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ABSTRACT Recent advancements in phenomics coupled with increased output from sequencing
technologies can create the platform needed to rapidly increase abiotic stress tolerance of crops, which
increasingly face productivity challenges due to climate change. In particular, high-throughput phenotyping
(HTP) enables researchers to generate large-scale data with temporal resolution. Recently, a random
regression model (RRM) was used to model a longitudinal rice projected shoot area (PSA) dataset in an
optimal growth environment. However, the utility of RRM is still unknown for phenotypic trajectories
obtained from stress environments. Here, we sought to apply RRM to forecast the rice PSA in control
and water-limited conditions under various longitudinal cross-validation scenarios. To this end, genomic
Legendre polynomials and B-spline basis functions were used to capture PSA trajectories. Prediction
accuracy declined slightly for the water-limited plants compared to control plants. Overall, RRM delivered
reasonable prediction performance and yielded better prediction than the baseline multi-trait model. The
difference between the results obtained using Legendre polynomials and that using B-splines was small;
however, the former yielded a higher prediction accuracy. Prediction accuracy for forecasting the last five time
points was highest when the entire trajectory from earlier growth stages was used to train the basis functions.
Our results suggested that it was possible to decrease phenotyping frequency by only phenotyping every
other day in order to reduce costs while minimizing the loss of prediction accuracy. This is the first study
showing that RRM could be used to model changes in growth over time under abiotic stress conditions.
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BACKGROUND
Plant biology has become a large-scale, data-rich field with the devel-
opment of high-throughput technologies for genomics and phenomics.
This has increased the feasibility of data driven approaches to be applied

to address the challenge of developing climate-resilient crops (Tester
and Langridge 2010). Crop responses to environmental changes are
highly dynamic and have a strong temporal component. Such re-
sponses are also known as function-valued traits, for which means
and covariances along the trajectory change continuously. Single time
point measurements of phenotypes, however, only provide a snapshot,
posing a series of challenges for research efforts aimed at understanding
the ability of the plant to mount a tolerant response to an environmen-
tal constraint. Advancements in high-throughput phenotyping (HTP)
technologies have enabled the automated collection ofmeasurements at
high temporal resolution to produce high density image data that can
capture a plethora of morphological and physiological measurements
(Furbank and Tester 2011). In particular, image-based phenotyping
has been deemed a game changer because conventional phenotyping
is laborious and often involves destructive methods, precluding
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repeated sampling over time from the same individual (Ge et al.
2016). More importantly, these HTP systems offer greater potential
to uncover the time-specific molecular events driven by important
genes that have yet to be discovered in genome-wide association
studies (GWAS) or to perform forecasting of future phenotypes in
longitudinal genomic prediction. Thus, integrating these HTP data
into quantitative genetics has the potential to increase the rate of
genetic gain in crops. However, to take full advantage of such op-
portunities, novel statistical methods that can fully leverage time
series HTP data need to be developed.

Recently, Campbell et al. (2018) used a random regression
model (RRM) to perform genomic prediction for longitudinal
HTP traits in controlled environments, such as greenhouses, using
Legendre polynomials as the choice of a basis function to model
dependencies across time. They also demonstrated that RRM could
be used to achieve reasonable prediction accuracy in a cross-
validation (CV) framework to forecast future phenotypes based
on information from earlier growth stages. RRM also enables the
calculation of (co)variances and genetic values at any time between
the beginning and end of the trajectory, even including time points
that lack phenotypic information. This study showed that RRM
could effectively describe the temporal dynamics of genetic signals
by accounting for mean and covariance structures that are sub-
jected to change over time (Kirkpatrick et al. 1990). However, the
utility of RRM for plants under an abiotic stress environment is
not explored. This is a critical unknown as the crop productivity is
greatly limited by environmental challenges such as drought and
heat stress. In addition to the Legendre polynomials, spline func-
tions can be used to describe the relationships between image-
based phenomics and genomics data in longitudinal modeling
(White et al. 1999). In particular, B-spline functions have been used
to study a variety of traits, such as growth records, in animal breed-
ing in terms of model goodness of fit using pedigree data (e.g.,
Meyer 2005; Baldi et al. 2010); however, its application to HTP
data in plants and its predictive ability from a CV perspective
remains untested.

Herewepresent our results from the performanceofRRMapplied to
HTP temporal shoot biomass data in response to control and water-
limitedconditionsusingLegendrepolynomialsandspline functions.We
selected drought stress because water limitation significantly impacts
shoot growth and is the major limitation for agricultural productivity
and global food security.

MATERIALS AND METHODS

Plant materials and greenhouse conditions
Three hundred fifty-seven accessions ðn ¼ 357Þ of the rice (O. Sativa)
diversity panel 1 (RDP1) were selected for this study (Zhao et al. 2011).
Seeds were surface sterilized with Thiram fungicide and germinated on
moist paper towels in plastic boxes for three days. For each accession,
three uniformly germinated seedlings were selected and transplanted to
pots (150mm diameter · 200 mm height) filled with 2.5 kg of UCMix.
Square containers were placed below each pot to allow water to collect.
The plants were grown in saturated soil on greenhouse benches prior to
phenotyping.

All lines were genotyped with 44,000 single nucleotide polymor-
phisms (SNPs) (Zhao et al. 2011). We used PLINK v1.9 software
(Purcell et al. 2007) to remove SNPs with a call rate # 0.95 and
a minor allele frequency # 0.05. Missing genotypes were imputed
using Beagle software version 3.3.2 (Browning and Browning 2007).
Finally, 34,993 SNPs were retained for further analysis.

Experimental design and drought treatment
All experiments were conducted at the Plant Accelerator, Australian
Plant Phenomics Facility, at the University of Adelaide, SA, Australia.
Thepanelwasphenotyped for adigitalmetric representing shoot growth
over 20 days of progressive drought using an image-based phenomics
platform. Each plant was phenotyped daily over a period of 20 days
and the imaging interval was�24 hr. The details of the experimental
design are provided in Campbell et al. (2018). Briefly, each exper-
iment consisted of 357 accessions from RDP1 and was repeated
three times from February to April 2016. Two smart-greenhouses
were used for each experiment. In each smart-greenhouse, the ac-
cessions were distributed across 432 pots positioned across 24 lanes.
The experimental design used in this study is similar to the partially
replicated paired design (Cullis et al. 2006). Here, a set of test entries
is replicated while the remaining test entries are unreplicated. This
design was slightly modified to accommodate the different water
treatments and allow comparison of treatments within each acces-
sion. To this end, each accession was assigned to two consecutive
pots, and the water treatments were randomly assigned to each pot.
In each experiment, 54 accessions were randomly selected and rep-
licated twice.

Seven days after transplant (DAT), plants were thinned to one
seedling per pot. Two layers of blue mesh were placed on top of the
pots to reduce evaporation. The plants were loaded on to the imaging
system and were watered to 90% field capacity (FC) DAT. On the
13 DAT, each pot was watered to 90% and was imaged to obtain
an initial phenotype before the onset of drought. One plant from
each pair was randomly selected for drought treatment. Water was
withheld from drought plants until 10% FC, and after which water
was applied to maintain 10% FC. For the duration of the experiment,
the control plants were maintained at 100% FC.

Statistical analysis of phenotypic data
Visible images were processed, and digital features were extracted
using the open-source Python library Image Harvest (Knecht et al.
2016). The sum of plant pixels from the two sides and one top view
of red/green/blue (RGB) images was summed and used as a measure
of shoot biomass. This digital phenotype is referred to as the pro-
jected shoot area (PSA) throughout this study. Several studies have
reported a high correlation between PSA estimates and shoot bio-
mass (Campbell et al. 2015; Golzarian et al. 2011; Knecht et al.
2016). Prior to downstream analyses, outlier plants at each time
point were detected for each trait using the 1.5 interquartile range
rule, and potential outliers were plotted along with their treatment
counterparts and inspected visually. Plants that exhibited abnormal
growth patterns were removed. In total, we used records from 2,415
plants across both treatments. Briefly, there were 1,208-1,209 re-
cords in control for each day of imaging and 1,205-1,206 records for
each day in low water treatment. All accessions had at least two
records for each treatment-day block.

Raw phenotypic measurements were adjusted for downstream
genetic analyses prior to fitting RRM. Best linear unbiased estimators
(BLUE)were computed for each accession by fitting experimental effect
with three levels and replication within experiment for some of the
accessions.Wepostulated that observationsat each timepoint followthe
model y ¼ Xbþ Zuþ e, where X and Z are n9 · f and n9 · n orders
of incident matrices linking observations (n9) to systematic effects (f )
and number of accessions (n), respectively, y is an n9 · 1 vector of
observations at each time point, b is a f · 1 vector of systematic effects,
u is a n· 1 vector of accession effects, and e is an n9 · 1 vector of
residuals with VarðeÞ ¼ Is2

e , where I is an identity matrix. This was
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followed by fitting a RRM-based genomic prediction approach to pre-
dict phenotypes as described below.

Random regression model
We conducted quantitative genetics modeling of image-derived pheno-
types using a RRM to assess how well we could predict dynamic genetic
signals. The RRM assumes that genetic effects and genetic variances are
not constant and can vary continuously across the trajectory. This leads
to better prediction of time-dependent complex traits by estimating
heterogeneous single nucleotide polymorphism (SNP) effects across
the trajectory. Specifically, we viewed the trajectory of digital image-
processed longitudinal records as an infinite-dimensional characteristic
that could be modeled by a smooth function (Meyer and Hill 1997; Van
derWerf et al. 1998). Changes in PSA (BLUEs) over time were modeled
through Legendre polynomials and B-splines of time at phenotyping.
The general formula for the RRM was as follows:

PSAtj ¼
XK1

k

fðtÞjkbk þ
XK2

k

fðtÞjkujk þ
XK3

k

fðtÞjkpjk þ etj;

where fðtÞjk is a time covariate coefficient defined by a basis function
evaluated at time point t belonging to the jth accession; bk is a kth
fixed regression coefficient for the population’s mean growth trajec-
tory; ujk is a kth random regression coefficient associated with the
additive genetic effects of the jth accession; K1 is the number of
random regression parameters for fixed effect time trajectories; K2

and K3 are the number of random regression parameters for random
effects; and pjk is a kth permanent environmental random regression
coefficient for the accession j. The starting values of index k, and K1,
K2, and K3 are defined separately for Legendre polynomials and
B-splines below.

In the matrix notation, the above equation can be rewritten as

y ¼ Xbþ Zuþ Qpeþ e;

where b is a vector of solutions for fixed regressions; u is the additive
genetic random regression coefficients; pe is the permanent environ-
mental random regression coefficients; e is the residuals; and X, Z,
and Q are corresponding incident matrices. Here, pe was defined as
the resemblance between records of an individual due to non-random
environmental effects that are persistent across the 20 time points.
We assumed a multivariate-Gaussian distribution and the variance-
covariance structure of

Var

0
@ u

pe
e

1
A ¼

0
@G5Cu 0 0

0 I5Cpe 0
0 0 R

1
A;

where G ¼ WscW9sc=p is the genomic relationship matrix of
VanRaden (2008), whereWsc represents a centered and standardized
marker matrix and p is the number of markers; Cu is the covariance
function between the random regression coefficients for the additive
genetic effect; 5 is the Kronecker product; Cpe is the covariance
function between the random regression coefficients for the perma-
nent environmental effects; and R ¼ Ins2

eðtÞ is a diagonal matrix of
heterogeneous residuals varying across times, where s2

e is the residual
variance.

Choice of basis function
The choice of the basis function to model the shape of the longitudinal
measurements is critical. An ideal basis function has adequate potential

to capture real patterns of changes in variance along a continuous scale
(time) for a given trait (Meyer and Kirkpatrick 2005). In this study, we
used RRM with two basis functions, i.e., Legendre polynomials (Meyer
1998) and B-splines (Meyer 2005), to describe line-specific curves for
the PSA trajectory over the day of imaging.

Legendre polynomials: Applying parametric shape functions for
covariates of time is challenging because these covariates tend to
generate high correlations among trajectories (Mrode 2014). For this
reason, fitting Legendre polynomials of time at recording as cova-
riables is a common choice to model growth curves because these
polynomials greatly reduce the correlations between estimated ran-
dom regression coefficients and make no prior assumptions regard-
ing the shape of the longitudinal curve. This function has been used
widely in animal breeding for many years (e.g., Jamrozik and
Schaeffer 1997) and has recently been used in plant breeding as well
(Sun et al. 2017; Campbell et al. 2018; Marchal et al. 2019). Suppose
d is the order of fit or degree of the polynomial. Legendre polyno-
mials evaluated at the standardized time points were computed as
F ¼ ML, where M is the tmax by d þ 1 matrix containing the poly-

nomials of the standardized time covariate Mkþ1 ¼
�

2ðt2tminÞ
tmax2tmin

�k

2 1

and L is the d þ 1 · d þ 1 matrix of Legendre polynomial coefficients
(Kirkpatrick et al. 1990). Here, tmin ¼ 1 and tmax ¼ 20 because PSA
was measured for 20 days. We chose the same orders of polyno-
mials for fixed, additive, and permanent environmental coefficients
as previously described Schaeffer (2016). We compared linear
(k ¼ 0;⋯;K1 ¼ K2 ¼ K3 ¼ 1) and quadratic (k ¼ 0;⋯;K1 ¼
K2 ¼ K3 ¼ 2) Legendre polynomials in this study. Thus, the num-
bers of regression coefficients were d þ 1 ¼ 2 and d þ 1 ¼ 3 for
linear and quadratic Legendre polynomials, respectively.

B-splines: Spline functions consist of individual segments of poly-
nomials joined at specific points called knots. B-splines first require
determination of the total number of knots K. Although a large
number of knots will increase complexity, too few knots will de-
crease accuracy. This basis function is reported to offer several
advantages, including better numerical properties compared with
polynomials, especially when there are high genetic variances at the
extremes of the trajectory period, negative correlations between the
most distant time point measurements, and a small number of re-
cords, particularly at the last stage of the trajectory (Meyer 2005;
Misztal 2006). Here, we used equidistant knots, and the B-spline
function was computed from Cox-de Boor’s recursion formula
(De Boor 2001). Given a preconsidered knot sequence of time t, the
covariables for B-splines of degree d ¼ 0 were defined by assuming
values of unity for all points in a given interval or zero otherwise. For
the ith interval given by knots

Bi;d¼0ðtÞ ¼
�
1 if   Ti # t#Tiþ1

0 otherwise:

where T is the threshold in time interval. According to De Boor
(2001), the matrix F of B-spline for higher-order polynomials can
be defined by recursion

Bi;dðtÞ ¼
t2Ti

Tiþd 2Ti
Bi;d21ðtÞ þ

Tiþdþ1 2 t
Tiþdþ1 2Tiþ1

Biþ1;d21ðtÞ:

This indicates that a B-spline of degree d is simply a function of
B-splines of degree d2 1. Note that the number of random regression
coefficients depends on the number of knots and order of polynomials
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for B-splines. In general, the number of regression coefficients
is given by K ¼ sþ d2 1 (Meyer 2005). In this study, we fitted
linear B-splines with s ¼ 3 or s ¼ 4 knots to divide the time points
into equally spaced intervals. The same number of knots was
considered for fixed trajectories, additive genetic, and permanent
environmental coefficients. Thus, the numbers of regression coef-
ficients were three ðk ¼ 1;⋯;K1 ¼ K2 ¼ K3 ¼ 3þ 12 1 ¼ 3Þ and
four ðk ¼ 1;⋯;K1 ¼ K2 ¼ K3 ¼ 4þ 12 1 ¼ 4Þ for s ¼ 3 and s ¼ 4
knots, respectively.

Goodness of model fit
The goodness of fit of RRM was assessed by computing the Akaike’s
information criterion (AIC) (Akaike 1974) and the Schwarz–Bayesian
information criterion (BIC) (Schwarz 1978). The best model was
selected based on the largest AIC and BIC values after multiplying

by -1/2. We used the Wombat software to fit RMM in this study
(Meyer 2007).

Cross-validation scenarios
As graphically represented in Figure 1, three different CV scenarios
were designed to train the RRM. In all scenarios, prediction accuracy
was evaluated by computing Pearson correlations between predicted
genetic values and PSA in the testing set. Each of the CV scenarios is
described below.

CV1: In the first CV scenario (CV1), the whole data set was divided into
two subsets, i.e., training and testing sets, each including 179 and 178 ac-
cessions, respectively. All 20 time points in the training set were fit to
the RRM using Legendre polynomials and B-splines, and we predicted
phenotypic values of 20 time points for lines in the testing set. Random

Figure 1 Pictorial representation of three cross-validation schemes used for predicting longitudinal projected shoot area (PSA) using a random
regression model coupled with Legendre polynomials and B-splines. The data set consisted of 357 lines. CV1: 179 lines were used as the training
set to predict PSA for the remaining 178 lines. Here, all 20 time points in the training set were used to predict PSA at each of 20 time points for a
new set of lines. CV2: The data set was split into two longitudinal stages. The model was trained using the earlier growth stages to predict PSA at
the second part of growth stages. We increased the number of time points used for training in a sequential manner. CV3: This was used to
evaluate the impact of phenotyping frequency in the training data set on longitudinal prediction accuracy. Observations on odd days were used
(CV3A), Observations on even days were used (CV3B), and keep one and delete two consecutive time points (CV3C). TP: time points.
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assignment of individuals into the training and testing sets was repeated
10 times. The equation for CV1 was set up in the following manner.
The time-specific genetic value of the ith individual in the training set
was computed as ĝttrn; i ¼ Ftui, where ĝ

t
trn; i is the estimated genetic

value of the individual i at time t; Ft is the tth row vector of the
tmax ·K1 matrixF; and ui is the ith column vector of the K1 · nmatrix
u. Then, a vector of predicted genetic values of individuals in the testing
set at time twas obtained as ĝttst ¼ Gtst; trnG21

trn; trnĝ
t
trn, whereGtst; trn is

the genomic relationship matrix between the testing and training set
and G21

trn; trn is the inverse of genomic relationship matrix between the
training set. Because CV1 is not a forecasting task, a standard multi-
trait model (MTM) was also fitted as a baseline model considering
longitudinal traits as different traits (Henderson and Quaas 1976).

y ¼ Xbþ Zuþ e;

where b is a vector of systematic effects; u is the vector of additive
genetic values; e is the residuals; andX andZ are corresponding incident
matrices. The joint distribution of u and e follows multivariate normal

�
u
e

�
� N

��
0
0

�
;

�
G5Σu 0

0 I5Σe

��
;

where G is the genomic relationship matrix, I is the identity matrix,
and Σu and Σe refer to 20 · 20 dimensional additive genetic and re-
sidual variance-covariance matrices, respectively. In other words,
the diagonal and off-diagonal elements of Σ include variance at each
time point and covariance between time points, respectively. The
BLUPF90 family of programs was used to fit MTM with 20 traits
(Misztal et al. 2002).

CV2: The second CV scenario (CV2) was related to forecasting future
phenotypes from longitudinal traits at early time points. Individuals in

the training setwereused to forecast their yet-to-be observedPSAvalues
at later timepoints from informationavailable at earlier timepoints.The
first quarter of the time points {t = 1, 2, 3, 4, 5} was used as the training
set, and the remaining time points {t = 6, 7,⋯, 20} were predicted for
each line in the training set. This was followed by sequentially increas-
ing the number of time points used to train the model so that in the
last run, three quarters of the time points {t = 1, 2,⋯ 15} were used in
the training set to forecast phenotypes at the last quarter of time
points {t = 16, 17, 18, 19, 20}. This CV scenario was designed to find
a sufficient set of earlier time points to obtain reasonable longitudinal
prediction accuracy and is known as walk forward validation.We set up
the CV2 equation by first estimating the random regression coefficient
matrix u using F1:t , which was computed from time point 1 to time
point t. The prediction of future time points t9 (t þ 1# t9# tmax) for
an individual iwas carried out by ĝt9 ¼ Ft9ui, whereFt9 is the t9th row
vector of tmax 2 t byK þ 1 matrixF; and ui is the ith column vector of
the number of random regression coefficients by n matrix u.

CV3: The third CV scenario (CV3) was designed to evaluate whether
it was possible to reduce the phenotyping frequency while still
maintaining a high prediction accuracy for the last quarter of
observations. We used the last case in CV2 such that time points
{t = 1, 2, ⋯, 15} were used for the training set to forecast the last
quarter of observations {t = 16, 17, 18, 19, 20}. We then reduced the
number of time points used in the training set as follows: A, obser-
vations on odd days {t = 1, 3, ⋯, 15} were used; B, observations on
even days {t = 2, 4, ⋯, 14} were used; C, keep one and delete two
consecutive time points. In CV2 and CV3 scenarios, half of the indi-
viduals were randomly selected to fit and evaluate the model, and the
analysis was repeated 10 times. If the loss of prediction accuracy
was minimal, it was possible to reduce the phenotyping cost. The
equation for CV3 was set up in the same way as that for CV2.

Figure 2 A: Box plots of projected shoot area (PSA) over the 20 days of imaging in two environments: controlled and water-limited conditions. B:
Best linear unbiased estimators over the 20 days of imaging in two environments: controlled and water-limited conditions.
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Data availability
Phenotypic data used herein are available in Supplementary File S1 at
Figshare.Genotypicdataregardingthericeaccessionscanbedownloaded
from the rice diversity panel website (http://www.ricediversity.org/) and
also available in Supplementary File S2 at Figshare. Supplemental ma-
terial available at FigShare: https://doi.org/10.25387/g3.9383543.

RESULTS

Assessing model fit
Figures 2A and 2B show the box plots of the original PSA and BLUE for
the phenotypic trajectories over the 20 days of imaging for control and
water-limited conditions. The PSA for control and water-limited plants

diverged significantly six days after initiating the drought treatment
(p , 0.0025). Supplementary Figure 1 (File S3) shows the linear or
quadratic forms of Legendre polynomials and three and four knot-
based B-spline curves over 20 days of imaging. For Legendre polyno-
mials, intercept, linear, and quadratic coefficients are represented in
black, red, and green, respectively. For B-spline, knot 1, knot 2, and knot
3 are represented in black, red, and green, respectively.

Table 1 summarizes the goodness of fits of RRM coupledwith linear
and quadratic Legendre polynomials and B-spline functions in control
and water-limited conditions. For the Legendre polynomials, quadratic
forms require more parameters to be estimated compared with linear
forms. Similar to observation for B-splines, the presence of a greater
number of knots suggested that there were more parameters to be
estimated. Under control conditions, the best goodness of fit was
obtained by linear Legendre polynomials, followed by linear
B-splines with three knots, linear B-splines with four knots, and
quadratic Legendre polynomials according to AIC scores. Accord-
ing to BIC scores, linear Legendre polynomials performed the best,
followed by linear B-splines with three knots, quadratic Legendre
polynomials, and linear B-splines with four knots. Under water-
limited conditions, the best goodness of fit was given by linear
Legendre polynomials, followed by linear B-splines with three
knots, quadratic Legendre polynomials, and linear B-splines with
four knots for both AIC and BIC scores. The number of parameters
in the model varied from 26 to 40.

Cross-validation
The results from CV1 are shown in Figure 3. This CV was designed
to evaluate the accuracy of predicting testing set individuals using all
time points. Under control conditions, MTM performed relatively

n Table 1 Assessing goodness of fit for two random regression
models (Legendre polynomials and B-splines) used to predict
projected shoot area measured over 20 time points

Condition BF Log L 20:5 AIC 20:5 BIC p

CON LEGL 232414:493 232440:493 232529:839 26
LEGQ 232412:550 232444:550 232554:512 32
BSPL3 232408:862 232440:862 232550:824 32
BSPL4 232404:142 232444:142 232581:592 40

WL LEGL 226011:867 226037:867 226127:213 26
LEGQ 226009:267 226041:267 226151:229 32
BSPL3 226006:205 226038:205 226148:167 32
BSPL4 226005:537 226045:537 226182:986 40

CON: control environment; WL: water-limited environment; BF: basis function;
LEGL: Legendre polynomial linear; LEGQ: Legendre polynomial quadratic;
BSPL3: B-spline linear with three knots; BSPL4: B-spline linear with four knots; Log
L: log likelihood; AIC: Akaike information criterion; BIC: Bayesian information
criterion; and p: number of parameters.

Figure 3 Prediction accuracy obtained from cross-validation 1 scenario. Total of 179 lines were used as the training set to predict PSA for the
remaining 178 lines. Here, all 20 time points in the training set were used to predict PSA at each of 20 time points for a new set of lines. LEGL:
linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear B-splines with three knots; BSPL4: linear B-spline with four
knots; MTM: multi-trait model.
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better than RRM up to day 3. The prediction accuracy of RRM
increased subsequently and after the 10th day of imaging, the best
prediction was given by linear Legendre, followed by quadratic
Legendre, linear B-spline with three knots, and linear B-spine with
four knots. Overall, RRM performed better than MTM, and linear
Legendre was the best prediction machine throughout the growth
stages. Under water-limited conditions, prediction accuracy was
lower compared with those of control conditions. All RRM de-
livered higher prediction than MTM except for the first two time
points. Although Legendre polynomials performed better than
B-splines until day 7, the difference between these approaches
became negligible afterward.

Figures 4 and 5 show the accuracy of CV2 under control and water-
limited conditions, respectively. This CV was designed to test how
much information from the previous time points was required to
achieve reasonable prediction accuracy at later growth stages. Under
control conditions, we found that the best prediction for the last five
time points was achieved when using information from all prior time
points (15/5 CV2 subscenario). This suggested that having more in-
formation from previous time points to train the model would result in

higher prediction accuracy. Using the first five time points to train the
model resulted in the worse prediction (5/15 CV2 subscenario). Thus, it
is likely that the prediction accuracy in RRM declined because we
attempted to estimate numerous parameters from only five time points.
Legendre polynomials yielded better and more stable prediction than
B-splines. We observed a similar trend under water-limited conditions;
that is, using more previous time points to train the model resulted in
higher prediction accuracy. However, the accuracy of prediction was
unstable and decreased dramatically. There was no noticeable differ-
ence between the Legendre polynomials and B-splines in terms of
performance.

Figures 6 and 7 show the CV3 accuracy under control and water-
limited conditions, respectively. We designed this CV to evaluate
whether it was possible to reduce phenotyping frequency and pheno-
typing costs without sacrificing prediction accuracy. Under control
conditions, the prediction accuracy of CV3A, CV3B, and CV3C all
decreased relative to the benchmark scenario in CV2, where all of
the first 15 time points were used for the training set to forecast the
last five time points. Although removing two consecutive time points
did not improve performance (CV3C), the prediction accuracy from

Figure 4 Prediction accuracy of cross-validation scenario 2 in control conditions. Each line depicts the different number of training and testing
sets partitioning at the time point levels. LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear B-splines with
three knots; BSPL4: linear B-spline with four knots.
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phenotyping every other day was still relatively high (CV3A and
CV3B). In general, the linear B-splines performed the best, and differ-
ences between scenarios were minimal. Under water-limited condi-
tions, we observed the same trend, but the prediction accuracy was
more unstable and decreased relative to control conditions. The qua-
dratic Legendre polynomials and B-splines with four knots did not
perform well, possibly due to overfitting.

DISCUSSION
Image-based automated HTP technologies offer great potential for
characterizingmulti-faceted phenotypes at high temporal resolution.
The use ofHTPplatforms plays a pivotal role in accelerating breeding
efforts by providing the temporal resolution needed for capturing
adaptive responses to environmental challenges, but the develop-
ment of statistical methodologies to analyze image-based function-
valued phenotypes has not kept pacewith our ability to generateHTP
data. Because phenomics and genomics landscapes for plants are
constantly advancing, parallel efforts are required to develop tools for
integrating diverse genomic and phenomic datasets characterized by
high temporal resolution in genetic analysis. Rice is one of the most

drought sensitive cereal crops, resulting in substantial yield losses.
With predictions for greater climatic shifts in the future and increas-
ing competition for fresh water resources, research that leverages the
full potential of genomics and phenomics is needed to elucidate the
genetic and physiological basis of drought tolerance. However, there
is currently a lack of information regarding themodeling of temporal
HTP data.

RRM identifies the effects of heterogeneous SNPs that transiently
influence key traits and translates this to prediction of phenotypes. The
main idea behind RRM is to describe subject-specific curves through
basis functions (Meyer and Kirkpatrick 2005). Although RRMhas been
successfully applied to pedigree-based animal breeding (Schaeffer and
Jamrozik 2008), its utility is largely limited to evaluating goodness-of-fit
for candidate models rather than CV-based prediction, and its integra-
tion into HTP data has not been reported. In this study, we cou-
pled HTP data with high-density genomic infromation to carry out
longitudinal prediction by capturing time-specific genetic signals. A
diverse panel of rice accessions subjected to drought stress was used
to illustrate the utility of the RRM for evaluating Legendre polyno-
mials and B-splines of time at recording.

Figure 5 Prediction accuracy of cross-validation scenario 2 in water-limited conditions. Each line depicts the different number of training and
testing sets partitioning at the time point levels. LEGL: linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear
B-splines with three knots; BSPL4: linear B-spline with four knots.
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Longitudinal prediction
We found that it was possible to model longitudinal PSA responses
under water-limited conditions, albeit with decreased prediction
accuracy comparedwith that of the control.We also placed particular
emphasis on comparing two basis functions, i.e., Legendre polyno-
mials and B-splines. To the best of our knowledge, the current study
is the first to use a B-spline function to evaluate longitudinal pre-
diction accuracy in the RRM applied to HTP data. Linear B-spline
functions with s ¼ 3 (two segments) or s ¼ 4 knots (three segments)
were used. B-splines have been reported to have better numerical
properties (e.g., lower computational requirement and faster con-
vergence) than Legendre polynomials because each coefficient of a
function affects only a part of the trajectory and can be used to
estimate genetic parameters more smoothly while still adequately
capturing the features of dynamic data (Iwaisaki et al. 2005; Baldi
et al. 2010).

Weobserveddifferences inpredictionaccuracyacrossmodelsduring
early growth stages; however, differences were incremental when pre-
dicting later growth stages in the CV1 scenario, in which the training
and testing sets were partitioned based on individuals. Overall, linear
Legendre polynomials performed the best and was clearly an advance-
ment over the MTM. Prediction performance in CV2, in which the
training and testing sets were partitioned according to growth stages
rather individuals, showed that it was possible to predict future phe-
notypes from information available from earlier trajectories. Here,

linear and quadratic Legendre polynomials produced the highest and
most stable prediction accuracy under control conditions, whereas
linear B-splines with three knots performed better in the water-limited
environment. The final scenario (CV3) demonstrated that we could
decrease the phenotyping frequency by only phenotyping every other
day to reduce the phenotyping cost while minimizing the loss of pre-
diction accuracy. In this case, linear B-splinewith three knots performed
relatively well.

B-spline functions require two parameters (the position of the knots
and the number of knots) to be tuned. The position of knots can be
chosen based on a trajectory pattern such thatmore knots are placed for
rapidly changing time points, whereas less knots are placed for time
points with slow changes (Misztal 2006). Thus, the position of knots
should be carefully chosen if the number of phenotyped individuals
varies substantially at each growth stage. We chose equidistant knots in
the current study because all accessions were phenotyped on the same
days during the trajectory. The number of knots determines the num-
ber of segments fitted. When more knots are specified, the model
becomes more complex. Although we used s ¼ 3 and s ¼ 4 based on
previous literature and a visual inspection of the observed phenotypic
trajectory, further investigations are warranted to explore the impact of
the number of knots on prediction accuracy. The performance of qua-
dratic B-spline functions was not evaluated in the current study because
we encountered convergence issues, possibly due to the small sample
size. In general, we found that the advantages of B-splines in inferential

Figure 6 Prediction accuracy of cross-validation scenario 3 in control conditions. A: only observations in the odd days were used; B: only
observations in the even days were used; C: keep one and delete two consecutive time points; CV2: use all available previous time points; LEGL:
linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear B-splines with three knots; BSPL4: linear B-spline with four
knots.
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tasks compared with Legendre polynomials were not shown clearly in
terms of prediction. This is likely because PSA trajectories were rela-
tively simple exponential or monotonically increasing trajectories with-
out obvious inflection points, indicating that the potential of B-splines
was not able to be fully exploited in the current study.

Choice of parameters
We also found that ranking the models according to AIC and BIC
revealed onlymild agreementwith predictionperformance evaluated by
CV, suggesting that the RRM that gives the best goodness-of-fit is not
guaranteed to deliver the best prediction and vice versa. The choice for
the order of fit or the number of knots is arguably the most challenging
modeling aspect in the RRM. In the majority of literature describing
the RRM, this parameter is mainly chosen based on AIC, BIC, or the
eigendecompositionof the covariancematrix.Themajor issue regarding
this approach is that there is a tendency to simply pick a model with the
highest order of fit or the largest number of knots. However, this study,
suggests finding the best parameter in terms of prediction accuracy
obtained from CV.

Future perspective
We anticipate that the current work will guide us to conduct genomic
selection of economically important traits on the longitudinal scale for
the purpose of breeding crops that are better adapted to new environ-
ments or to less favorable challenging climatic conditions. Although in

the current study, our aimwas to assess RRM for genomic prediction of
shoot biomass under contrasting water regimes, these frameworks
can be extended to any time-resolved phenotype, provided there are
enough time points with complete or partial records. Owing to the
accessibility of HTP platforms in the public sector as well as the
growing availability of unmanned aerial vehicles and other auton-
omous field-based platforms, many breeding programs are currently
generating temporal phenotypic data. Although the temporal phe-
notypes themselvesmay not be a target of selection, these data can be
utilized to improve selection for conventional end-point phenotypes
such as yield. For instance, Sun et al. (2017) used parameters from
RRM as covariates in a mixed model to improve prediction for yield
in drought-stressed environments in wheat.

The identification of genomic components over trajectories will
provide information regarding the optimum time points to maxi-
mize cost-effective selection or to design a genome-assisted breeding
program aiming to change the shape of the longitudinal response
curve (Schaeffer 2004). Using our approach, we could evaluate all
changes in plant biomass accumulation during the course of
the experiment, in contrast to single time point analyses. Thus,
we expect that RRM analysis will become the norm for modeling
trajectories of function-valued HTP data because such approaches
could be considered an extension of the widely used genomic best
linear unbiased prediction model for time series data. Lastly, the
utility of the RRM does not preclude its use in other applications.

Figure 7 Prediction accuracy of cross-validation scenario 3 in water-limited conditions. A: only observations in the odd days were used; B: only
observations in the even days were used; C: keep one and delete two consecutive time points; CV2: use all available previous time points; LEGL:
linear Legendre polynomials; LEGQ: quadratic Legendre polynomials; BSPL3: linear B-splines with three knots; BSPL4: linear B-spline with four
knots.
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For example, the RRM offers a new avenue for performing longitudinal
GWAS (e.g., Howard et al. 2015; Campbell et al. 2019) and genotype-
by-environment interactions using the reaction norm (Arnold et al.
2019). In summary, an RRM using Legendre polynomial or spline
functions could be an effective option for modeling trait trajectories
of HTP data and may have potential applications in characterizing
phenotypic plasticity in plants.
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