 

a 76.0% true positive rate and 64.7% true negative rate (see confusion tables, insets).
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Figure 10. Results from the PLX5622 preclinical trial show response to therapy is heterogeneous 
and tumor model-dependent
(A) From the aggregate longitudinal tumor volume data from the aSmo-1 model, it was 

apparent that growth of CTL-treated tumors (blue) did not differ significantly from the 

growth of PLX-treated tumors (red) after treatment start at W7. In contrast, in the aSmo-5 
model, separation of the PLX and CTL-treated tumor volume trends was apparent between 

W11 and W13. The curves for the CTL and PLX arms show the mean volumes, fitted to a 

cubic spline and plotted as a function of postnatal week. For both models, there was 

substantial heterogeneity in tumor growth within treatment arms (95% confidence interval, 

gray). (B) Tumor centroids (green) from W5 aSmo-1 and aSmo-5 tumors were mostly 

localized to the posterior cerebellar hemispheres. The two exceptions were tumors in the 

more anterior hemispheres, found in the same animal, both of which regressed by W7. At 

the pre-treatment time point, tumor centroids (green) remained clustered together. After 

treatment start, tumor centroids from both PLX (red) and CTL (blue) groups spread medially 

into the vermis from W9–W11. At W13, the remaining tumors were again localized in the 

posterior hemispheres. Scale bar – 2 mm.
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