
GENOMIC PREDICTION

Genomic Prediction Including SNP-Specific
Variance Predictors
Elena Flavia Mouresan,*,1 Maria Selle,† and Lars Rönnegård*,‡

*Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Sweden, 75007,
†Department of Mathematical Sciences, Norwegian University of Science and Technology, Norway, 7491, and ‡School of
Technology and Business Studies, Dalarna University, Sweden, 79188

ORCID IDs: 0000-0002-1335-7610 (E.F.M.); 0000-0002-2062-3235 (M.S.); 0000-0002-1057-5401 (L.R.)

ABSTRACT The increasing amount of available biological information on the markers can be used to
inform the models applied for genomic selection to improve predictions. The objective of this study was to
propose a general model for genomic selection using a link function approach within the hierarchical
generalized linear model framework (hglm) that can include external information on the markers. These
models can be fitted using the well-established hglm package in R. We also present an R package
(CodataGS) to fit these models, which is significantly faster than the hglm package. Simulated data were
used to validate the proposed model. We tested categorical, continuous and combination models where
the external information on the markers was related to 1) the location of the QTL on the genome with
varying degree of uncertainty, 2) the relationship of the markers with the QTL calculated as the LD between
them, and 3) a combination of both. The proposed models showed improved accuracies from 3.8% up to
23.2% compared to the SNP-BLUP method in a simulated population derived from a base population with
100 individuals. Moreover, the proposed categorical model was tested on a dairy cattle dataset for
two traits (Milk Yield and Fat Percentage). These results also showed improved accuracy compared to
SNP-BLUP, especially for the Fat% trait. The performance of the proposed models depended on the
genetic architecture of the trait, as traits that deviate from the infinitesimal model benefited more from the
external information. Also, the gain in accuracy depended on the degree of uncertainty of the external
information provided to the model. The usefulness of these type of models is expected to increase with
time as more accurate information on the markers becomes available.
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The identification of a large number of Single Nucleotide Polymor-
phisms (SNPs) along the genome, as a by-product of the sequencing
efforts (e.g., Daetwyler et al. 2014) and the development of SNP-chip
genotyping technology (Gunderson et al. 2005) have made genotyping
of thousands of markers affordable at low cost. Meuwissen et al.
(2001) foresaw these breakthroughs in technology and proposed a

new method of selection in animal breeding denoted as Genomic Se-
lection (GS). This method has been tested through simulation studies
(Meuwissen et al. 2001; Muir 2007) and cross validation with real data
in different species such as mice (Legarra et al. 2008), dairy cattle
(Luan et al. 2009; VanRaden et al. 2009), aquaculture (Sonesson and
Meuwissen 2009) and poultry (González-Recio et al. 2009). Nowadays,
GS has become part of the routine breeding schemes in dairy cattle
(Hayes et al. 2009) and other species including pigs (Ostersen et al.
2011; Hidalgo et al. 2015; Tusell et al. 2016) and poultry (Wolc et al.
2015).

Several statisticalmodels havebeenproposed for genomicprediction
using whole-genomemarkers. The most popular method provides best
linear unbiased predictions (BLUP) of marker effects (Meuwissen et al.
2001) by assuming that the marker effects come from a Gaussian
distribution with constant variance and everymarker can have an effect
on the analyzed trait. This method is referred to either as GBLUP or
SNP-BLUP depending on the implementation. Biologically, it seems
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more reasonable to assume that some of the markers are in linkage
disequilibrium (LD) with a causative gene or a quantitative trait locus
(QTL) and therefore can capture their effect on the studied trait,
whereas some markers are not in LD with any gene and should there-
fore not capture any effect. To achieve this idea, several methods have
been developed to incorporate different prior assumptions on the ge-
netic architecture of the trait. For this family of methods, often re-
ferred to as the Bayesian Alphabet (Gianola 2013), it is assumed that
the genetic effects of the SNPs follow alternative distributions like a
t-distribution (Bayes A) (Meuwissen et al. 2001), a double exponential
distribution (Bayes LASSO) (de los Campos et al. 2009; Usai et al.
2009) or a mixture of distributions (i.e., Bayes B, Bayes Cp, Bayes
R) (Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 2012). The
prior assumptions of these methods are rather arbitrary and their per-
formance relies heavily on the model assumptions capturing accurately
the true genetic architecture of the trait of interest (Daetwyler et al.
2010; Hayes et al. 2010).

Whole-genome sequencing of individuals has facilitated the de-
tection of genetic variants that can be used for GS. Currently, in Bos
Taurus cattle �28 million genetic variants have been reported
(Daetwyler et al. 2013). This large number of polymorphic markers
comes with a major challenge in terms of computational speed
and memory. One way to deal with this problem is to make use of
the biological information available on themarkers, e.g., to annotate the
markers in classes based on genome location or functionality and pri-
oritize those classes that show a higher probability of containing trait
associatedmarkers. Koufariotis et al. (2014) showed that protein coding
regions explain significantly more variation than similar number of
randomly chosen markers across many traits in cattle. Moreover, in a
study by Schork et al. (2013), the upstream and downstream classes
showed significant enrichment in trait associated variants suggesting
that these classes can potentially have important regulatory functions.
In the same line, Yang et al. (2011) stated that genic regions contributed
more additive genetic variance than non-genic regions for human
traits. However, Do et al. (2015) found that the contribution to total
genomic variance per SNP among the annotated classes was similar for
all regions in a feed efficiency study in pigs.

Several authorshave also investigated thepredictive ability ofmodels
based on annotation classes. Using kernelmethods,Morota et al. (2014)
and Abdollahi-Arpanahi et al. (2016) showed that a whole-genome
approach provided better predictive ability than that obtained from
classes of genomic regions considered separately. Likewise, Do et al.
(2015) using GBLUP and Bayesian methods (Bayes A, B and Cp)
found that classification of SNPs by genomic annotation had little
impact on the accuracy of prediction for feed efficiency traits in pigs.

Apart from genome annotation information, other biological in-
formation is available on the SNPs.QTLdatabases are available formost
livestock species (Hu et al. 2013) and Genome-Wide Association Stud-
ies (GWAS) (Bush and Moore 2012) have identified a great number of
trait-associated markers. Moreover, metabolic and signaling pathways
(Kanehisa et al. 2008; Croft et al. 2011; Caspi et al. 2012) and gene
regulatory networks (Lee et al. 2002; Shalgi et al. 2007; Hecker et al.
2009) can also provide valuable insight to the underlying biology of the
traits of interest (Snelling et al. 2013). A rather new tool that has been
developed to incorporate existing knowledge of the genetic architecture
of complex traits into a GS model is BLUP|GA, i.e., “BLUP approach
given the Genetic Architecture” (Zhang et al. 2014). This tool uses
publicly available GWAS results and showed improved prediction ac-
curacies compared to traditional GBLUP and Bayes B methods. Also, a
similar approach was developed by Kadarmideen (2014) (system ge-
nomic BLUP, - sgBLUP-) where SNPs with known biological role were

explicitly modeled in addition to conventional random SNP effects in
SNP-BLUP or GBLUP methods. Along with the BLUP approaches,
several Bayesian methods were also developed. Bayes Bp (Gao
et al. 2015) is a modified version of Bayes B (Meuwissen et al.
2001) able to utilize locus-specific priors. In their study, the authors
obtained locus-specific priors from variance analysis (ANOVA)
based on information from each single marker separately and the
results showed improved accuracy and decreased bias compared to
Bayes B and Bayes Cp. In a similar way, MacLeod et al. (2016)
proposed a modification to the BayesR method (Erbe et al. 2012)
that incorporates prior biological knowledge. This method provides
a flexible approach to improve the accuracy of genomic prediction
and QTL discovery taking advantage of available biological knowl-
edge. The basic idea of previously developed methods is to group
SNPs into those having a biological function and those with an
unknown function. Both the BLUP|GA and BayesBpmethods, also
include continuous weights for all, or a subset of markers. For the
BLUP|GA method, weights computed using trait-specific GWAS
results are used to construct the genomic relationship matrix,
whereas in BayesBp the weights are computed from single-SNP
ANOVA analyses.

Although a large number ofmethods have beendeveloped already
for GS, a general BLUP method to include explanatory variables for
SNP-specific variances that allowboth continuous and class variables
seems to be missing. Here we propose a general model using a link
function approach within the hierarchical generalized linear model
framework (Lee et al. 2006). The algorithm proposed by Lee and
Nelder (1996) is used, where the hierarchical generalized linear
model is fitted by iterating between augmented generalized linear
models. With this approach, rather complex models can be fitted
using a single deterministic fitting algorithm (see Rönnegård et al.
2010a, 2010b).

The aim of the paper is to assess the accuracy for such models
including predictors for SNP variances, with special emphasis on the
effect of the trait’s genetic architecture and LD structure on estimation
accuracy. We present a family of models where the SNP variances can
be modeled using both, categorical and continuous predictors, or a
combination of the two. The computation time of these models is also
studied and a new, faster R package (CodataGS) to fit these models is
presented.

MATERIALS AND METHODS

Data simulation
Data were simulated to evaluate themodels. Four different scenarios for
QTL variance distribution were simulated under three different genetic
architectures in which the number of QTL per chromosome was 10,
20 or 100. For each combination of scenario and genetic architecture,
100 simulation replicates were produced. This section describes the
simulations in detail.

A base population was simulated of 100 individuals that evolved
under randommating for 400 non-overlapping generations (generation
-399 to 0) maintaining the population size constant. After the 400 his-
torical generations, two more generations were simulated, still under
randommating and expanding the population size from 100 to 200 in-
dividuals per generation. Generation 1 was used as training set and
generation 2 as validation set. The genome comprised of two chromo-
somes of 1 Morgan each with 8,800 loci, evenly distributed across the
genome. In the base population alleles were coded as 0 or 1 with equal
probability resulting in intermediate average allele frequencies. In the
first generation, 1,000 loci per chromosome were selected randomly
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among those loci with a Minor allele frequency (MAF) higher than
0.05 to simulate the SNP marker panel. The same loci were used for
validation in generation 2.

To simulatephenotypes in generation 1 (training set),NQTL lociwere
selected randomly excluding loci that were on the edge of the chromo-
some and those with a MAF lower than 0.05. In order to simulate
different scenarios of genetic architecture underlying the trait, the num-
ber of QTL (NQTL) varied between 10, 20 and 100 per chromosome.
Moreover, the QTL effects, uj, j = 1, . . ., NQTL, were assumed to be
normally distributed with mean 0 and varying variance assigned in one
of the following ways:

Scenario 0 (Sc0): uj � Nð0;s2
j Þ; where s2

j ¼ e1

Scenario 1 (Sc1): uj � Nð0;s2
j Þ; where s2

j ¼ e1, with probability
0.5, and s2

j ¼ e3, with probability 0.5
Scenario 2 (Sc2): uj � Nð0;s2

j Þ; where s2
j ¼ e1, if uj belonged to

chromosome 1, and s2
j ¼ e3, if uj belonged to chromosome 2

Here, e is the natural number and therefore the variance can take
values between e1 ¼ 2:7 and e3 ¼ 20:1. The difference between the
scenarios Sc1 and Sc2 is that in Sc1 heterogeneous QTL effects are
allowed on the same chromosome and may be in linkage disequilib-
rium with each other. On the other hand, in Sc2 the two different types
of QTL are located on different chromosomes to ensure low LD be-
tween them.

Scenario 3 (Sc3): uj � Nð0;s2
j Þ; where s2

j ¼ e3f ðsjÞ, sj is the posi-
tion of QTL j and f is a function of relative distance to the
chromosome edge. Consequently, s2

j take values between e1

and e3. This scenario is motivated by the finding that fitness
genes tend to be located closer to the center of the chromosomes
(see e.g., Carneiro et al. (2009) and references therein).

For each scenario, the three separate genetic architectures were
simulated, i.e., with 10, 20 or 100 QTL per chromosome. In order for
the results from the different scenarios and genetic architectures to
be comparable, the total genetic variance was scaled to 1.0. In this
way, the obtained traits were either controlled by a small number of
QTL with medium-large effects or by a large number of QTL with
small effects.

In generation 1 (training set) phenotypes were simulated for all
200 individuals as:

yi ¼ mþ
XNQTL

j¼1

ZQTL;1ijuj þ ei;

where yi is the phenotype of individual i, m is a fixed effect which was
set equal to 0, ZQTL;1ij is the genotype for the jth QTL coded as 0, 1 or
2 for the homozygote, heterozygote and the alternative homozygote
respectively for individual i in generation 1, uj is the simulated nor-
mally distributed jth QTL effect as described above, and ei is the re-
sidual effect of the ith individual normally distributed withmean 0 and
the appropriate variance s2

e in order to create a trait with heritability
of 0.2.

Generation2was used as validation setwhere true genomic breeding
values (TBVs) were computed as:

TBVsi ¼
XNQTL

j¼1

ZQTL;2ijuj;

where ZQTL;2ij is the QTL genotype for QTL j and individual i for this
generation.

Genomic evaluation
To estimate the SNP effects, the marker panel of 1,000 SNPs per
chromosome mentioned above was used and the following model
was assumed:

yi ¼ mþ
Xp

j¼1

Zijyj þ ei; (1)

where yi is the phenotype of individual i, m is a fixed effect, p is the
total number of SNPs, Zij is the genotype of the SNP j for individual i
coded as 0, 1 or 2, ei � Nð0;s2

eÞ is the residual effect, and

yj � Nð0; t2j Þ (2)

is the jth SNP effect normally distributed with mean 0 and variance

t2j ¼ eaþbxj ; (3)

where aþ bxj is a linear predictor for the SNP-specific variance the
components of which are explained in the following section.

Evaluation models
The linear predictor for variance (aþ bxj) allows to incorporate any
type of external information about the SNP variance, making it possible
to assign the same variance for all SNPs, a subgroup of SNPs or assign a
unique variance for each SNP. We used this linear predictor for vari-
ance to introduce external information on the SNPs into the models
and the predictive performance of different prior assumptions was tested.
The log link ensures a positive variance (Aitkin 1987; Lee and Nelder
1998) and due to its computational robustness is a common choice of
link function in variance modeling (Jaffrezic et al. 2000; Sorensen and
Waagepetersen 2003; Rönnegård et al. 2010a). By using a Gamma gen-
eralized linear model with a log link, the score function for this model is
equivalent to the score function of the REML likelihood in a linear mixed
model (Lee and Nelder 1996, Lee et al. 2017 page 91) and therefore
produces REML estimates of the variance components. Furthermore,
especially for variances close to zero the likelihood will be more symmet-
ric on a logarithmic scale than on an untransformed scale, and thereby
gives better standard errors for the fitted variance components.

The models tested in this study were:

1. SNP-BLUP: In the traditional model the variance of the markers is
assumed to be equal for all markers and therefore xj ¼ 0 in the
linear predictor for the variance for all markers.

2. Categorical models (W10, W20 and W40): For these models the
genome was divided into non-overlapping windows of 10, 20 or
40 SNPs. Then, all the SNPs within a given window were given the
value xj ¼ 1 if they contained a QTL and xj ¼ 0 if they did not.
Hence, a study with known regions harboring the QTL was mim-
icked, where these regions were known with varying degree of
uncertainty.

3. Continuous model (LD): For this model, following Yang and Tem-
pelman (2012) and Rönnegård and Lee (2010), the linkage dis-
equilibrium (LD) between a SNP and a QTL was calculated as
r2 ¼ D2=ðpSpspQpqÞ, where D ¼ fSQ fsq 2 fSq fsQ (Falconer and
Mackay 1996), pS, ps, pQ and pq are the allele frequencies of the
SNP and QTL, fSQ, fsq are the homozygous haplotype frequencies
and fSq, fsQ are the heterozygous haplotype frequencies. Then, each

SNP was assigned the value of xj ¼
PNQTL

k¼1
r2jk. The relationship be-

tween SNPs and QTL was modeled in such way that markers in
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higher LDwith one or more QTL would be given more importance
in the model compared to other markers not in LD with any QTL.

4. Combination of categorical and continuous models (W10-LD,
W20-LD and W40-LD): In these models the genome was divided
into windows as in the previous categorical models but the SNPs
located within a window that harbored a QTL were given the value
of the LD with the QTL instead of 1. The model could, therefore,
differentiate between SNPs not only based on location but also
based on the relationship with the real QTL.

Table 1 gives an overview of all simulated scenarios and models
tested. Each scenario was simulated with 10, 20 and 100 QTL per
chromosome as described previously.

5. Additional models (W10-2var, W20-2var, W40-2var, Dis, W10-
Dis, W20-Dis and W40-Dis): The previously described models
include external information on the physical location of the QTL
relative to the SNPs or/and the relationship of the SNPs with the
QTL but they do not include any information about the QTL
variance. Therefore, a few additional models were created based
on the particular parameters used for the simulation of each ge-
netic architecture scenario. These models are defined as follows.
a. For the scenarios where the QTL effects came from distribu-

tions with two different variances (Sc1 and Sc2) we assumed this
information was known and we expanded the linear predictor
to aþ bxj1 þ gxj2 in order to accommodate for more variances
(in the models W10-2var, W20-2var, and W40-2var). The ge-
nome was divided in non-overlapping windows as before and
SNPs associated with a QTL with variance s2

j ¼ e1 was assigned
xj1 ¼ 1 and xj2 ¼ 0, while if it was associated with a QTL with
variance s2

j ¼ e3 it was assigned xj1 ¼ 0 and xj2 ¼ 1. If a SNP
was located within a window with no QTL then both xj1 and xj2
had a value of 0.

b. For Sc3, we used the distance of the markers from the edge of the
chromosome as external information either as a continuous vari-
able (Dis) or within windows (W10-Dis, W20-Dis and W40-
Dis), since the QTL variances were simulated in the same way.

German Holstein population data
To demonstrate the model on real data, we used a German Holstein
genomic prediction population consisting of 5024 bulls (Zhang et al.
2015). Three traits were measured, where the first two had highly

significant QTL from a GWAS. Including this information as explan-
atory variables for the SNP-specific variances was expected to improve
genomic selection. We were also able to compare our results with
Zhang et al. (2015), who have developed the algorithm BLUP|GA that
includes information about genetic architecture by building trait-spe-
cific genomic covariance matrices.

All bulls had been genotyped and we used the 42,373 SNPs
with minor allele frequency above 0.01. For the three traits, which were
milk yield,milk fat percentage and somatic cell score, Zhang et al. (2015)
provide highly reliable estimated breeding values (EBVs) for all bulls
from previous studies (Hu et al. 2013; Zhang et al. 2014). The EBVs for
milk yield and milk fat percentage were used as phenotypes.

We chose to fit the model 1) SNP-BLUP and models 2) W11 and
W41, with windows of size 11 and 41 SNPs centered around candidate
QTL peaks. To find candidate QTL, we performed GWAS, correcting
for genomic relationship using estimated residual and additive genetic
variance from GBLUP. All SNPs from GWAS with p-value less than
10�5 were considered a candidate QTL. For milk yield we identified
6 candidate QTL peaks and for the fat percentage we identified 5 can-
didate QTL peaks, which were used as the center of the windows.

Hglm method and CodataGS
The estimation of the SNP effects was performed by fitting the model
described by equations 1-3 that allows both continuous and categorical
predictors for the SNP-specific variances, or a combination of contin-
uous and categorical predictors. We tested a few examples of external
information on the SNPs and these models were fitted using the hglm
package in R (Rönnegård et al. 2010b). In the hglm package the linear
predictor for variance aþ bxj is specified using the X.rand.disp option
in the hglm function and the function estimates SNP effects (example of
the command line to call the hglm function with the optionX.rand.disp
can be found in the Supplementary File S1 line 156).

When the number of markers largely exceeds the number of
individuals, the computational speed and memory requirements can
be improved by fitting individual effects (i.e., EGBVs) in an equivalent
model instead of SNP effects (Strandén and Garrick 2009; Shen et al.
2013). This equivalent model, which uses the external information on
each SNP in the same way as in the hglm package, was implemented in
the R package CodataGS and is available on CRAN (https://cran.r-
project.org/web/packages/CodataGS). The theory is explained in the
Supplementary File S3. The CodataGS R package was used for the
analysis of the German Holstein population data.

Accuracy
Thepredictive ability of allmodelswas evaluatedas the correlationof the
estimated genomic breeding values (EGBVs) and the true genomic
breeding values (TGBVs) for the validation set (Generation 2). For each
simulation setup, 100 replicates were generated. The convergence of the
models varied from 71 to 100% and results are presented for those
replicates where all models converged. For the German Holstein pop-
ulation,we performed afivefold cross-validationwith all bulls randomly
separated in four groups of 1005 andone groupof 1004with bothmodel
1) and 2). Eachgroup served as a test set while the rest of the groupswere
used to estimate the SNP effects. The predictive ability wasmeasured as
the correlation between the EBVs and the phenotypes of the testing
individuals.

Data availability
Simulation of the data that support the findings is possible through the
attached simulation code in File S1 and File S2 (Functions for the

n Table 1 SUMMARY OF MODELS TESTED FOR EACH SCENARIO
OF GENETIC ARCHITECTURE SIMULATED

Modelsa Scenariob Sc0 Sc1 Sc2 Sc3

SNP-BLUP + + + +
W10 + + + +
W20 + + + +
W40 + + + +
LD + + + +
W10-LD + + + +
W20-LD + + + +
W40-LD + + + +
a
W10= categorical model with window of 10 SNPs, W20= categorical model
with window of 20 SNPS, W40= categorical model with window of 40 SNPS,
LD= continuous model with LD estimates, W10-LD= combined model with
window of 10 SNPs and LD estimates, W20-LD= combined model with window
of 20 SNPs and LD estimates, W40-LD= combined model with window of
40 SNPs and LD estimates.

b
Sc0= simulation scenario 0, Sc1= simulation scenario 1, Sc2= simulation
scenario 2, Sc3= simulation scenario 3.
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simulation) deposited at figshare. The simulation code and the meth-
odology described previously are sufficient to reproduce the results of
this study. The analysis programCodataGS used to apply the alternative
models on the Holstein dataset is available at https://cran.r-project.org/
web/packages/CodataGS. Supplemental material available at FigShare:
https://doi.org/10.25387/g3.9247832.

RESULTS
Table 1 contains different versions of the model tested. The fit-
ted SNP effects obtained from hglm for one simulation repli-
cate under scenario Sc0 with 10 QTL per chromosome are
presented in Figure 1. The R code to reproduce Figure 1 is found
in Supplementary File S1 (along with File S2). The results
show how the fitted SNP effects may change between model spec-
ifications. For example, it can be observed that with increasing
window size the estimated effects tend to be spread between
more SNPs.

Model performance
Table 2 shows the accuracies of the predicted EGBVs in the validation
set (generation 2) for scenario 0 (Sc0) with 10 QTL per chromosome

underlying the trait. In general, the alternative models performed
better than SNP-BLUP. The categorical models yielded higher ac-
curacies compared to the SNP-BLUP model by 14.3% (0.670 6
0.013), 11.9% (0.656 6 0.012) and 8.4% (0.635 6 0.012) for the
models W10, W20 and W40, respectively. Nonetheless, we observe
that the advantage of the categorical models over the SNP-BLUP
decreased with increasing window sizes. Moreover, the continuous
model (LD) resulted in higher accuracy than the SNP-BLUP or the
categorical models with an increase of 22.4% (0.717 6 0.011) in
accuracy with respect to the SNP-BLUP. Similarly, the combina-
tion models performed 20.6% (W10-LD, 0.707 6 0.013) 21.8%
(W20-LD, 0.714 6 0.013) and 23.2% (W40-LD, 0.722 60.013) bet-
ter than the SNP-BLUP model. Contrary to the categorical models,
the combination models maintained the gain in accuracy with in-
creasing window size. The alternative models provided unbiased
predictions while the SNP-BLUP showed upward bias (Table 2).
Finally, the mean squared error of prediction (MSEP) in the valida-
tion set improved with the alternative models compared to the SNP-
BLUP, indicating that predictions are closer to the true breeding
values in the alternative models compared with the SNP-BLUP.

Figure 1 Simulated QTL effects (black dots) and
fitted SNP effects under SNP-BLUP and 7 alternative
models (Categorical: W10, W20 and W40, Contin-
uous: LD, Combination: W10-LD, W20-LD and W40-
LD) for one simulation replicate under simulation
scenario Sc0 with 10 QTL per chromosome un-
derlying the trait.
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Effect of number of simulated QTL
In order to investigate the performance of the alternative models for
traits with different genetic architectures we simulated a trait controlled
by an increasingnumberofQTLwith eachhavingadecreasing effect.As
an overview, the accuracies of the different models in Sc0 with 20 and
100 QTL per chromosome are visualized in Figure 2 together with the
results from 10QTL per chromosome. The advantage of the alternative
models over the SNP-BLUP model decreased with increasing number
of QTL controlling the trait. When the number of QTL underlying the
trait is 20 QTL per chromosome, the accuracies obtained were 9.6%,
7.5% and 3.8% better than the SNP-BLUP for the W10, W20 andW40
models, respectively. The continuous model resulted in a gain of 12.9%
in accuracy while the combination models performed slightly better
than all the alternative models yielding gains in accuracy of 14%, 14.2%
and 13.5% for the W10-LD, W20-LD and W40-LD models, respec-
tively. Finally, in the case of 100 QTL per chromosome, all models
performed roughly the same as SNP-BLUP, yielding accuracies be-
tween 0.583 6 0.012 (W40) and 0.599 6 0.011 (W10-LD).

Effect of variance of the QTL effects
Thegenetic architectureof a trait doesnot onlydependon thenumberof
QTL that affect the trait. For example, mutations can affect protein
coding regions or regulatory regions and these mutations can have a
bigger or smaller effect on the trait. Therefore we can assume that their
effects come from amixture of distributions with varying variance over
the genome. For this purpose we simulated several scenarios where the
QTL effects were drawn fromamixture of distributions (see Sc1 – Sc3 in

Materials and Methods). We compared the performance of all models
under all scenarios of QTL effect variances and all cases of number of
QTL affecting the trait (Figure 3). In general the models performed
similarly under Sc1, Sc2 and Sc3 as in Sc0. Small differences were
observed in the case of 10 QTL per chromosome where all models
performed slightly better in Sc0 and Sc2 (QTL effects from a low
variance distribution on chromosome 1 and from high variance distri-
bution on chromosome 2) compared with the results from Sc1 and Sc3.
Nonetheless, this minimum difference disappeared quickly with in-
creasing number of QTL per chromosomes. The external information
included in the alternative models was related to the position of the
QTL on the genome and/or the relationship of the SNPs with the QTL
(LD), but no information about the distribution of the variance itself
was included. Therefore, we fitted additional models that considered
the way the QTL were simulated (see linear predictor 5: Additional
models Material and Methods, and Supplementary file Table S1). For
Sc1 and Sc2 we extended the linear predictor (aþ bxj1 þ gxj2) to
accommodate for two types of variances for the SNPs in windows that
harbored a QTL assuming that we knew beforehand the distribution
variance of the effect of that QTL and, as before, we tested 3 different
window sizes (10, 20 and 40 SNPs per window). The results showed
that these additional models performed similarly as the categorical
models (W10, W20 and W40) under all cases of genetic architecture
simulated. The only exception to these results was for the Sc2 with
100 QTL per chromosome where additional models showed a small
increase in accuracy compared to all othermodels (Supplementaryfiles,
Figure S1). For the Sc3 we used the distance of the SNP from the edge of
the chromosome as external information, either as a continuous vari-
able or within windows. Similarly as before, the additional models that
included information on the simulated distribution variance of the
QTL did not perform better than the alternative models. The combined
models (W10-Dis, W20-Dis and W40-Dis) performed the same as the
categorical models while the continuousmodel (Dis) showed no benefit
compared to the alternativemodels or the SNP-BLUPmodel under any
simulation scenario of genetic architecture.

Computation time
When the number of markers exceeds the number of individuals, the
computational speed andmemory requirements can be an important
drawback for the use of suchmodels.A solution to this problem is tofit
individual effects (i.e., EGBVs) in an equivalent model instead of
SNP effects. In this study all evaluations were performed using the
hglm R package that fits SNP effects. For a larger number of SNPs
the computations would be unfeasible and an equivalent model
which uses the external information on each SNP in the same way
as in the hglm package was implemented in the R packageCodataGS

n Table 2 ACCURACY AND BIAS OF THE PREDICTED EGBVS IN
THE VALIDATION SET (GENERATION 2) FOR THE SCENARIO
0 (SC0) WITH 10 QTLS PER CHROMOSOME UNDERLYING THE
TRAIT

Modelsa Accuracy (r) Bias (b)

SNP-BLUP 0.586 (0.010) 1.213 (0.089)

W10 0.670 (0.013) 1.003 (0.044)

W20 0.656 (0.012) 1.014 (0.048)

W40 0.635 (0.012) 1.030 (0.045)

LD 0.717 (0.011) 1.024 (0.041)

W10-LD 0.707 (0.013) 1.050 (0.053)

W20-LD 0.714 (0.013) 1.044 (0.050)

W40-LD 0.722 (0.013) 1.028 (0.042)

a
W10= categorical model with window of 10 SNPs, W20= categorical model
with window of 20 SNPS, W40= categorical model with window of 40 SNPS,
LD= continuous model with LD estimates, W10-LD= combined model with
window of 10 SNPs and LD estimates, W20-LD= combined model with window
of 20 SNPs and LD estimates, W40-LD= combined model with window of
40 SNPs and LD estimates.

Figure 2 Accuracies obtained under different cases
of genetic architecture of the trait for SNP-BLUP and
the alternative models.
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(https://cran.r-project.org/web/packages/CodataGS). The theory is
explained in the Supplementary File S3. Fitting individual effects
instead of SNP effects resulted in largely improved run time of all
models. For a training population of 200 individuals with 2,000 SNP
markers, fitting SNP effects (hglm) required on average 9.35 sec per
iteration while fitting individual effects (CodataGS) required only
0.46 sec per iteration (Figure 4). The improved speed and memory
requirements of the equivalent model can be considerably beneficial
since the usual size of the training sets is much larger than the one
used here (thousands of individuals with tens of thousands of SNPs).
Nonetheless, the speed performance of the equivalent model de-
pends heavily on the number of individuals and the relationship
between time and number of individuals is not linear but rather
exponential (Supplementary Figure S2).

German Holstein population results
To demonstrate the model on real data, we used a German Holstein
population consisting of 5024 bulls (Zhang et al. 2015). We chose to fit
the model 1) SNP-BLUP and models 2)W11 andW41 with windows
of sizes 11 and 41 SNPs centered around candidate QTL peaks. We
obtained the candidate QTL peaks after performing a GWAS, correct-
ing for genomic relationship using estimated residual and additive ge-
netic variance from GBLUP. All SNPs from the GWAS with p-value
less than 10�5 were considered a candidate QTL. For milk yield (MY) we
identified 6 candidate QTL peaks and for the fat percentage (Fat%) we
identified 5 candidate QTL peaks, which were used as the center of
the windows.

Table 3 shows the average accuracies obtained from the
SNP-BLUP and W41 models for two traits (MY and Fat%) in the

Figure 3 Accuracies obtained from SNP-BLUP
model and alternative models under all simulated
scenarios and genetic architectures.

Figure 4 Time of execution (seconds per iteration)
of SNP-BLUP and alternative models from hglm
package and CodataGS package.
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fivefold-cross-validation analysis. We present only the results from
the W41 model as the model W11 yielded very similar accuracies
as the W41 model. For both traits the W41 model yielded higher
accuracies than the SNP-BLUP. The W41 model showed a higher
advantage in predictive ability for the trait Fat% yielding an accu-
racy of 0.862 compared to the 0.811 obtained from the SNP-BLUP
model. The results for the MY trait were similar but the predictive
advantage of the W41 model was lower compared to the Fat% trait
(accuracy of 0.785 from the W41 model over 0.771 from the SNP-
BLUP model).

DISCUSSION
The knowledge on the genetic architecture of different traits, and SNP-
specific biological information, is increasing rapidly and several authors
have proposed methods for genomic selection that canmake use of this
available biological information to improve selection accuracy (Zhang
et al. 2010; Zhang et al. 2014; Su et al. 2014). In this line, this study
proposes a general model using a link function approach within the
hierarchical generalized linear model framework (Lee et al. 2006) to
include biological external information into the model. Following
Zhang et al. (2010), we used a base population of 100 individuals in
our simulation study. This is a rather small population size and the
results should therefore be extrapolated to larger effective population
sizes with caution.

All the results in the current study use the same general model
(described by equations 1 – 3) for predicting breeding values. The
alternative models in Table 1, including SNP-BLUP, are fitted within
this single framework and in the results the accuracies of the alternative
models are compared. There are numerous Bayesian models not in-
cluded within this framework that may be of interest to compare with.
However, we use SNP-BLUP as a basic model to compare the results to
and study the accuracies of models that make use of external informa-
tion on the SNPs.

Averyattractive featureof themethodproposed in this study is that it
provides a flexible way to model the SNP variances using a linear
predictor (equation 3). Any type of existing knowledge on the SNP
markers can be utilized and potentially increase the predictive ability of
the model. In this study we investigated the performance of external
information related to the position of the QTL on the genome and the
relationship of the SNP markers with the QTL and we showed that the
inclusion of such information can improve the predicting ability of
genomic selection. From our results we identified twomain factors that
influence theperformanceof suchmodels, the genetic architectureof the
trait and the quality/accuracy of the external information.

In themodelsW10,W20 andW40, the causative effect is assumed to
be within a window and does not assume that the exact position of the
causativemutation is known.Thismodel should be suitable for genomic
predictionwhereexternal information fromQTLstudies is included.For
the LDmodel and the combinedmodels (W10-LD,W20-LD andW40-
LD) it is assumed that the position of the causative SNP is known.
Especially in plant breeding, there is a need to include major genes,

whose positions are accurately known, in genomic prediction. For such
cases the models including LD information combines marker assisted
selection and genomic selection in a dynamic way.

We investigated models with three different window sizes that were
suitable for our simulated data. For applications on real data the optimal
numberofmarkers tobe included ineachwindow, in termsofprediction
accuracy, will depend onmarker density and the genetic architecture. In
our application on the dairy cattle data the optimal number of markers
within awindowwas not assessed statistically, but since themarkermap
wasmuchdenser than in the simulated datawe chose themodelwith the
largest number of markers, i.e., window size 40.

Genetic architecture of the trait
The performance of several alternative models in our study was better
compared to the SNP-BLUPmethod when the trait was controlled by a
small numberofQTLwithmedium-large effects. The advantageof these
modelswas reducedwith increasingnumberofQTLwithsmaller effects.
However, the alternative models did not result in lower accuracies
compared to the SNP-BLUPmodel. The reason is that as the estimated
effect of the external information on the SNP variances approaches zero
the model reduces to a SNP-BLUPmodel. Furthermore, as the number
ofQTL that control the trait increases, the external informationonSNPs
becomesmore similar among the SNPs. For example, for the categorical
models, a QTL is located within most or all defined windows and as a
result all SNPs get the same weight in the model. Moreover, most or
all SNPs are in LD with a QTL at similar levels. Consequently, the
alternative models turn into a SNP-BLUP model. These results are in
agreement with the findings of Zhang et al. (2010). In their simula-
tion study they investigated the performance of a BLUP model with
weighted G matrix and showed that for traits controlled by high num-
ber of QTL the traditional GBLUP and their method performed sim-
ilarly. This effect has also been observed in studies on real data (Zhang
et al. 2014). Analyzing three dairy cattle traits (Milk Yield (MY), Fat
percentage (FP) and Somatic Cell Count (SCC)) these authors found
that traits controlled by a few QTL with large effects (MY and FP)
perform better under models with external information on the SNPs
while the SCC trait, that is controlled by many QTL evenly distributed
along the genome, performed better under the standardGBLUPmodel.

In our simulation studywe created different genetic architectures for
the traitwith respectnotonly to thenumberof theQTLaffecting the trait
but also to the distribution of the QTL effects and their variances (see
Material andMethods).Our results showed that this aspect didnot affect
the performance of the alternative models. Moreover, the additional
models that included informationon thevariancedistributionacross the
genome were not able to provide any benefit, contrary to methods that
assume mixtures of distributions for the SNP markers like Bayesian
methods (Erbe et al. 2012).

External information
In this study we investigated the performance of models that include
information on the location of the QTL on the genome (categorical
models)and thereby tried tomimic the external informationavailableon
the QTL databases and the different window sizes resemble the degree
of uncertainty of a QTL region. Our results indicate that this type of
external information has the potential to improve the accuracy
of genomic selection and that the degree of improvement is inversely
related to the degree of uncertainty on theQTL region. Theusefulness of
the QTL database information has been demonstrated by Zhang et al.
(2014). In their study these authors searched for reported QTL on the
traits under consideration (Fat percentage, milk yield and somatic cell
score for dairy cattle and several traits for rice) and after a quality

n Table 3 MEAN ACCURACY (STANDARD ERROR) OF THE
PREDICTED EGBVS IN A 5-FOLD CROSS VALIDATION ANALYSIS
USING THE GERMAN HOLSTEIN DATA FOR TWO TRAITS

Modelsa MY Fat%

SNP-BLUP 0.771 (0.002) 0.811 (0.004)

W41 0.785 (0.002) 0.862 (0.003)

a
W41= categorical model with window of 40 SNPs around the top SNP for the
trait detected on a GWAS study. MY: Milk Yield, Fat%: Fat percentage.
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control to avoid the possible false positive reports they included this
information into a GBLUP model. For most of the examined traits an
increase in accuracywas observed, especially for the traits that showed a
characteristic genetic architecture. The discovery of new QTL or the
causative mutations is expected to increase in the future with the use of
whole genome sequence and the development of new methods for
analysis and as a consequence the information available will become
more accurate.

The external information that proved to be more valuable in this
study was the LD estimates between the SNPs and the QTL. In the
standard GBLUP method, markers in linkage equilibrium (LE) to the
causativeQTL tend tocapture effects due to family relationship,whereas
mainly markers in LD capture the QTL effects themselves (Habier et al.
2007, de los Campos et al. 2015). In the BayesBmodel (Meuwissen et al.
2001), the prior for the SNP variances is a mixture of two distributions
that tends to group markers into two classes: those in LD and those in
LE with the QTL. By modeling the two classes of markers better pre-
dictions for unrelated individuals can be obtained. In other studies, LD
information has been incorporated in amodel for themarker variances,
which smooths the effects betweenmarkers in close LD (e.g., the Bayes-
ian antedependence model by Yang and Tempelman 2012, and the
double hierarchical generalized linear model by Rönnegård and Lee
2010), and thereby captures the QTL effects rather than family infor-
mation. These models give better predictions than GBLUP when indi-
viduals are unrelated and the total number of QTL is small. This is in
line with our findings where the models including LD betweenmarkers
and QTL resulted in improved prediction accuracies, especially when
the number of simulated QTL was small. Finally, the results obtained
from the combined models indicate that information on the real re-
lationship between markers and QTL can compensate for the loss of
information due to the uncertainty of the QTL report.

The prior of BayesB is rather general because it does not use any
external information on the SNPs, whereas the model we propose gives
more specific information about each SNP. Since the information on
each SNP is more specific in our model its performance compared to
GBPLUP and BayesB is expected to improve as the number of indi-
viduals in the training set decreases, in linewith the results of Zhang et al.
(2015, Supplementary Table 1) .

The model applied in Zhang et al. (2015) is BLUP|GA and was
developed in Zhang et al. (2014). It includes external data on SNPs
in the model and has similarities to our model since both methods fit
trait-specific genomic relationship matrices. In the BLUP|GA method
SNPs are divided into two groups by the user. In the first group there is
a single genetic variance for all SNPs and in the second group SNP-
specific variances are modeled as proportional to user-specific weights.
Furthermore, the ratio between the variances for the two groups is also
user-specified. This is indeed similar to our proposed method, but with
some significant differences. The method that we propose uses a re-
gression approach where covariates are specified by the user, whereas
all model parameters are estimated. The covariates can include negative
values in ourmethod but the SNP variances will still be positive because
the genetic variances are modeled using a logarithmic link function. By
specifying covariates rather than weights for the SNP variances, hope-
fully, our proposed method will also be user friendly and the imple-
mentation in the CodataGS package (https://cran.r-project.org/web/
packages/CodataGS) fits ratherwell with the regression framework inR.

CONCLUSIONS
In this studywe investigated thepotential benefit of external information
on improving the accuracy of genomic selection. In conclusion, using
external information tomodel SNP-specific variances can provide gains

in accuracy compared to the traditional SNP-BLUP. Nonetheless, the
level of gain depends on the genetic architecture of the trait of interest
and the quality of the external information on the SNP markers. The
usefulness of these type of models is expected to increase with time as
more accurate information on the SNPs becomes available. Finally, our
analysis on real data indicated that the proposed method has potential
but further studies are required to confirm the advantage of this
approach.
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